ewSource.cpp 6.79 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * EasyWave - A realtime tsunami simulation program with GPU support.
 * Copyright (C) 2014  Andrey Babeyko, Johannes Spazier
 * GFZ German Research Centre for Geosciences (http://www.gfz-potsdam.de)
 *
 * Parts of this program (especially the GPU extension) were developed
 * within the context of the following publicly funded project:
 * - TRIDEC, EU 7th Framework Programme, Grant Agreement 258723
 *   (http://www.tridec-online.eu)
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
#include <stdio.h>
#include <string.h>
#include <utilits.h>
#include <cOgrd.h>
#include "cOkadaEarthquake.h"
#include "easywave.h"

int Imin;
int Imax;
int Jmin;
int Jmax;

cOgrd uZ;

#define SRC_GRD 1
#define SRC_FLT 2

//====================================================
int ewSource()
{
  char dsaa_label[8];
  int i,j,ierr,srcType;
  double lon,lat,dz,absuzmax,absuzmin;
  FILE *fp;

  cOkadaEarthquake eq;

  // check input file type: GRD or fault
  if( (fp = fopen( Par.fileSource, "rb" )) == NULL ) return Err.post( Err.msgOpenFile(Par.fileSource) );
  memset( dsaa_label, 0, 5 );
  ierr = fread( dsaa_label, 4, 1, fp );
  if( !strcmp( dsaa_label,"DSAA" ) || !strcmp( dsaa_label,"DSBB" ) )
    srcType = SRC_GRD;
  else
    srcType = SRC_FLT;
  fclose(fp);


  // load GRD file
  if( srcType == SRC_GRD) {
    ierr = uZ.readGRD( Par.fileSource ); if(ierr) return ierr;
  }

  // read fault(s) from file
  if( srcType == SRC_FLT) {
    int effSymSource = 0;
    long l;
    double dist,energy,factLat,effRad,effMax;
    
    ierr = eq.read( Par.fileSource ); if(ierr) return ierr;

    if( Par.adjustZtop ) {

		// check fault parameters
		Err.disable();
		ierr = eq.finalizeInput();
		while( ierr ) {
		  i = ierr/10;
		  ierr = ierr - 10*i;
		  if( ierr == FLT_ERR_STRIKE ) {
			Log.print( "No strike on input: Employing effective symmetric source model" );
			if( eq.nfault > 1 ) { Err.enable(); return Err.post("Symmetric source assumes only 1 fault"); }
			eq.fault[0].strike = 0.;
			effSymSource = 1;
		  }
		  else if( ierr == FLT_ERR_ZTOP ) {
			Log.print( "Automatic depth correction to fault top @ 10 km" );
			eq.fault[i].depth = eq.fault[i].width/2 * sindeg(eq.fault[i].dip) + 10.e3;
		  }
		  else {
			Err.enable();
			return ierr;
		  }
		  ierr = eq.finalizeInput();
		}
		Err.enable();

    } else {

		// check fault parameters
		Err.disable();
		ierr = eq.finalizeInput();
		if( ierr ) {
		  i = ierr/10;
		  ierr = ierr - 10*i;
		  if( ierr != FLT_ERR_STRIKE ) {
			Err.enable();
			ierr = eq.finalizeInput();
			return ierr;
		  }
		  Log.print( "No strike on input: Employing effective symmetric source model" );
		  Err.enable();
		  if( eq.nfault > 1 ) return Err.post("symmetric source assumes only 1 fault");
		  eq.fault[0].strike = 0.;
		  effSymSource = 1;
		  ierr = eq.finalizeInput(); if(ierr) return ierr;
		}
		Err.enable();

    }

    // calculate uplift on a rectangular grid
    // set grid resolution, grid dimensions will be set automatically
    uZ.dx = DLon; uZ.dy = DLat;
    ierr = eq.calculate( uZ ); if(ierr) return ierr;
    
    if( effSymSource ) {
      // integrate for tsunami energy
      energy = 0.;
      for( j=0; j<uZ.ny; j++ ) {
        factLat = Dx*cosdeg(uZ.getY(0,j))*Dy;
        for( i=0; i<uZ.nx; i++ )
          energy += pow(uZ(i,j),2.)*factLat;
      }
      energy *= (1000*9.81/2);
      effRad = eq.fault[0].length/sqrt(2*M_PI);
      effMax = 1./effRad / sqrt(M_PI/2) / sqrt(1000*9.81/2) * sqrt(energy);
      Log.print( "Effective source radius: %g km,  max height: %g m", effRad/1000, effMax );
  
