Commit 93c3c59c authored by Sebastian Heimann's avatar Sebastian Heimann

bugfixes

parent e4da642c
......@@ -269,6 +269,8 @@ def bootstrap_outliers(problem, misfits, std_factor=1.0):
Identify bootstrap configurations performing bad in global configuration
'''
raise Exception('this function is broken')
gms = problem.global_misfits(misfits)
ibests = []
......@@ -371,7 +373,7 @@ def harvest(rundir, problem=None, nbest=10, force=False, weed=0):
if weed != 3:
for ibootstrap in range(config.solver_config.nbootstrap):
bms = problem.bootstrap_misfits(
misfits, ibootstrap, config.solver_config.nbootstrap)
misfits, config.solver_config.nbootstrap, ibootstrap)
isort = num.argsort(bms)
ibests_list.append(isort[:nbest])
ibests.append(isort[0])
......
......@@ -200,7 +200,7 @@ def draw_sequence_figures(model, plt, misfit_cutoff=None, sort_by='misfit'):
bounds = problem.get_parameter_bounds()
if ndep > 0:
bounds += problem.get_dependant_bounds()
bounds = num.concatenate((bounds, problem.get_dependant_bounds()))
xref = problem.get_xref()
......@@ -361,13 +361,16 @@ def draw_jointpar_figures(
msize = 1.5
problem = model.problem
solver = model.solver
solver = model.config.solver_config
if not problem:
return []
xs = model.xs
bounds = problem.get_parameter_bounds() + problem.get_dependant_bounds()
bounds = num.concatenate((
problem.get_parameter_bounds(),
problem.get_dependant_bounds()))
for ipar in range(problem.ncombined):
par = problem.combined[ipar]
lo, hi = bounds[ipar]
......@@ -1606,7 +1609,9 @@ def draw_location_figure(model, plt):
axes_dn = fig.add_subplot(2, 2, 2)
axes_ed = fig.add_subplot(2, 2, 3)
bounds = problem.get_parameter_bounds() + problem.get_dependant_bounds()
bounds = num.concatenate((
problem.get_parameter_bounds(),
problem.get_dependant_bounds()))
gms = problem.global_misfits(model.misfits)
......@@ -1876,8 +1881,9 @@ class SolverPlot(object):
self.bcolors = colors.hsv_to_rgb(hsv[num.newaxis, :, :])[0, :, :]
bounds = self.problem.get_parameter_bounds()\
+ self.problem.get_dependant_bounds()
bounds = num.concatenate((
problem.get_parameter_bounds(),
problem.get_dependant_bounds()))
self.xlim = fixlim(*xpar.scaled(bounds[ixpar]))
self.ylim = fixlim(*ypar.scaled(bounds[iypar]))
......@@ -1931,8 +1937,9 @@ class SolverPlot(object):
ps = core.excentricity_compensated_probabilities(
xhist[chains_i[j, :], :], local_sxs[jchoice], 2.)
bounds = self.problem.get_parameter_bounds() + \
self.problem.get_dependant_bounds()
bounds = num.concatenate((
self.problem.get_parameter_bounds(),
self.problem.get_dependant_bounds()))
x = num.linspace(
bounds[self.ixpar][0], bounds[self.ixpar][1], nx)
......
......@@ -302,7 +302,7 @@ class Problem(Object):
exp, root = self.get_norm_functions()
w = self.get_bootstrap_weights(
nbootstraps, ibootstrap)[num.newaxis, :] * \
nbootstrap, ibootstrap)[num.newaxis, :] * \
self.get_target_weights()[num.newaxis, :] * \
self.inter_group_weights2(misfits[:, :, 1])
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment