ewGrid.cpp 6.01 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <utilits.h>
#include "easywave.h"

int NLon,NLat;
double LonMin,LonMax,LatMin,LatMax;
double DLon,DLat;                 // steps in grad
double Dx,Dy;                     // steps in m, dx must be multiplied by cos(y) before use
float *R6;
float *C1;
float *C2;
float *C3;
float *C4;


int ewLoadBathymetry()
{
  FILE *fp;
  char fileLabel[5];
  unsigned short shval;
  int ierr,isBin,i,j,m,k;
  float fval;
  double dval;

  CNode& Node = *gNode;

  Log.print( "Loading bathymetry from %s", Par.fileBathymetry );

  // check if bathymetry file is in ascii or binary format
  if( (fp=fopen(Par.fileBathymetry,"rb")) == NULL ) return Err.post( Err.msgOpenFile(Par.fileBathymetry) );

  memset( fileLabel, 0, 5 );
  ierr = fread( fileLabel, 4, 1, fp );
  if( !strcmp( fileLabel,"DSAA" ) )
    isBin = 0;
  else if( !strcmp( fileLabel,"DSBB" ) )
    isBin = 1;
  else
    return Err.post( "%s: not GRD-file!", Par.fileBathymetry );

  fclose(fp);

  if( isBin ) {
    fp = fopen( Par.fileBathymetry, "rb" );
    ierr = fread( fileLabel, 4, 1, fp );
    ierr = fread( &shval, sizeof(unsigned short), 1, fp ); NLon = shval;
    ierr = fread( &shval, sizeof(unsigned short), 1, fp ); NLat = shval;
  }
  else {
    fp = fopen( Par.fileBathymetry, "rt" );
    ierr = fscanf( fp, "%s", fileLabel );
    ierr = fscanf( fp, " %d %d ", &NLon, &NLat );
  }

  // try to allocate memory for GRIDNODE structure and for caching arrays
  printf_v("Size: %d %d %luMB\n", NLon, NLat, sizeof(float)*MAX_VARS_PER_NODE*NLon*NLat/1024/1024);
  if( Node.mallocMem() ) return Err.post( Err.msgAllocateMem() );

  if( isBin ) {
    ierr = fread( &LonMin, sizeof(double), 1, fp ); ierr = fread( &LonMax, sizeof(double), 1, fp );
    ierr = fread( &LatMin, sizeof(double), 1, fp ); ierr = fread( &LatMax, sizeof(double), 1, fp );
    ierr = fread( &dval, sizeof(double), 1, fp ); ierr = fread( &dval, sizeof(double), 1, fp ); // zmin zmax
  }
  else {
    ierr = fscanf( fp, " %lf %lf ", &LonMin, &LonMax );
    ierr = fscanf( fp, " %lf %lf ", &LatMin, &LatMax );
    ierr = fscanf( fp, " %*s %*s " );   // zmin, zmax
  }

  DLon = (LonMax - LonMin)/(NLon - 1);   // in degrees
  DLat = (LatMax - LatMin)/(NLat - 1);

  Dx = Re * g2r( DLon );     // in m along the equator
  Dy = Re * g2r( DLat );

78 79 80 81 82 83 84 85
  /* NOTE: optimal would be reading everything in one step, but that does not work because rows and columns are transposed
   * (only possible with binary data at all) - use temporary buffer for now (consumes additional memory!) */
  float *buf = new float[ NLat*NLon ];
  ierr = fread( buf, sizeof(float), NLat*NLon, fp );

  for( i=1; i<=NLon; i++ ) {
	for( j=1; j<=NLat; j++ ) {

86 87 88
      m = idx(j,i);

      if( isBin )
89 90
        fval = buf[ (j-1) * NLon + (i-1) ];
    	//ierr = fread( &fval, sizeof(float), 1, fp );
91 92 93 94 95
      else
        ierr = fscanf( fp, " %f ", &fval );

      Node(m, iTopo) = fval;
      Node(m, iTime) = -1;
96 97 98 99 100 101 102 103
      Node(m, iD) = -fval;

	  if( Node(m, iD) < 0 ) {
	    Node(m, iD) = 0.0f;
	  } else if( Node(m, iD) < Par.dmin ) {
		  Node(m, iD) = Par.dmin;
	  }

104 105 106
    }
  }

107 108 109 110 111 112
  delete[] buf;

  for( k=1; k<MAX_VARS_PER_NODE-2; k++ ) {
	  Node.initMemory( k, 0 );
  }

113 114
  fclose( fp );

