ewGpuNode.cu 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#include "ewGpuNode.cuh"
#include "ewCudaKernels.cuh"

CGpuNode::CGpuNode() {

	pitch = 0;
	copied = true;

	/* TODO: make dynamic */
	num_virtual_gpus = 4;
	num_real_gpus = 2;

	vgpus = new VGpu[num_virtual_gpus];
14
	gpus = new Gpu[num_real_gpus];
15 16 17

	cudaMallocHost( &extend, num_virtual_gpus * sizeof(int4) );

18 19 20 21
	for( int j = 0; j < num_real_gpus; j++ ) {

		cudaSetDevice( j );

Johannes Spazier's avatar
Johannes Spazier committed
22 23
		cudaDeviceSetCacheConfig( cudaFuncCachePreferL1 );

24 25 26 27 28 29 30 31
		gpus[j].id = j;

		for( int i = 0; i < gpus[j].NEVENTS; i++ ) {
			cudaEventCreate( &(gpus[j].evtStart[i]) );
			cudaEventCreate( &(gpus[j].evtEnd[i]) );
			gpus[j].dur[i] = 0.0f;
		}

32 33 34 35 36 37 38 39 40
	}

	for( int j = 0; j < num_virtual_gpus; j++ ) {

		VGpu& vgpu = vgpus[j];

		vgpu.data.devID = j;
		vgpu.data.devNum = num_virtual_gpus;

41 42 43 44
		vgpu.dev = &(gpus[j % num_real_gpus]);

		vgpu.dev->maxId = j / num_real_gpus;
		vgpu.relId = j / num_real_gpus;
45

46
		cudaSetDevice( vgpu.dev->id );
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

		for( int i = 0; i < vgpu.NSTREAMS; i++ ) {
			cudaStreamCreate( &(vgpu.stream[i]) );
		}

		cudaEventCreate( &vgpu.evtSync );
	}

	for( int j = 0; j < num_real_gpus - 1; j++ ) {

		int peerAccess = 0;
		cudaDeviceCanAccessPeer( &peerAccess, j, j + 1 );

		printf_v("GPU #%u can access GPU #%u: %u\n", j, j + 1, peerAccess);
		if( peerAccess ) {
			cudaSetDevice( j );
			cudaDeviceEnablePeerAccess( j + 1, 0 );
		}

		cudaDeviceCanAccessPeer( &peerAccess, j + 1, j );

		printf_v("GPU #%u can access GPU #%u: %u\n", j + 1, j, peerAccess);
		if( peerAccess ) {
			cudaSetDevice( j + 1 );
			cudaDeviceEnablePeerAccess( j, 0 );
		}

	}

	memset( extend, 0, num_virtual_gpus * sizeof(int4) );
}

CGpuNode::~CGpuNode() {

	for( int j = 0; j < num_virtual_gpus; j++ ) {

		VGpu& vgpu = vgpus[j];

85
		cudaSetDevice( vgpu.dev->id );
86 87 88 89 90

		for( int i = 0; i < vgpu.NSTREAMS; i++ ) {
			cudaStreamDestroy( vgpu.stream[i] );
		}

91 92 93 94 95 96 97 98 99 100 101
		cudaEventDestroy( vgpu.evtSync );

	}

	for( int j = 0; j < num_real_gpus; j++ ) {

		cudaSetDevice( j );

		for( int i = 0; i < gpus[j].NEVENTS; i++ ) {
			cudaEventDestroy( gpus[j].evtStart[i] );
			cudaEventDestroy( gpus[j].evtEnd[i] );
102 103
		}

104
		cudaDeviceReset();
105
	}
106

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
}

int CGpuNode::mallocMem() {

	CArrayNode::mallocMem();

	Params& dp = params;

	/* fill in some fields here */
	dp.nI = NLon;
	dp.nJ = NLat;
	dp.sshArrivalThreshold = Par.sshArrivalThreshold;
	dp.sshClipThreshold = Par.sshClipThreshold;
	dp.sshZeroThreshold = Par.sshZeroThreshold;
	dp.lpad = 0;

	size_t nJ_aligned = dp.nJ + dp.lpad;

	init_vgpus();

	for( int i = 0; i < num_virtual_gpus; i++ ) {

		VGpu& vgpu = vgpus[i];
		KernelData& data = vgpu.data;

		int ghost = vgpu.gb + vgpu.gt;

134
		cudaSetDevice( vgpu.dev->id );
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

		/* arrays that need ghost zones must add 2 to vgpu.size */
		/* 2-dim */
		CUDA_CALL( cudaMallocPitch( &(data.d), &pitch, nJ_aligned * sizeof(float), vgpu.size + ghost ) );
		CUDA_CALL( cudaMallocPitch( &(data.fM), &pitch, nJ_aligned * sizeof(float), vgpu.size + ghost ) );
		CUDA_CALL( cudaMallocPitch( &(data.fN), &pitch, nJ_aligned * sizeof(float), vgpu.size + ghost ) );
		CUDA_CALL( cudaMallocPitch( &(data.cR1), &pitch, nJ_aligned * sizeof(float), vgpu.size + ghost ) );
		CUDA_CALL( cudaMallocPitch( &(data.cR2), &pitch, nJ_aligned * sizeof(float), vgpu.size + ghost ) );
		CUDA_CALL( cudaMallocPitch( &(data.cR4), &pitch, nJ_aligned * sizeof(float), vgpu.size + ghost ) );
		CUDA_CALL( cudaMallocPitch( &(data.tArr), &pitch, nJ_aligned * sizeof(float), vgpu.size + ghost ) );
		/* TODO: cR3, cR5 for coriolis */

		CUDA_CALL( cudaMallocPitch( &(data.h), &pitch, nJ_aligned * sizeof(float), vgpu.size + ghost ) );
		CUDA_CALL( cudaMallocPitch( &(data.hMax), &pitch, nJ_aligned * sizeof(float), vgpu.size + ghost ) );

		/* 1-dim */
		CUDA_CALL( cudaMalloc( &(data.cR6), dp.nJ * sizeof(float) ) );
		CUDA_CALL( cudaMalloc( &(data.cB1), (vgpu.size + ghost) * sizeof(float) ) );
		CUDA_CALL( cudaMalloc( &(data.cB2), dp.nJ * sizeof(float) ) );
		CUDA_CALL( cudaMalloc( &(data.cB3), (vgpu.size + ghost) * sizeof(float) ) );
		CUDA_CALL( cudaMalloc( &(data.cB4), dp.nJ * sizeof(float) ) );

		/* data field to store return values like calculated iMin and iMax values */
		CUDA_CALL( cudaMalloc( &(data.extend), sizeof(int4) ) );

		/* assign some parameters */
		data.params.nI = vgpu.getRel( vgpu.end );
		data.params.nJ = dp.nJ;
		data.params.sshArrivalThreshold = dp.sshArrivalThreshold;
		data.params.sshClipThreshold = dp.sshClipThreshold;
		data.params.sshZeroThreshold = dp.sshZeroThreshold;
		data.params.lpad = dp.lpad;

		/* TODO: make sure that pitch is a multiple of 4 and the same for each cudaMallocPitch() call */
		data.params.pI = pitch / sizeof(float);
	}

	return 0;
}

int CGpuNode::copyToGPU() {

	Params& dp = params;

	/* fill in further fields here */
	dp.iMin = Imin;
	dp.iMax = Imax;
	dp.jMin = Jmin;
	dp.jMax = Jmax;

	for( int i = 0; i < num_virtual_gpus; i++ ) {

		VGpu& vgpu = vgpus[i];
		KernelData& data = vgpu.data;

		/* special treatment because of needed ghost zones */
		int off = (vgpu.off - vgpu.gt - 1);
		int ghost = vgpu.gb + vgpu.gt;

194
		cudaSetDevice( vgpu.dev->id );
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

		/* FIXME: should not work correctly */
		/* add offset to data.d to guarantee alignment: data.d + LPAD */
		/* 2-dim */
		CUDA_CALL( cudaMemcpy2D( data.d + dp.lpad, pitch, d + off * dp.nJ, dp.nJ * sizeof(float), dp.nJ * sizeof(float), vgpu.size + ghost, cudaMemcpyHostToDevice ) );
		CUDA_CALL( cudaMemcpy2D( data.fM + dp.lpad, pitch, fM + off * dp.nJ, dp.nJ * sizeof(float), dp.nJ * sizeof(float), vgpu.size + ghost, cudaMemcpyHostToDevice ) );
		CUDA_CALL( cudaMemcpy2D( data.fN + dp.lpad, pitch, fN + off * dp.nJ, dp.nJ * sizeof(float), dp.nJ * sizeof(float), vgpu.size + ghost, cudaMemcpyHostToDevice ) );
		CUDA_CALL( cudaMemcpy2D( data.cR1 + dp.lpad, pitch, cR1 + off * dp.nJ, dp.nJ * sizeof(float), dp.nJ * sizeof(float), vgpu.size + ghost, cudaMemcpyHostToDevice ) );
		CUDA_CALL( cudaMemcpy2D( data.cR2 + dp.lpad, pitch, cR2 + off * dp.nJ, dp.nJ * sizeof(float), dp.nJ * sizeof(float), vgpu.size + ghost, cudaMemcpyHostToDevice ) );
		CUDA_CALL( cudaMemcpy2D( data.cR4 + dp.lpad, pitch, cR4 + off * dp.nJ, dp.nJ * sizeof(float), dp.nJ * sizeof(float), vgpu.size + ghost, cudaMemcpyHostToDevice ) );
		CUDA_CALL( cudaMemcpy2D( data.tArr + dp.lpad, pitch, tArr + off * dp.nJ, dp.nJ * sizeof(float), dp.nJ * sizeof(float), vgpu.size + ghost, cudaMemcpyHostToDevice ) );
		CUDA_CALL( cudaMemcpy2D( data.h + dp.lpad, pitch, h + off * dp.nJ, dp.nJ * sizeof(float), dp.nJ * sizeof(float), vgpu.size + ghost, cudaMemcpyHostToDevice ) );
		CUDA_CALL( cudaMemcpy2D( data.hMax + dp.lpad, pitch, hMax + off * dp.nJ, dp.nJ * sizeof(float), dp.nJ * sizeof(float), vgpu.size + ghost, cudaMemcpyHostToDevice ) );

		/* FIXME: move global variables into data structure */
		/* 1-dim */
		CUDA_CALL( cudaMemcpy( data.cR6, R6, dp.nJ * sizeof(float), cudaMemcpyHostToDevice ) );
		CUDA_CALL( cudaMemcpy( data.cB1, C1 + off, (vgpu.size + ghost) * sizeof(float), cudaMemcpyHostToDevice ) );
		CUDA_CALL( cudaMemcpy( data.cB2, C2, dp.nJ * sizeof(float), cudaMemcpyHostToDevice ) );
		CUDA_CALL( cudaMemcpy( data.cB3, C3 + off, (vgpu.size + ghost) * sizeof(float), cudaMemcpyHostToDevice ) );
		CUDA_CALL( cudaMemcpy( data.cB4, C4, dp.nJ * sizeof(float), cudaMemcpyHostToDevice ) );

		data.params.jMin = dp.jMin;
		data.params.jMax = dp.jMax;
	}

	return 0;
}
int CGpuNode::copyFromGPU() {

	Params& dp = params;

	for( int i = 0; i < num_virtual_gpus; i++ ) {

		VGpu& vgpu = vgpus[i];
		KernelData& data = vgpu.data;

		int off = (vgpu.off - 1) * dp.nJ;

234
		cudaSetDevice( vgpu.dev->id );
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

		CUDA_CALL( cudaMemcpy2D( hMax + off, dp.nJ * sizeof(float), data.hMax + (vgpu.gt)*data.params.pI + dp.lpad, pitch, dp.nJ * sizeof(float), vgpu.size, cudaMemcpyDeviceToHost ) );
		CUDA_CALL( cudaMemcpy2D( tArr + off, dp.nJ * sizeof(float), data.tArr + (vgpu.gt)*data.params.pI + dp.lpad, pitch, dp.nJ * sizeof(float), vgpu.size, cudaMemcpyDeviceToHost ) );

	}

	return 0;
}

int CGpuNode::copyIntermediate() {

	/* ignore copy requests if data already present on CPU side */
	if( copied )
		return 0;

	Params& dp = params;

	for( int i = 0; i < num_virtual_gpus; i++ ) {

		VGpu& vgpu = vgpus[i];
		KernelData& data = vgpu.data;

		int off = (vgpu.off - 1) * dp.nJ;

259
		cudaSetDevice( vgpu.dev->id );
260 261 262 263 264 265 266 267 268 269 270

		CUDA_CALL( cudaMemcpy2D( h + off, dp.nJ * sizeof(float), data.h + (vgpu.gt) * data.params.pI + dp.lpad, pitch, dp.nJ * sizeof(float), vgpu.size, cudaMemcpyDeviceToHost ) );

	}

	/* copy finished */
	copied = true;

	return 0;
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
int CGpuNode::copyPOIs() {

	Params& dp = params;

	if( copied )
		return 0;

	VGpu *vgpu;

	for( int n = 0; n < NPOIs; n++ ) {

		int i = idxPOI[n] / dp.nJ + 1;
		int j = idxPOI[n] % dp.nJ + 1;

		for( int id = 0; id < num_virtual_gpus; id++ ) {

			if( vgpus[id].hasLine( i ) ) {
				vgpu = &(vgpus[id]);
				break;
			}

		}

		int id = vgpu->data.idx( vgpu->getRel(i), j );

296
		CUDA_CALL( cudaSetDevice( vgpu->dev->id ) )
297 298 299 300 301
		CUDA_CALL( cudaMemcpy( h + idxPOI[n], vgpu->data.h + dp.lpad + id, sizeof(float), cudaMemcpyDeviceToHost ) );
	}

	return 0;
}
302 303 304 305 306 307 308 309

int CGpuNode::freeMem() {

	for( int i = 0; i < num_virtual_gpus; i++ ) {

		VGpu& vgpu = vgpus[i];
		KernelData& data = vgpu.data;

310
		cudaSetDevice( vgpu.dev->id );
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

		/* 2-dim */
		CUDA_CALL( cudaFree( data.d ) );
		CUDA_CALL( cudaFree( data.h ) );
		CUDA_CALL( cudaFree( data.hMax ) );
		CUDA_CALL( cudaFree( data.fM ) );
		CUDA_CALL( cudaFree( data.fN ) );
		CUDA_CALL( cudaFree( data.cR1 ) );
		CUDA_CALL( cudaFree( data.cR2 ) );
		CUDA_CALL( cudaFree( data.cR4 ) );
		CUDA_CALL( cudaFree( data.tArr ) );

		/* 1-dim */
		CUDA_CALL( cudaFree( data.cR6 ) );
		CUDA_CALL( cudaFree( data.cB1 ) );
		CUDA_CALL( cudaFree( data.cB2 ) );
		CUDA_CALL( cudaFree( data.cB3 ) );
		CUDA_CALL( cudaFree( data.cB4 ) );

330 331
		CUDA_CALL( cudaFree( data.extend ) );
	}
332

333
	cudaFreeHost( extend );
334

335
	for( int i = 0; i < num_real_gpus; i++ ) {
336

337 338
		float dur = 0.0f;
		for( int j = 0; j < 7; j++ ) {
339

340 341 342 343
			printf_v("GPU #%u, duration %u: %.3f\n", i, j, gpus[i].dur[j]);
			dur += gpus[i].dur[j];
		}
		printf_v("GPU #%u, duration total: %.3f\n", i, dur);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	}

	CArrayNode::freeMem();

	return 0;
}

int CGpuNode::run() {

	Params& dp = params;

	int nThreads = 256;
	int xThreads = 32;
	int yThreads = nThreads / xThreads;

	int4 glb_MinMax = {0,0,0,0};

	dp.mTime = Par.time;

	for( int i = 0; i < num_virtual_gpus; i++ ) {

		VGpu& vgpu = vgpus[i];
		KernelData& data = vgpu.data;

		updateParams( vgpu );

		vgpu.nBlocks = ceil( (float)max(data.params.nI,dp.nJ) / (float)nThreads );
		vgpu.threads = dim3( xThreads, yThreads );
		vgpu.blocks = dim3( ceil( (float)dp.nJ / (float)xThreads ), ceil( (float)data.params.nI / (float)yThreads ) );

374 375 376 377 378 379
		CUDA_CALL( cudaSetDevice( vgpu.dev->id ) );

		if( Par.verbose && vgpu.relId == 0 )
			CUDA_CALL( cudaEventRecord( vgpu.dev->evtStart[0] ) );

		if( isActive( vgpu ) ) {
380

381
			runWaveUpdateKernel<<<vgpu.blocks,vgpu.threads,0,vgpu.stream[0]>>>( data );
Johannes Spazier's avatar
Johannes Spazier committed
382
			runWaveBoundaryKernel<<<vgpu.nBlocks,nThreads,0,vgpu.stream[1]>>>( data );
383
		}
384

385 386
		if( Par.verbose && vgpu.relId == vgpu.dev->maxId )
				CUDA_CALL( cudaEventRecord( vgpu.dev->evtEnd[0] ) );
387 388 389 390 391 392
	}

	for( int i = 0; i < num_virtual_gpus; i++ ) {

		VGpu& vgpu = vgpus[i];

393
		CUDA_CALL( cudaSetDevice( vgpu.dev->id ) );
394

395 396
		if( Par.verbose && vgpu.relId == 0 )
			CUDA_CALL( cudaEventRecord( vgpu.dev->evtStart[5] ) );
397

398 399 400 401 402 403 404 405 406 407 408
		if( isActive( vgpu ) ) {

			if( i < num_virtual_gpus - 1 ) {
				int off = ( vgpu.getRel(vgpu.end) - 1 ) * vgpu.data.params.pI;
				CUDA_CALL( cudaMemcpyPeerAsync( vgpus[i+1].data.h, vgpus[i+1].dev->id, vgpu.data.h + off, vgpu.dev->id, vgpu.data.params.pI * sizeof(float), vgpu.stream[0]) );
			}

			if( i > 0 ) {
				int off = ( vgpus[i-1].getRel(vgpus[i-1].end) ) * vgpus[i-1].data.params.pI;
				CUDA_CALL( cudaMemcpyPeerAsync( vgpus[i-1].data.h + off, vgpus[i-1].dev->id, vgpu.data.h + vgpu.data.params.pI, vgpu.dev->id, vgpu.data.params.pI * sizeof(float), vgpu.stream[0] ) );
			}
409 410

		}
411 412 413

		if( Par.verbose && vgpu.relId == vgpu.dev->maxId )
			CUDA_CALL( cudaEventRecord( vgpu.dev->evtEnd[5] ) );
414 415 416 417 418 419 420 421 422 423 424

		cudaEventRecord( vgpu.evtSync, vgpu.stream[0] );
	}

	for( int i = 0; i < num_virtual_gpus; i++ ) {

		VGpu& vgpu = vgpus[i];

		if( ! isActive(vgpu) )
			continue;

425
		CUDA_CALL( cudaSetDevice( vgpu.dev->id ) );
426 427 428 429 430 431 432 433 434 435 436 437 438

		if( i < num_virtual_gpus - 1 )
			cudaStreamWaitEvent( vgpu.stream[0], vgpus[i+1].evtSync, 0 );

		if( i > 0 )
			cudaStreamWaitEvent( vgpu.stream[0], vgpus[i-1].evtSync, 0 );
	}

	for( int i = 0; i < num_virtual_gpus; i++ ) {

		VGpu& vgpu = vgpus[i];
		KernelData& data = vgpu.data;

439 440 441 442
		CUDA_CALL( cudaSetDevice( vgpu.dev->id ) );

		if( Par.verbose && vgpu.relId == 0 )
			CUDA_CALL( cudaEventRecord( vgpu.dev->evtStart[2] ) );
443

444
		if( isActive( vgpu ) ) {
445

446
			runFluxUpdateKernel<<<vgpu.blocks,vgpu.threads,0,vgpu.stream[0]>>>( data );
Johannes Spazier's avatar
Johannes Spazier committed
447
			runFluxBoundaryKernel<<<vgpu.nBlocks,nThreads,0,vgpu.stream[1]>>>( data );
448 449 450 451
		}

		if( Par.verbose && vgpu.relId == vgpu.dev->maxId )
				CUDA_CALL( cudaEventRecord( vgpu.dev->evtEnd[2] ) );
452 453 454 455 456 457
	}

	for( int i = 0; i < num_virtual_gpus; i++ ) {

		VGpu& vgpu = vgpus[i];

458
		CUDA_CALL( cudaSetDevice( vgpu.dev->id ) );
459

460 461
		if( Par.verbose && vgpu.relId == 0 )
				CUDA_CALL( cudaEventRecord( vgpu.dev->evtStart[6] ) );
462

463 464 465 466 467 468 469 470 471 472 473 474 475
		if( isActive( vgpu ) ) {

			if( i < num_virtual_gpus - 1 ) {
				int off = ( vgpu.getRel(vgpu.end) - 1 ) * vgpu.data.params.pI;
				CUDA_CALL( cudaMemcpyPeerAsync( vgpus[i+1].data.fN, vgpus[i+1].dev->id, vgpu.data.fN + off, vgpu.dev->id, vgpu.data.params.pI * sizeof(float), vgpu.stream[0]) );
				CUDA_CALL( cudaMemcpyPeerAsync( vgpus[i+1].data.fM, vgpus[i+1].dev->id, vgpu.data.fM + off, vgpu.dev->id, vgpu.data.params.pI * sizeof(float), vgpu.stream[0]) );
			}

			if( i > 0 ) {
				int off = ( vgpus[i-1].getRel(vgpus[i-1].end) ) * vgpus[i-1].data.params.pI;
				CUDA_CALL( cudaMemcpyPeerAsync( vgpus[i-1].data.fN + off, vgpus[i-1].dev->id, vgpu.data.fN + vgpu.data.params.pI, vgpu.dev->id, vgpu.data.params.pI * sizeof(float), vgpu.stream[0] ) );
				CUDA_CALL( cudaMemcpyPeerAsync( vgpus[i-1].data.fM + off, vgpus[i-1].dev->id, vgpu.data.fM + vgpu.data.params.pI, vgpu.dev->id, vgpu.data.params.pI * sizeof(float), vgpu.stream[0] ) );
			}
476 477 478

		}

479 480
		if( Par.verbose && vgpu.relId == vgpu.dev->maxId )
				CUDA_CALL( cudaEventRecord( vgpu.dev->evtEnd[6] ) );
481 482 483 484 485 486 487
	}

	for( int i = 0; i < num_virtual_gpus; i++ ) {

		VGpu& vgpu = vgpus[i];
		KernelData& data = vgpu.data;

488 489 490 491
		CUDA_CALL( cudaSetDevice( vgpu.dev->id ) );

		if( Par.verbose && vgpu.relId == 0 )
			CUDA_CALL( cudaEventRecord( vgpu.dev->evtStart[4] ) );
492

493 494 495 496 497 498 499 500
		if( isActive( vgpu ) ) {

			runGridExtendKernel<<<vgpu.nBlocks,nThreads,0,vgpu.stream[0]>>>( data );
			CUDA_CALL( cudaMemcpyAsync( &(extend[i]), data.extend, sizeof(int4), cudaMemcpyDeviceToHost, vgpu.stream[0]) );
		}

		if( Par.verbose && vgpu.relId == vgpu.dev->maxId )
				CUDA_CALL( cudaEventRecord( vgpu.dev->evtEnd[4] ) );
501 502 503 504 505 506 507 508

	}

	for( int i = 0; i < num_virtual_gpus; i++ ) {

		VGpu& vgpu = vgpus[i];
		KernelData& data = vgpu.data;

509
		cudaSetDevice( vgpu.dev->id );
510 511 512 513 514 515 516 517 518 519 520
		cudaDeviceSynchronize();
		CUDA_CALL( cudaMemset( data.extend, 0, sizeof(int4) ) );

		if( vgpu.hasLine( dp.iMin + 2 ) )
			glb_MinMax.x += extend[i].x;

		if( vgpu.hasLine( dp.iMax - 2 ) )
			glb_MinMax.y += extend[i].y;

		glb_MinMax.z += extend[i].z;
		glb_MinMax.w += extend[i].w;
521
	}
522

523 524 525 526 527 528 529 530 531 532
	if( Par.verbose ) {
		for( int i = 0; i < num_real_gpus; i++ ) {

			cudaSetDevice( i );

			float dur;
			for( int j = 0; j < 7; j++ ) {
				if( cudaEventElapsedTime( &dur, gpus[i].evtStart[j],  gpus[i].evtEnd[j]) == cudaSuccess )
					gpus[i].dur[j] += dur;
			}
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
		}
	}

	memset( extend, 0, num_virtual_gpus * sizeof(int4) );

	if( glb_MinMax.x > 0 )
		Imin = dp.iMin = max( dp.iMin-1, 2 );

	if( glb_MinMax.y > 0 )
		Imax = dp.iMax = min( dp.iMax+1, dp.nI-1 );

	if( glb_MinMax.z > 0 )
		Jmin = dp.jMin = max( dp.jMin-1, 2 );

	if( glb_MinMax.w > 0 )
		Jmax = dp.jMax = min( dp.jMax+1, dp.nJ-1 );

	/* data has changed now -> copy becomes necessary */
	copied = false;

	return 0;
}

int CGpuNode::init_vgpus() {

	Params& dp = params;

	int nI_partial = dp.nI / num_virtual_gpus;
	int nI_mod = dp.nI % num_virtual_gpus;
	int off = 1;

	for( int i = 0; i < num_virtual_gpus; i++ ) {

		vgpus[i].size = nI_partial + (int)( i < nI_mod );
		vgpus[i].off = off;
		vgpus[i].end = vgpus[i].off + vgpus[i].size - 1;
		off += vgpus[i].size;

		vgpus[i].gt = 1 - (int)( i == 0 );
		vgpus[i].gb = 1 - (int)( i == num_virtual_gpus - 1 );

		printf_v("VGPU #%u: off=%u end=%u size=%u gt=%u gb=%u\n", i, vgpus[i].off, vgpus[i].end, vgpus[i].size, vgpus[i].gt, vgpus[i].gb);
	}

	return 0;
}

int CGpuNode::updateParams( VGpu& vgpu ) {

	Params& dp = vgpu.data.params;

	dp.mTime = params.mTime;
	dp.jMin = params.jMin;
	dp.jMax = params.jMax;

	if( params.iMin <= vgpu.end && params.iMax >= vgpu.off ) {

		/* range of virtual GPU must be handled */
		/* calculate relative values for iMin and iMax depending on current range */
		dp.iMin = max( 2, vgpu.getRel(params.iMin) );
		dp.iMax = min( vgpu.getRel( vgpu.end ), vgpu.getRel(params.iMax) );

		return 0;
	}

	return 1;
}

bool CGpuNode::isActive( VGpu& vgpu ) {

	return ( params.iMin <= vgpu.end && params.iMax >= vgpu.off );
}