      // transfer uplift onto tsunami grid and define deformed area for acceleration
      for( i=0; i<uZ.nx; i++ ) {
        for( j=0; j<uZ.ny; j++ ) {
          dist = GeoDistOnSphere( uZ.getX(i,j),uZ.getY(i,j), eq.fault[0].lon,eq.fault[0].lat ) * 1000;
          if( dist < effRad ) 
            uZ(i,j) = effMax*cos(M_PI/2*dist/effRad);
          else
            uZ(i,j) = 0.;
        }
      }
      
    } // effective source
  
  } // src_type == fault

  // remove noise in the source
  absuzmax = uZ.getMaxAbsVal();

  if( (Par.ssh0ThresholdRel + Par.ssh0ThresholdAbs) != 0 ) {

    absuzmin = RealMax;
    if( Par.ssh0ThresholdRel != 0 ) absuzmin = Par.ssh0ThresholdRel*absuzmax;
    if( Par.ssh0ThresholdAbs != 0 && Par.ssh0ThresholdAbs < absuzmin ) absuzmin = Par.ssh0ThresholdAbs;

    for( i=0; i<uZ.nx; i++ ) {
      for( j=0; j<uZ.ny; j++ ) {
        if( fabs(uZ(i,j)) < absuzmin ) uZ(i,j) = 0;
      }
    }

  }

  // calculated (if needed) arrival threshold (negative value means it is relative)
  if( Par.sshArrivalThreshold < 0 ) Par.sshArrivalThreshold = absuzmax * fabs(Par.sshArrivalThreshold);

  // transfer uplift onto tsunami grid and define deformed area for acceleration
  Imin = NLon; Imax = 1; Jmin = NLat; Jmax = 1;
  /* FIXME: change loops */
  for( i=1; i<=NLon; i++ ) {
    for( j=1; j<=NLat; j++ ) {

      lon = getLon(i);
      lat = getLat(j);
      dz = uZ.getVal( lon,lat );

      if( fabs(dz) > Par.sshClipThreshold ) {
        Imin = My_min( Imin, i );
        Imax = My_max( Imax, i );
        Jmin = My_min( Jmin, j );
        Jmax = My_max( Jmax, j );
      }

    }
  }

  if( Imin == NLon ) return Err.post( "Zero initial displacement" );

  Imin = My_max( Imin - 2, 2 );
  Imax = My_min( Imax + 2, NLon-1 );
  Jmin = My_max( Jmin - 2, 2 );
  Jmax = My_min( Jmax + 2, NLat-1 );

  printf_v("Imin, Imax, Jmin, Jmax: %u %u %u %u\n", Imin, Imax, Jmin, Jmax);

  return 0;
}

int setWaveHeights() {

	int i, j;
	double lon, lat, dz;

	CNode& Node = *gNode;

	Imin = NLon; Imax = 1; Jmin = NLat; Jmax = 1;

	for( i=1; i<=NLon; i++ ) {
		for( j=1; j<=NLat; j++ ) {

			lon = getLon(i);
			lat = getLat(j);

			//lon = (LonMinSec+(i-1)*DLon);
			//lat = (LatMinSec+(j-1)*DLat);

			if( Node(idx(j,i), iD) != 0. )
				dz = Node(idx(j,i), iH) = uZ.getVal( lon,lat );
			else
				dz = Node(idx(j,i), iH) = 0.;

			if( fabs(dz) > Par.sshClipThreshold ) {
				Imin = My_min( Imin, i );
				Imax = My_max( Imax, i );
				Jmin = My_min( Jmin, j );
				Jmax = My_max( Jmax, j );
			}
		}
	}

	Imin = My_max( Imin - 2, 2 );
	Imax = My_min( Imax + 2, NLon-1 );
	Jmin = My_max( Jmin - 2, 2 );
	Jmax = My_min( Jmax + 2, NLat-1 );

	printf_v("Imin, Imax, Jmin, Jmax: %u %u %u %u\n", Imin, Imax, Jmin, Jmax);

	return 0;
}