115
  if( !Par.dt ) { // time step not explicitly defined
116

117 118
	// Make bathymetry from topography. Compute stable time step.
	double dtLoc=RealMax;
119

120 121 122 123 124 125 126
	for( i=1; i<=NLon; i++ ) {
	  for( j=1; j<=NLat; j++ ) {
		  m = idx(j,i);
		  if( Node(m, iD) == 0.0f ) continue;
		  dtLoc = My_min( dtLoc, 0.8 * (Dx*cosdeg(getLat(j))) / sqrt(Gravity*Node(m, iD)) );
	  }
	}
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

    Log.print("Stable CFL time step: %g sec", dtLoc);
    if( dtLoc > 15 ) Par.dt = 15;
    else if( dtLoc > 10 ) Par.dt = 10;
    else if( dtLoc > 5 ) Par.dt = 5;
    else if( dtLoc > 2 ) Par.dt = 2;
    else if( dtLoc > 1 ) Par.dt = 1;
    else return Err.post("Bathymetry requires too small time step (<1sec)");
  }

  // Correct bathymetry for edge artefacts
  for( i=1; i<=NLon; i++ ) {
    if( Node(idx(1,i), iD) != 0 && Node(idx(2,i), iD) == 0 ) Node(idx(1,i), iD) = 0.;
    if( Node(idx(NLat,i), iD) != 0 && Node(idx(NLat-1,i), iD) == 0 ) Node(idx(NLat,i), iD) = 0.;
  }
  for( j=1; j<=NLat; j++ ) {
    if( Node(idx(j,1), iD) != 0 && Node(idx(j,2), iD) == 0 ) Node(idx(j,1), iD) = 0.;
    if( Node(idx(j,NLon), iD) != 0 && Node(idx(j,NLon-1), iD) == 0 ) Node(idx(j,NLon), iD) = 0.;
  }


  // Calculate caching grid parameters for speedup
  for( j=1; j<=NLat; j++ ) {
    R6[j] = cosdeg( LatMin + (j-0.5)*DLat );
  }

  for( i=1; i<=NLon; i++ ) {
    for( j=1; j<=NLat; j++ ) {

      m = idx(j,i);

      if( Node(m, iD) == 0 ) continue;

      Node(m, iR1) = Par.dt/Dy/R6[j];

      if( i != NLon ) {
        if( Node(m+NLat, iD) != 0 ) {
          Node(m, iR2) = 0.5*Gravity*Par.dt/Dy/R6[j]*(Node(m, iD)+Node(m+NLat, iD));
          Node(m, iR3) = 0.5*Par.dt*Omega*sindeg( LatMin + (j-0.5)*DLat );
        }
      }
      else {
    	Node(m, iR2) = 0.5*Gravity*Par.dt/Dy/R6[j]*Node(m, iD)*2;
    	Node(m, iR3) = 0.5*Par.dt*Omega*sindeg( LatMin + (j-0.5)*DLat );
      }

      if( j != NLat ) {
        if( Node(m+1, iD) != 0 ) {
          Node(m, iR4) = 0.5*Gravity*Par.dt/Dy*(Node(m, iD)+Node(m+1, iD));
          Node(m, iR5) = 0.5*Par.dt*Omega*sindeg( LatMin + j*DLat );
        }
      }
      /* FIXME: Bug? */
      else {
    	Node(m, iR2) = 0.5*Gravity*Par.dt/Dy*Node(m, iD)*2;
    	Node(m, iR3) = 0.5*Par.dt*Omega*sindeg( LatMin + j*DLat );
      }

    }
  }

  for( i=1; i<=NLon; i++ ) {
    C1[i] = 0;
    if( Node(idx(1,i), iD) != 0 ) C1[i] = 1./sqrt(Gravity*Node(idx(1,i), iD));
    C3[i] = 0;
    if( Node(idx(NLat,i), iD) != 0 ) C3[i] = 1./sqrt(Gravity*Node(idx(NLat,i), iD));
  }

  for( j=1; j<=NLat; j++ ) {
    C2[j] = 0;
    if( Node(idx(j,1), iD) != 0 ) C2[j] = 1./sqrt(Gravity*Node(idx(j,1), iD));
    C4[j] = 0;
    if( Node(idx(j,NLon), iD) != 0 ) C4[j] = 1./sqrt(Gravity*Node(idx(j,NLon), iD));
  }

  return 0;
}