Commit b1b777e6 authored by Stefan Mauerberger's avatar Stefan Mauerberger
Browse files

From pandas 0.19 on you can directly pass a url.

parent dbddecc4
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -25,7 +25,7 @@ ...@@ -25,7 +25,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -45,7 +45,7 @@ ...@@ -45,7 +45,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -81,7 +81,7 @@ ...@@ -81,7 +81,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -111,7 +111,7 @@ ...@@ -111,7 +111,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -171,22 +171,9 @@ ...@@ -171,22 +171,9 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [],
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAE9CAYAAAA8gKerAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3deZCkd33n+ff3OfKozDq6DlW11HfrAIlDQFsWluSFMCCsYJDttRfYCduL/+hlY4iZ8Y43hh1iYcYTs7O7c+yGjxjQjhkbdgbLMSwYBpnLa4waEKglBOimT3Wru6vrzqqsPJ7jt39kVqm6VdVdraqnsjv784ooKo+nnudXT3UoP/yO78+cc4iIiIhINrxON0BERESkmylsiYiIiGRIYUtEREQkQwpbIiIiIhlS2BIRERHJkMKWiIiISIaCTjcgC8PDw27Pnj2dboaIiIhcJ5544olJ59zIau91Zdjas2cPhw8f7nQzRERE5DphZifXeq+jw4hm9hkzO29mT6/x/jvMbM7Mnmp/fWKr2ygiIiKyEZ3u2fpT4I+Az17imEedc+/bmuaIiIiIbK6O9mw5574DTHeyDSIiIiJZuhZWI77dzH5sZn9lZnd0ujEiIiIiV6LTw4iX8ySw2zm3YGYPAF8CblntQDM7CBwE2LVr19a1UEREROQSruqeLedcxTm30H78CBCa2fAaxz7knDvgnDswMrLqyksRERGRLXdVhy0zGzMzaz++i1Z7pzrbKhEREZH16+gwopl9HngHMGxmp4FPAiGAc+5TwK8D/4OZxUAN+KBzznWouSIiIiJXrKNhyzn3ocu8/0e0SkOIiIiIXJOu6mFEERERkWudwpaIiIhIhhS2RERERDKksCUiIiKSIYUtERERkQwpbImIiIhkSGFLREREJEMKWyIiIiIZUtgSERERyZDCloiIiEiGFLZEREREMqSwJSIiIpIhhS0RERGRDClsiYiIiGRIYUtEREQkQwpbIiIiIhlS2BIRERHJkMKWiIiISIYUtkREREQypLAlIiIikiGFLREREZEMKWyJiIiIZEhhS0RERCRDClsiIiIiGVLYEhEREcmQwpaIiIhIhhS2RERERDKksCUiIiKSIYUtERERkQwpbImIiIhkSGFLREREJEMKWyIiIiIZUtgSERERyZDCloiIiEiGFLZEREREMtTRsGVmnzGz82b29Brvm5n9gZkdMbOfmNlbt7qNIiIiIhvR6Z6tPwXee4n3fxm4pf11EPh3W9AmERERkU3T0bDlnPsOMH2JQx4EPutaHgMGzGz71rROREREZOM63bN1OTcBp1Y8P91+7VXM7KCZHTazwxMTE1vSOBEREZHLudrDlq3ymlvtQOfcQ865A865AyMjIxk3S0RERGR9rvawdRrYueL5DuBMh9oiIiIicsWu9rD1ZeC32qsS7wbmnHNnO90oERERkfUKOnlxM/s88A5g2MxOA58EQgDn3KeAR4AHgCPAIvDhzrRURERE5LXpaNhyzn3oMu874O9tUXNERERENt3VPowoIiIick1T2BIRERHJkMKWiIiISIYUtkREREQypLAlIiIikiGFLREREZEMKWyJiIiIZEhhS0RERCRDClsiIiIiGVLYEhEREcmQwpaIiIhIhhS2RERERDKksCUiIiKSIYUtERERkQwpbImIiIhkSGFLREREJEMKWyIiIiIZUtgSERERyZDCloiIiEiGFLZEREREMqSwJSIiIpIhhS0RERGRDClsiYiIiGRIYUtEREQkQwpbIiIiIhlS2BIRERHJkMKWiIiISIYUtkREREQypLAlIiIikiGFLREREZEMKWyJiIiIZEhhS0RERCRDClsiIiIiGVLYEhEREclQR8OWmb3XzF4wsyNm9rFV3n+Hmc2Z2VPtr090op0iIiIir1XQqQubmQ/8MfBu4DTwuJl92Tn37EWHPuqce9+WN1BERERkE3QsbAF3AUecc8cAzOzPgQeBi8OWiIiIyKY4PrHAoaNTjM/VGe0vcO/+IfaOlDO9ZieHEW8CTq14frr92sXebmY/NrO/MrM7tqZpIiIi0m2OTyzw8OHTVOsxY/0FqvWYhw+f5vjEQqbX7WTYslVecxc9fxLY7Zx7M/CHwJfWPJnZQTM7bGaHJyYmNrGZIiIi0g0OHZ1ioBjSVwzxzOgrhgwUQw4dncr0up0MW6eBnSue7wDOrDzAOVdxzi20Hz8ChGY2vNrJnHMPOecOOOcOjIyMZNVmERERuUaNz9UpFy6cQVUuBIzP1TO9bifnbD0O3GJme4GXgQ8C/+3KA8xsDBh3zjkzu4tWOLxs/GzEKZ977OSWjseKiIjI1W20v8BCPaavGC6/tlCPGe0vZHrdjvVsOedi4KPA14HngL9wzj1jZh8xs4+0D/t14Gkz+zHwB8AHnXMXDzW+yky1ueXjsSIiInJ1u3f/ELO1iEotInWOSi1ithZx7/6hTK9r68gu15zdt73R/cvPfnX5eaUWUSoE/ObduzvYKhEREem0rFYjmtkTzrkDq73XyWHEzPjehXPvy4WAcxmPx4qIiMjVb+9Ied3harOCWVdu15OkF/bWbcV4rIiIiHSPzSwT0ZU9W0naGoctFwIW6jGztYj77xh9zefrRAE0ERER6ZyVZSKA5e+Hjk5dcQboyrC1rZSj1B46HO0vcP8do2vemMsFqaVkO1AMGWuvYnj48Gk+cGCHApeIiMg1Zj0dKMcnFvjWs+OAo78nx80jJYbLhQumJV18Hgty+bWu2ZVhKx9465oMv54gtZnJVkRERDpnrc/9e/YNcmKmxvhcncCDc5UG+cADg2aUcvjELAf2DJDzfUb7C6uex+vpX7UOKHRp2Bqv1Pk/v/kCBsRpq67Gnm3F5Ru5lGTXE6TG5+qMXTTfSxPuRURErj2rfe5PVxt8+tHj3HvzMGP9Bb7zswkqixGvHytzdHKRYi6gGHo8fabCvuEy998xunp+SJN4ret2ZdgC+MGxaRzwC/sHOTVV5QtPnOau3dvYNVxaTrIL9YjXbe+74OcuDlKdKoAmIiIim2u1DpSzlTqpc8uf8804JfDg8KlZioHPTK1JT+BTyPnLI1///tHjVOoR842YvkLIzSMlnEuTta7blWGrGaf09+Qw4OjkIgADxZBz8w32jJRbSXahwVOnZjk2UaWQay3KTB3kAo/bx3qXz3Xv/iEePnwaYNMm3IuIiMjWW60DZXKhwXAp335c5+xsjbNzNcLA584d/Qz6eWYWm+wZ7OHQ0Sn+5NBxHjs+xVBPjnIh4GfjC/zopRm8fGnbWtft2tIPhcAjH3pU2pVi+4oB8/UIgMn5Os+Nz5OmKadnqjx+YpqnTs1SWWxQWYw4V2ksL+3cO1LmAwd2LE+4LxUCTY4XERG5Bq1WQT7wPLb3FZhcqHP4xCxxmuKbhwecnFqkWo+oN2OeOVuhWo+Zq0cMlXK8NL3I0y/PMbPYYKEeYUGuuNZ1u7Jny/eMepxivDIPq7IYLT8+MlGlESU0EwgDj1IuoBGnvDRT5++8cYzR/p4L5m2tLIC2tPrgC0++rDIQIiIi15ClDpRDR6eWKxYcvHcv3z02zdNnKhRDD+egGHpEqWNyocFiM2HntiKebzTjhOfPzmNAPUmoNxNK+ZBiLgDn0rWu25VhKxd4zC02l+dsVRsJL00tcusNZVLneGmqyunZGsXAp5EkbOvJUQh85hsxU4sx+0dXnwD/6Avn+fSjx0lTx1A5RzNKeHimpp4uERGRa8RqFeR3DPbwT7/yDIYR+B5mCSO9BQIPpqtNnj83T0/OY6LSwOHI+z7NOCVNHYEHzSQFsFUvSJeGrYVGTCH02D3YQ5RAT87nzTf18cL5BX50aoapapPQ89hWCjk/75haaDJQDCnnfebr0fIE+JU1NHwPvntkknI+pL+Uox6nPD8+z+tGe1UGQkRE5Bq2d6TMu24fo1qPefzEFMcmUppxwvhixGIjxhlYBOWCEcUpcZKQpCkpUG0mFEMfnLu+JsiHvkcjSTk2tcj739jH0aka+dCnrxjw0nSV1DkwRz1KGegJGJ9rMFOLGB3IE/oes7WIO7b38q++/gLHJqssNmMacUoUJbxl9zbMrHVjaa1iyLUfi4iIyLXh4qKke7YVeeSZcxybqNKIYmbrMUnqKOdDSjmPc5UGaZpSygc049a8LkeKA4bKOcC5ta7VlWGrHiVUGwm4mP/1a8+T8z2asWOwHOKcoyf0qTYT6nFC4HuM9OVYbCbUGikHdvfyK3fexH/47nGeemmGUiGkEHhMzDdoxilPnJzhwO5BykuvLzS4a99Qp39lERERWYfjEwt86amXefTFSYb78tzYl+fF8/N8fnpxOS81EijnAupxynA5R5I6At/jbKVOIWh1sBRDn2rqSJPWCBnYmosOuzJseWYsNmLGK3VqzQTPg8D3OTfXwPeMkd4chZzP3qEeSoWQifk6t5by/KN337o8HPi9Y1OUCgG+Z0xXI0Lfw6UplVrM4yenGest0N8Tkgt87t2vsCUiInK1W6r8fmxigeG+PLVGzLeerzDWl2dqoUkzSegthEDKcG+R6WqTifkGqYO+vM9MLWKhEWFm5HyPIPAIfSN/mRGuriz94BzLKwhiB1ECSZoSpyn1KOZ8pUG1HvPi+Dz1KGHPUOmCoAVLRc2M+XqM7xmh79FMwAFRknJqZpGTk1UefNOY5muJiIhcA5YqvzeTlGLgM1ePCTzj5HSNOE0JfZ984JO6VhWDZpQwV4twLqUWJXgGgd9asVhtJCw2E+YWY8Zna2B2fU2Qb8QJc7WYpcFTB0SxwzPa4SuhNx9QCANwq4+y7h8pceT8Ao04JR94NOLWvLcwgFIuIHUwNlDgtLbtERERueqstuH0UgX5vkJIPU6pRwlRnOKcI/RbvVM9oU8h8Floxgz25GgmCbUoJU4dOd9jWzFgshqRAktBI3Vgnp9bqy3d2bPF8u+/LKUVtJben6tHvPHGXt5x2w3sGSpx6OjUBcf/zi/spZwPMaDWTGhECaFv3NTfw0hvgZu2FRntL/LUqdnsfyERERFZt6Xhwmo9Zqy/QLW9TZ/vtbbcu3mkRK0Zk6Qp09Umi82YZpIQpwln5+rM12OiJGVyoUEzoVXigVaJhzOVJs3kwpSxZpdWW1f2bEHrF19zWQCtocDvH5tmz0iZwVL+VXW17rvtBv4J8CffO87zZ+YJA5+hHp9iLiBKUm7s78Fc60qrpWcNLYqIiHTGK8OFCT88UaFSi8gFHtt78zTyjoFiyN6hHo6eXyBxjnLgUwo9ZmoxgedoxgkpkLbLlK5ZrbStlTeus2FEuHTQWurOm61FHJmocrvvv6qu1lJo+tMP/zzHJxb4/f/yDC+MLwCOXYNFAt9jZrHJ60bLPHz4NAPFkLH+Ai9NVvlfnj7HnqEebtvep+AlIiKyxcbn6oQ+PHFyjp6cT38xpN5M+OmZCr/7S7dwYqbGs2cr9BZDUpcwVY2Zq8V4BokHUXrpHHGlunIYES7dpZcCzQTqUcrPzlWYrUXs2VZctcvx+MQCe0fKfOJ9d/Bf3TrCjsEe4rRVWWOknOPk9CI/Pj3Ds+cqHD1f4fnxeQLPmKtHF5xDREREtsZof4Fnzs7Tk/MphD6GgRnD5TwnZmrcu3+IJIVizqhFjrxvpK4Vsmrxawxalwge12XP1spjXji3QBSnPH9ujtHePGfmau2Nq0PGevPL1eH3jpQ5eN++5Z6vwINzlQbT1YiR3jzNKOXRn02zvT9PfynHXO2VvRhVYV5ERGTr3Lt/iM//4CQOiJOU1DnixHFDb55vPTvO5Hyd4b48Tx6foREnxJvRk3WJE3Rt2Fovz+DMXJ2XZmrgHIPlPDf0FkiSlJmFJrXmK9X3V+6n9LnHTlIIAxabCY04pRj6pM4xW4so5cPloFUurL7PooiIiGSnEPrLE93na61t/PJB6+vRFyfZPVSg0ogAd9kJ7uvyWnu2zKyyjlOfdc7deuWtujrEDlyckrYT6fRik3qUEPoeY315ZnpaoenifRK/d2SKUj7AM5ivRwyWC5TyPnO1Jtt68tx+Yy/A8j6LIiIisjUOHZ3iwK5tPD8+z8RCg2IYkKSOc/MN3r93iKfPVnjuXJW+YsBcLSZNW+Wh0s2cqLXC5Xq2jjrn3nKpA8zsR5vYno4we6XWVhQ7qmmMb8Z0tclL04t8+D/8gGIY8KYdAwQePHZsmomFBvnAKBVyOBcRJUm7+KnP68ZaKxwrtYjZWsT9d4x29hcUERG5jozP1dk1XKJcCPjKT84SxQnNxJG6lCOTVW7sy/OTU7Ps2lbkufoCTXP4BumaW0lvzOXC1n+9jnOs55irWrxiTaejNUEuag+++l6rtMN0LebUdBU8Y6AQsnNbkbNzDW4u5BjszYODu/cNc8++QU7M1DjXXtF4/x2jmq8lIiKyBZZGoX768hwvjs9zU38eM5hZjMiHPtt6cjSjlOfmFtg92EN/KceOesLJ6UUADLepqxCXXDJsOeeOXe4E6znmWrRUp6tSj6k2W71WJyarpBhxmtJfDBkohuRCj7nFJmB84MAO9o6Uua/DbRcREek2l6tpuVTIdKAY8tZd/Xz1J+d47NgUrj05Pk0dhcCo1iMMuHWsl558yFt3buPc3CLfeHaciYUGUQa9W695gryZPeScO7iZjbmaOFqBK0nBN0iSlFoChdAIPKNSj5ivxxQCj7GBHl6/vVc9WCIiIhlYGaTG+gsstEsrLXVywCuFTPuKIZPzCY24tfPLYjOhJx/icKQOTs3WCDzjxFSVXYNFas2Es3MNKvWIpEPDiJfy6U1rxVVqqSsxStxy9dhG1NoMyAz68h7nFxoU8yHn5xvLNblERERk86wMUsCqpZWW9j0EODJRxfeMm7b1cG6uTl8hYHYxYnKhSZSk9OZ8+kshL55boFKPV93mbzO95qKmzrknNrMhV7P0osdLfxTzPBqx456bh9g9+Or9FUVERGTjxufqlAsX9g+VCwHjK0orjbZ7vAAq9YhSPqDeTCjlfc5XGlSbMc04xTOoJ46JSoNKPV7+XM/S5Uo/fOVSbXDOvX/TW3SV89srF3tCn8A3RvsLDJcLpM6pnpaIiEgGloLUUo8WvLq00r37h3j48GkAevMBi424NTE+MPKhR9JMcbTqbxVCn6mF5mX3PNwslxtG/Nft778GjAH/T/v5h4ATGbXpqpa6VndgPU5oJin7hktMLtTJtfdXFBERkc21Z1uRTz96nDR1DJVzbO8r4PneBaWV9o6U+cCBHRw6OkVfIWS2FnHP/kGeODlLM07oyQfkA0fge4SebVnQgsuvRvxbADP75865X1zx1lfM7DuZtuwqY0DOh9QZceqwFAo5Y64W8dfPnef2G/s4eN++TjdTRESkqxyfWOC7x6a5fXsvZyt1JhcazNYiDt6791WrEQ8dneL5MxXm6hGDxZBqM2VbT47A9xgu56jWY54/P08Sb2XUWv8E+REz27dU5sHM9gIj2TXr6uOAxLVqcPgehB7kQ5+zc3U8M/YOFTU5XkREZJOtnBy/Z7j1OVupRZyYqS2XWlparZgmKS/NLOKbMV+PKIYe1WaMb47zlQbNOKEvH3C+2dzS32G9E+R/F/i2mX3bzL4N/A3wDzd6cTN7r5m9YGZHzOxjq7xvZvYH7fd/YmZv3eg1NyJOW8OIeR8wj2ozIe979BV8nnhpjuMTC51snoiISNdZz+T4pUB2br5BTy4g8IzxSp0jE1VqzYRalDJfj6g3E6rNlMCD3GteInjl1tWz5Zz7mpndAryu/dLzzrnGRi5sZj7wx8C7gdPA42b2ZefcsysO+2XglvbXzwP/rv29I3Jea2uf1HkEvmFm1OKUGAgN/s03X2TPUGnVYmsiIiJy5dYzOX6p7EOlHuEDPz1TYb4WkZCS83yiNCVJHbnAI+d7ND2jGWe9BvEVV5LrbgFuA94MfMDMfmuD174LOOKcO+acawJ/Djx40TEPAp91LY8BA2a2fYPXfc2aaWslYpSmmNHetNIRxyn1OGW62mSsv0C1XWxNPV0iIiIbc+/+IWZrEZVaROrc8r7D9+4fWj5mKZB5Bscmq1QbMalLiZPWgjbPHEkKi81W6Yd4C4MWrDNsmdkngT9sf70T+D+AjZZ9uAk4teL56fZrV3rMlmq2C3K0QpfDM8PzoCcXMFzO45nR197KR3W3RERENmZplWGpEHBurk6pEFxQOR5eCWSNKMEZOOeIkla5Js+MOLXlY+cbyZauRIT1T5D/dVo9Wj9yzn3YzEaBf7/Ba9sqr10cNddzTOtAs4PAQQC/L7u5+0ZrorzvGb6DG/rzzNcSijmfm0dKy8eV2/8oREREZGP2jpQvOTVnKZA9eXKKNElJkrQVqFIAd0G4ipKt7dWC9YetmnMuNbPYzPqA88BG6xycBnaueL4DOPMajgHAOfcQ8BBAfvstmd3JpT0TPc+49YYynueRpHXetnOA4d5Xxo8vHk8WERGRbOWCgLG+Iphxerq25T1Ya1nvnK3DZjYA/N/AE8CTwA83eO3HgVvMbK+Z5YAPAl++6JgvA7/VXpV4NzDnnDu7wetuiNEq+5AmcGJqkZxvfOS+vQz2FqjUIibma3z7xfN845lzTM7XNW9LRERkCxw6OsXtY71MLzbJBz69xWDV4bFOuGzPlpkZ8C+dc7PAp8zsa0Cfc+4nG7mwcy42s48CXwd84DPOuWfM7CPt9z8FPAI8ABwBFoEPb+Sam8EBge9RyHm8aecAODg6VeOefYM88dIM33h2nNRBXz7gubPzjFeO8d//4j6tTBQREcnQ+FydXcMlhk7nWIwSfDO29QTM1mKcy37/w0u5bNhyzjkz+xLwtvbzE5t1cefcI7QC1crXPrXy2sDf26zrbRbnHMXQpxj4VOoRA8WQEzM1HNBXCOnvyVEIPOpxyonJKl966mV+9923dbrZIiIiXWtpReJof5FGnGJmVGoR9Til1uzsgOJ6hxEfM7Ofy7Ql15DEQW8xpB6n9BbC5eJqT52apa8npBj6mBnF0KevJ+SpU7OdbrKIiEhX27OtyHePTvLS9AJHzs9TWWzw8swijS3emmc16w1b7wS+b2ZH25Xcf2pmGxpGvBYtjf02E8dMtcGzZ+dYaES8NFVtT4Y37KJ+ytbzq2XUWEREpPss7Z/4+tFedm4rEfrGeKVJ4HuUcgGlnEfYwY/i9a5G/OVMW3ENmphvsGuwh4VazA9PzHDfzcPsGSzytz+bxDOjXPDpK4REiePt+wY73VwREZGudcH+iSNlzIzFZkKtmXDjQBHDaCYpZ2cXqUcpUZIS+B7NON2SFYvr3a7nZNYNudoZreJoiYOc33qhFiWkrslbdw5w+KUZmqmjvxjSjBPmazGVeswd2/t48M6O1mEVERHpakvb9Syp1CP6iyHVRkKcOELfCH3DOdgzXKKvGHBsospsLSLdgrpblxxGNLMnL3eC9Rxzrcr5tnyDWlvztEJXTy5goCfHtlKe/Tf0UotTnjo1S28uYKicI05bKxZvGihwyw2XLsQmIiIiG7M0OX5JXyGkGPiU8z6LzZhmnLDYjElxTC00eGlqEd8zhnrCS5x181yuZ+v1l5mbZUD/Jran4zwgF7SDlbHcvegZ+EubT0cpAz05GlFCIfCYWGgQxSnPjc/Tkwu4fXsf9ThlsRkzMd/s5K8jIiLS9e7dP8TDh08DrR1cCr5xZq5Ob8EncY5KIyKOUgZ6QiqLrdCVpI5GlGJkXxbicmHrdes4R7IZDbkaeAa9hYBm7PBJSBzkA1veKbyZpLRGED3majE7thWZa+/FNF+PGJ9vhbCRcp7eQkgjSpirR53+tURERLra0nY9h45O8dyZCmfnG9xz8yCLUcrkQoNRz2O4FHJmrkEzrrJQj4lTx1bt3HPJsHU9zdUyWr1ZcZLiGzRTw7PWcKBLExpRSiH0wIzAjIVGRJTkWGhEjPUXSB0kaUS9mfDSdJXRvgKGsa24NV2UIiIi17Ol/RM/99hJdg720Lfi87dSi/jPT5xm/0iJ056RDzyiZuvz3kH7cz+7tq13NWLXW5qb5RxEzhEnDt+HwLX2QfQB3/dwKRRyPr2FkP039LJ/pEQxDPD9CjMLDebqMQv1iLl6xNv3DrFzqHSpy4qIiMgmuniyPLSGFptJq5drptqkFqUXDB26jHu4FLbaEto3w1hemeBSiCwBZ4ShR+gZIwMFRsp53rprgDiFJG39EW8eKXG4GnFjf5HcUA+TC008z+Pe/UOd/LVERESuK0uT5Vf2bC3UY/oLHs+fmyfl1XO0si7/sN6iptcF86Dge8t/BEcr7fbkfHzPSFLY3l/gwO5tFMKA0f7C8h91uFzgwJ4BcmFrwvxgKccHDuzQSkQREZEtdO/+IWZrEZVaROoclVrEbC2imAsphh5p1t1Yq7hkz5aZzbP6JH2jtXVhXyat6pDUwVw9hvZKxKXXBntCGgn8wv5B3rRzGwv1mNlaxP13jAIsr4AYLOW53feZ7S8qaImIiHTAysnyL5ytMFOL6C+EnJpebNXb8jzMT2msMjs+q5WJl5sg35vBNa9aS/c957dud5S0erqK+ZCP3L2Legrn5uqM9he4/47R5TC19Edd7T0RERHZWkufwS/P1LhpWw/lQsC3nh+n3kwohD51g5SUJHHLQ4iB11oY18xgiaLmbK0iShyBb+T9VimIvmLI0anamr1VSysgRERE5OqwcgsfgNFyjhNTMbWoPYIFeB547YVwoe+RpI7AHA42tSzEdTVny1Z8XYoD0tQRBh7z9Sbz9YifnJrl33zzRY5PLGTfUBEREdmQ8bk65cIrfUp7Rnq5+YYSOAgDj5zvkfONXOhTDFtBy+HIhR6F0K48ILm1J4N1ZdgyILALn/sGod/qIgQIL/ObOweLzYRmAjnPGO7NMVVt8PDh0wpcIiIiV7mLt/C5eaRELgjYNVTi7r1DvGXnAH3FECOlHqeU8j7DpTyhZ4S+T+BtXkjqymFEMyMXeATtbsJyIcAM+ntCzs3WieIE328VNFv159v/44Bc4FGNEpqxY6S3wEAx5NDRKQ0bioiIXMVWbuFTj2KePTtPpdakvxByZGKBJHUUw4DeQshiI8b3fTxzeFbGq18AABJ+SURBVJHRXwgxYLH9+b++EUVbc+CsK8OWZ5A4B6mjnkJjoUkp7/O60TLztYhK4gAj9CBq562cb6TOkaSt21UIPQLzKOY8Jhaa3NCbcPuNvZQLAefm6h39/URERK5XxycWOHR0ivH2orR79w+tOZ/6Awd28KWnXubRFycZ7stz/xvGyAcB33ruHPnA49RMjXIYsHuoROB5NJOEk1OLTFeblPM+tShZsySD7xn5wHAOmklKqzrn6roybBVzPiPlHOfmG8tdgJ7BT16u8MYb+6jFKRPzdc7MJvQVPMDDDKqNmP6Cz7ZSnv0jZZ47V2GxkRD4xoE9AwyXC1RqEaMXVaYVERGR7B2fWODhw6cZKIaMtYcJHz58+pIL2IZ7C7znjrELipzmfJ/Bco6hcoFGnFIMfRyOepzwtl0DfO2n56g4RykfYCQ04hTPg0LgEaWtXWYCH3Zs6yHwPKpRzMm4UV2r3V05Z8s3Y7BcYHtvgULOIx94lPIh5ZzP2fkGb7yxj76eHOVCQE8ux8/tGeSdt42ye7AHzCjkfEr5gH1DJYqhx61jZQZL+eXCaKoKLyIisvVWrjD0zOgrhsvTey52fGKBzz12ki/96DTPnJljcv6VUamhco7JhQY3j5SoNWNqUUK9mZALPAbLBfYM95DzPZxrbdU3XA7J+R7NxOF7Rs6HQujTHkSjPx/gmvX5tdrdlWErdTC32GR6MSJNobcY0IhTGqmj3oyZWowZKuV5y84Bcr61Npt2ju39BTwzhoo55moRxXzAnbu28XO7Bzk3V6dUCFSsVEREpEMuXmEIrXnZ4xdN71nqAavWY24cKDJfjzl8cmY5cG3vK9CMUp4+U6EexZycqnJqusrtY73cs2+Q2EEpFzDWV6AQeMzVYkLPuHGgyNt2baMQhgRm1OMEh2PHYA9prTK9Vru7chgRoNpMSFxKT85nsJRnvh5TjxJSz5ivR/QVQyqLETePlskHHpV6hANuuaGMH3g4HK/f3suv3HmTwpWIiMhVYK19Dy+e3rOyB+yWG8ocPjGLZ8bPzi+QC3wqjZjt/QWaqaOYCxgo5Rkq5Xjwzps4dHSKHYM91Boxc/WY1Dk8z/B9o7cd9ALfKOdbc71ygUdvIeRSujJslQutNHp2ztFbCMkHHnHosdCIyNG6QWO9eV6aWuSu3dvYNVzipckqPzw5w117trFrqLS8Jc+S9U7IExERkWysXGFYLgSv2j5vyfhcnbF2AFvau/hn5xc4O1vnrn1DjPXlKQyVLghtlVq0/Dl/x/Zenjg5x439RWrNhCRNmKlG9IQ+s/WI20bLhIHPu28fW/5Zy5fW3MKwK4cR4yRlz3CJn987SOB7zDcievIBuwd76MkF9BVCdg6V+EfvuoWdwyXOzdU5U6lz155t7Bkuv2oceGV35Fh/gWp7Qp7qbYmIiGydpRWGpXZlgLWm91xcY2u4XOCO7f08+Jab+M27dxOnrDkcOdpfIB8EHNgzQK5dlNP3PN6yexsPvmUHQ6U8PYXwgt6sciHAPH/N7q2u7NmqNRNmqg2mqxFv29XPYpQyudAg8Dz+p/fs5b7bblg+9r7293/99ReWU/CSpTIPF5f8X/quelsiIiJbaz1b5F2uB+xSw5FLPztQDLlrzyBjvXl+eGKG4Z4c3z86ycmpKs7BO28dvuBnXZpErKEre7Z8zygXcuR8Y3y+we7BEg+88UZ+//13XBC0Vro4BcMrN369E/JERESk8y7XA3bv/iFmaxGVWkTqHJVaxMnpKpPzdb7w5MvkA6MexZybq7NzqMTf/bkdnJ1vMFltsHeoh75CyHPnFjhfqS1XKnCNamWt9nRlzxZAMfQZHSjSiBJ+7/7bgFeWga427+pSKfjQ0al1TcgTERGRq8OlesCWwtiho1Ocm6sTeK1t+ophcEEGWApon3vsJPfsH17OAZMLdZ4+U+FHp2Z51+1j3H/HKP9z3Gys1ZauDVsA5mBp2+nLFUK7+MaP9he4/47R5T/UeibkiYiIyLVhZRj73GMnKYTBmtOFxufqhD48drxCpdaqaHDH9l6iBH7z7t2XvVbXhq16lDBbi3j7vkGAdc27WisFXy6IiYiIyLVr5erFJSu35ws8+N7Rabb15OgvhjSilO8dnV7OGJfTlWErSR0pjn0jJR688ybg8jfyctYzIU9ERESuPZer39XaUbn1HXfR83XoygnyxZzPfbeMcPC+fcsB6eIJ8JMLdb7zswl++vIsn3vspMo4iIiIXKdWmzC/cnu+JIW79w0uF0HPBx537xskWXPr6Qt1Zc/WaF/hVWOoKyfAN+KY7x2dxmjdvOplNrIUERGR7nW56UKj7Rqbd+97ZW/kSi2iVFhfjOrKsLWalTfy+89O0V8MecONfQz3vjK0qLpZIiIi16dLTRdab+X6tVw3YQteuZFL87c8s+X3rmT+loiIiFw/NrpQriNhy8wGgYeBPcAJ4L9xzs2sctwJYB5IgNg5d2Azrr/ejSxFREREYGML5To1Qf5jwF87524B/rr9fC3vdM7duVlBCy4/EU5ERERks3QqbD0I/Fn78Z8Bv7KVF1/vRpYiIiIiG9WpOVujzrmzAM65s2a2+oaFrRIW3zAzB3zaOffQZjVAdbNERERkK2QWtszsW8DYKm99/ApOc49z7kw7jH3TzJ53zn1njesdBA4C7Nq164rbKyIiIpKFzMKWc+5da71nZuNmtr3dq7UdOL/GOc60v583sy8CdwGrhq12r9dDAAcOHFhvUVcRERGRTHVqztaXgd9uP/5t4C8vPsDMSmbWu/QYeA/w9Ja1UERERGQTdCps/W/Au83sZ8C7288xsxvN7JH2MaPAITP7MfBD4KvOua91pLUiIiIir1FHJsg756aAX1rl9TPAA+3Hx4A3b3HTRERERDZVV25ELSIiInK1UNgSERERyZDCloiIiEiGFLZEREREMqSwJSIiIpIhhS0RERGRDClsiYiIiGRIYUtEREQkQwpbIiIiIhlS2BIRERHJkMKWiIiISIYUtkREREQypLAlIiIikiGFLREREZEMKWyJiIiIZEhhS0RERCRDClsiIiIiGVLYEhEREcmQwpaIiIhIhhS2RERERDKksCUiIiKSIYUtERERkQwpbImIiIhkSGFLREREJEMKWyIiIiIZUtgSERERyZDCloiIiEiGFLZEREREMqSwJSIiIpIhhS0RERGRDClsiYiIiGRIYUtEREQkQwpbIiIiIhlS2BIRERHJkMKWiIiISIY6ErbM7DfM7BkzS83swCWOe6+ZvWBmR8zsY1vZRhEREZHN0KmeraeBXwO+s9YBZuYDfwz8MnA78CEzu31rmiciIiKyOYJOXNQ59xyAmV3qsLuAI865Y+1j/xx4EHg28waKiIiIbJKrec7WTcCpFc9Pt19blZkdNLPDZnZ4YmIi88aJiIiIrEdmPVtm9i1gbJW3Pu6c+8v1nGKV19xaBzvnHgIeAjhw4MCax4mIiIhspczClnPuXRs8xWlg54rnO4AzGzyniIiIyJa6mocRHwduMbO9ZpYDPgh8ucNtEhEREbkinSr98Ktmdhp4O/BVM/t6+/UbzewRAOdcDHwU+DrwHPAXzrlnOtFeERERkdeqU6sRvwh8cZXXzwAPrHj+CPDIFjZNREREZFNdzcOIIiIiItc8hS0RERGRDClsiYiIiGRIYUtEREQkQwpbIiIiIhlS2BIRERHJkMKWiIiISIYUtkREREQypLAlIiIikiGFLREREZEMKWyJiIiIZEhhS0RERCRDClsiIiIiGVLYEhEREcmQwpaIiIhIhhS2RERERDKksCUiIiKSIYUtERERkQwpbImIiIhkSGFLREREJEMKWyIiIiIZUtgSERERyZDCloiIiEiGFLZEREREMqSwJSIiIpIhhS0RERGRDClsiYiIiGRIYUtEREQkQwpbIiIiIhlS2BIRERHJkMKWiIiISIYUtkREREQypLAlIiIikiGFLREREZEMdSRsmdlvmNkzZpaa2YFLHHfCzH5qZk+Z2eGtbKOIiIjIZgg6dN2ngV8DPr2OY9/pnJvMuD0iIiIimehI2HLOPQdgZp24vIiIiMiWudrnbDngG2b2hJkd7HRjRERERK5UZj1bZvYtYGyVtz7unPvLdZ7mHufcGTO7AfimmT3vnPvOGtc7CBwE2LVr12tqs4iIiMhmyyxsOefetQnnONP+ft7MvgjcBawatpxzDwEPARw4cMBt9NoiIiIim+GqHUY0s5KZ9S49Bt5Da2K9iIiIyDWjU6UfftXMTgNvB75qZl9vv36jmT3SPmwUOGRmPwZ+CHzVOfe1TrRXRERE5LXq1GrELwJfXOX1M8AD7cfHgDdvcdNERERENtVVO4woIiIi0g3Mue6bS25mE8DJK/iRYUCFUzef7mt2dG+zofuaHd3bbOi+ZudK7+1u59zIam90Zdi6UmZ22Dm35rZB8trovmZH9zYbuq/Z0b3Nhu5rdjbz3moYUURERCRDClsiIiIiGVLYanmo0w3oUrqv2dG9zYbua3Z0b7Oh+5qdTbu3mrMlIiIikiH1bImIiIhkSGGrzcz+uZn9xMyeMrNvmNmNnW5TNzCzf2Vmz7fv7RfNbKDTbeoWZvYbZvaMmaVmptVIG2Rm7zWzF8zsiJl9rNPt6RZm9hkzO29m2m5tE5nZTjP7GzN7rv3fgX/Q6TZ1AzMrmNkPzezH7fv6zzblvBpGbDGzPudcpf347wO3O+c+0uFmXfPM7D3A/+eci83sfwdwzv3jDjerK5jZ64EU+DTwe865wx1u0jXLzHzgReDdwGngceBDzrlnO9qwLmBmvwgsAJ91zr2h0+3pFma2HdjunHuyvY/wE8Cv6N/sxpiZASXn3IKZhcAh4B845x7byHnVs9W2FLTaSoBS6CZwzn3DORe3nz4G7Ohke7qJc+4559wLnW5Hl7gLOOKcO+acawJ/DjzY4TZ1Befcd4DpTrej2zjnzjrnnmw/ngeeA27qbKuufa5lof00bH9tOA8obK1gZv/CzE4Bfxf4RKfb04V+B/irTjdCZBU3AadWPD+NPrjkGmFme4C3AD/obEu6g5n5ZvYUcB74pnNuw/f1ugpbZvYtM3t6la8HAZxzH3fO7QT+I/DRzrb22nG5+9o+5uNATOveyjqt597KprBVXlPvtlz1zKwMfAH4hxeN0Mhr5JxLnHN30hqJucvMNjz8HWy8WdcO59y71nnofwK+Cnwyw+Z0jcvdVzP7beB9wC85TRK8Ilfwb1Y25jSwc8XzHcCZDrVFZF3ac4q+APxH59z/2+n2dBvn3KyZfRt4L7ChBR7XVc/WpZjZLSuevh94vlNt6SZm9l7gHwPvd84tdro9Imt4HLjFzPaaWQ74IPDlDrdJZE3tidx/AjznnPu3nW5PtzCzkaVV82ZWBN7FJuQBrUZsM7MvALfRWt11EviIc+7lzrbq2mdmR4A8MNV+6TGt8twcZvarwB8CI8As8JRz7v7OturaZWYPAP8X4AOfcc79iw43qSuY2eeBdwDDwDjwSefcn3S0UV3AzO4FHgV+SutzC+CfOOce6Vyrrn1m9ibgz2j9d8AD/sI59/sbPq/CloiIiEh2NIwoIiIikiGFLREREZEMKWyJiIiIZEhhS0RERCRDClsiIiIiGVLYEhEREcmQwpaIXPPMLDGzp8zsGTP7sZn9j2b2qv++mdk7zGzOzDZUi8jM/jsz+6NVXr/PzJ41sw1VmxaR7qKwJSLdoOacu9M5dwfwbuAB1t5u61Hn3AMXv2hm/kYb4Zx7tH1tEZFlClsi0lWcc+eBg8BH21uarKnd0/U3ZvafaFXixsy+ZGZPtHvJDq449sNm9qKZ/S1wT5a/g4h0l+tqI2oRuT445461hxFvoLVFzKXcBbzBOXe8/fx3nHPT7X3RHm9v5ZUD/hnwNmAO+BvgR9m0XkS6jcKWiHSrS/ZqrfDDFUEL4O+3950E2AncAowB33bOTQCY2cPArZvWUhHpagpbItJ1zGwfkADn13F4dcXPvQN4F/B259yimX0bKLTf1kayIvKaaM6WiHQVMxsBPgX8kXPuSgNSPzDTDlqvA+5uv/4D4B1mNmRmIfAbm9diEel26tkSkW5QNLOngBCIgc8B//Y1nOdrwEfM7CfAC8BjAM65s2b2T4HvA2eBJwEfwMzeDxxwzn1io7+EiHQnu/L/4ycicm1qDxP+nnPufRleYw/wX5xzb8jqGiJybdEwoohcT5rAGzZa1HQtZnYf8BVgMovzi8i1ST1bIiIiIhlSz5aIiIhIhhS2RERERDKksCUiIiKSIYUtERERkQwpbImIiIhk6P8HQHkS8F5HMBIAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 720x360 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [ "source": [
"SF = sample_Fisher(1000, mu=(-1, 0, 0), kappa=kappa);\n", "SF = sample_Fisher(1000, mu=(-1, 0, 0), kappa=kappa);\n",
"fig, ax = plt.subplots(1, 1, figsize=(10, 5))\n", "fig, ax = plt.subplots(1, 1, figsize=(10, 5))\n",
...@@ -207,16 +194,16 @@ ...@@ -207,16 +194,16 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"## Generate synthetic data\n", "## Generate synthetic data\n",
"We first need a set of coefficients for the field. At the time of writing this, IGRF-13 [1] had just been released and we take the reported coefficients as a reference model. You can get it [here](https://www.ngdc.noaa.gov/IAGA/vmod/coeffs/igrf13coeffs.txt). Place the file in the `/dat/` folder." "We first need a set of coefficients for the field. At the time of writing this, IGRF-13 [1] had just been released and we directly download the reported coefficients as a reference model."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 7, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"IGRF = pd.read_csv('../dat/igrf13coeffs.txt', header=0, delim_whitespace=True, skiprows=3)\n", "IGRF = pd.read_csv('https://www.ngdc.noaa.gov/IAGA/vmod/coeffs/igrf13coeffs.txt', header=0, delim_whitespace=True, skiprows=3)\n",
"coeffs = IGRF[['2020.0']].to_numpy().flatten()\n", "coeffs = IGRF[['2020.0']].to_numpy().flatten()\n",
"# retrieve the maximal degree using pyfield and the index of the last entry in coeffs\n", "# retrieve the maximal degree using pyfield and the index of the last entry in coeffs\n",
"l_max = pyfield.i2lm_l(len(coeffs)-1)" "l_max = pyfield.i2lm_l(len(coeffs)-1)"
...@@ -231,7 +218,7 @@ ...@@ -231,7 +218,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -279,7 +266,7 @@ ...@@ -279,7 +266,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 9, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -315,7 +302,7 @@ ...@@ -315,7 +302,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 10, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -342,7 +329,7 @@ ...@@ -342,7 +329,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -358,7 +345,7 @@ ...@@ -358,7 +345,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -374,7 +361,7 @@ ...@@ -374,7 +361,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -429,7 +416,7 @@ ...@@ -429,7 +416,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
...@@ -489,7 +476,7 @@ ...@@ -489,7 +476,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.7.3" "version": "3.6.9"
} }
}, },
"nbformat": 4, "nbformat": 4,
......
This source diff could not be displayed because it is too large. You can view the blob instead.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment