definition_dicts.py 8.26 KB
Newer Older
1
2
3
4
5
6
# -*- coding: utf-8 -*-

import collections
import re

import numpy as np
7
from typing import TYPE_CHECKING  # noqa F401  # flake8 issue
8

9
from ..options.config import GMS_config as CFG
10

11
12
13
if TYPE_CHECKING:
    from ..model.gms_object import GMS_identifier  # noqa F401  # flake8 issue

14
15
16
17
18
19
20
21
22
23
__author__ = 'Daniel Scheffler'

dtype_lib_Python_IDL = {'bool_': 0, 'uint8': 1, 'int8': 1, 'int_': 1, 'int16': 2, 'uint16': 12, 'int32': 3,
                        'uint32': 13, 'int64': 14, 'uint64': 15, 'float32': 4, 'float64': 5, 'complex_': 6,
                        'complex64': 9}
dtype_lib_IDL_Python = {0: np.bool_, 1: np.uint8, 2: np.int16, 3: np.int32, 4: np.float32, 5: np.float64,
                        6: np.complex64, 9: np.complex128, 12: np.uint16, 13: np.uint32, 14: np.int64, 15: np.uint64}
dtype_lib_GDAL_Python = {"uint8": 1, "int8": 1, "uint16": 2, "int16": 3, "uint32": 4, "int32": 5, "float32": 6,
                         "float64": 7, "complex64": 10, "complex128": 11}
proc_chain = ['L1A', 'L1B', 'L1C', 'L2A', 'L2B', 'L2C']
24
db_jobs_statistics_def = {'pending': 1, 'started': 2, None: 2, 'L1A': 3, 'L1B': 4, 'L1C': 5, 'L2A': 6, 'L2B': 7,
25
                          'L2C': 8, 'FAILED': 9}  # NOTE: OrderedDicts passed to L1A_map have proc_level=None
26
bandslist_all_errors = ['ac_errors', 'mask_clouds_confidence', 'spat_homo_errors', 'spec_homo_errors']
27
28


29
30
def get_GMS_sensorcode(GMS_id):
    # type: (GMS_identifier) -> str
31

32
    Satellite, Sensor, Subsystem = (GMS_id.satellite, GMS_id.sensor, GMS_id.subsystem)
33
34
    Sensor = Sensor[:-1] if re.match('SPOT', Satellite, re.I) and Sensor[-1] not in ['1', '2'] else Sensor
    meta_sensorcode = Satellite + '_' + Sensor + ('_' + Subsystem if Subsystem not in ["", None] else "")
35
    sensorcode_dic = {
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        'ALOS_AVNIR-2': 'AVNIR-2',
        'Landsat-4_TM': 'TM4',  # call from layerstacker
        'Landsat-4_TM_SAM': 'TM4',  # call from metadata object
        'Landsat-5_TM': 'TM5',
        'Landsat-5_TM_SAM': 'TM5',
        'Landsat-7_ETM+': 'TM7',
        'Landsat-7_ETM+_SAM': 'TM7',
        'Landsat-8_OLI': 'LDCM',
        'Landsat-8_OLI_TIRS': 'LDCM',
        'Landsat-8_LDCM': 'LDCM',
        'SPOT-1_HRV1': 'SPOT1a',  # MS
        'SPOT-1_HRV2': 'SPOT1b',
        'SPOT-2_HRV1': 'SPOT2a',
        'SPOT-2_HRV2': 'SPOT2b',
        'SPOT-3_HRV1': 'SPOT3a',
        'SPOT-3_HRV2': 'SPOT3b',
        'SPOT-4_HRVIR1': 'SPOT4a',
        'SPOT-4_HRVIR2': 'SPOT4b',
        'SPOT-5_HRG1': 'SPOT5a',  # PAN HRG2A
        'SPOT-5_HRG2': 'SPOT5b',  # MS HRG2J
        'RapidEye-1_MSI': 'RE1',
        'RapidEye-2_MSI': 'RE2',
        'RapidEye-3_MSI': 'RE3',
        'RapidEye-4_MSI': 'RE4',
        'RapidEye-5_MSI': 'RE5',
        'SRTM_SRTM2': 'SRTM2',
        'Terra_ASTER': 'AST_full',
        'Terra_ASTER_VNIR1': 'AST_V1',
        'Terra_ASTER_VNIR2': 'AST_V2',
        'Terra_ASTER_SWIR': 'AST_S',
        'Terra_ASTER_TIR': 'AST_T',
        'Sentinel-2A_MSI': 'S2A_full',
        'Sentinel-2B_MSI': 'S2B_full',
        'Sentinel-2A_MSI_S2A10': 'S2A10',
        'Sentinel-2A_MSI_S2A20': 'S2A20',
        'Sentinel-2A_MSI_S2A60': 'S2A60',
        'Sentinel-2B_MSI_S2B10': 'S2B10',
        'Sentinel-2B_MSI_S2B20': 'S2B20',
        'Sentinel-2B_MSI_S2B60': 'S2B60'
75
76
77
78
79
    }
    try:
        return sensorcode_dic[meta_sensorcode]
    except KeyError:
        raise KeyError('Sensor %s is not included in sensorcode dictionary and can not be converted into GMS '
80
                       'sensorcode.' % meta_sensorcode)
81
82


83
def get_mask_classdefinition(maskname, satellite):
84
    if maskname == 'mask_nodata':
85
        return {'No data': 0,
86
                'Data': 1}
87
    elif maskname == 'mask_clouds':
88
        legends = {
89
            'FMASK': {
90
                'No Data': 0,
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
                'Clear': 1,
                'Cloud': 2,
                'Shadow': 3,
                'Snow': 4,
                'Water': 5},
            # seems to be outdated:
            # {'Clear Land': 0, 'Clear Water': 1, 'Cloud Shadow': 2, 'Snow': 3, 'Cloud': 4, 'No data': 255}
            'Classical Bayesian': {
                'Clear': 10,
                'Thick Clouds': 20,
                'Thin Clouds': 30,
                'Snow': 40},  # Classical Bayesian py_tools_ah
            'SICOR': {
                'Clear': 10,
                'Water': 20,
106
107
                'Shadow': 30,
                'Cirrus': 40,
108
109
110
                'Cloud': 50,
                'Snow': 60}  # SICOR
        }
111

112
        return legends[CFG.cloud_masking_algorithm[satellite]]
113
    else:
114
        raise ValueError("'%s' is not a supported mask name." % maskname)
115
116


Daniel Scheffler's avatar
Bugfix    
Daniel Scheffler committed
117
118
def get_mask_colormap(maskname):
    if maskname == 'mask_clouds':
119
120
121
        # return collections.OrderedDict(zip(['No data','Clear','Thick Clouds','Thin Clouds','Snow','Unknown Class'],
        #                                     [[0,0,0] ,[0,255,0],[80,80,80], [175,175,175],[255,255,255],[255,0,0]]))
        return collections.OrderedDict((
122
123
124
125
126
127
128
129
130
131
            ('No data', [0, 0, 0]),
            ('Clear', [0, 255, 0]),
            ('Water', [0, 0, 255]),
            ('Shadow', [50, 50, 50]),
            ('Cirrus', [175, 175, 175]),
            ('Cloud', [80, 80, 80]),
            ('Snow', [255, 255, 255]),
            ('Unknown Class', [255, 0, 0]),))
    else:
        return None
Daniel Scheffler's avatar
Bugfix    
Daniel Scheffler committed
132
133


134
135
136
def get_outFillZeroSaturated(dtype):
    """Returns the values for 'fill-', 'zero-' and 'saturated' pixels of an image
    to be written with regard to the target data type.
137

138
    :param dtype: data type of the image to be written"""
139

140
    dtype = str(np.dtype(dtype))
141
142
143
144
145
    assert dtype in ['bool', 'int8', 'uint8', 'int16', 'uint16', 'float32'], \
        "get_outFillZeroSaturated: Unknown dType: '%s'." % dtype
    dict_outFill = {'bool': None, 'int8': -128, 'uint8': 0, 'int16': -9999, 'uint16': 9999, 'float32': -9999.}
    dict_outZero = {'bool': None, 'int8': 0, 'uint8': 1, 'int16': 0, 'uint16': 0, 'float32': 0.}
    dict_outSaturated = {'bool': None, 'int8': 127, 'uint8': 256, 'int16': 32767, 'uint16': 65535, 'float32': 65535.}
146
147
148
    return dict_outFill[dtype], dict_outZero[dtype], dict_outSaturated[dtype]


149
150
def is_dataset_provided_as_fullScene(GMS_id):
    # type: (GMS_identifier) -> bool
151
152
153
    """Returns True if the dataset belonging to the given GMS_identifier is provided as full scene and returns False if
     it is provided as multiple tiles.

154
    :param GMS_id:
155
156
157
    :return:
    """

158
    sensorcode = get_GMS_sensorcode(GMS_id)
159
    dict_fullScene_or_tiles = {
160
        'AVNIR-2': True,
161
        'AST_full': True,
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        'AST_V1': True,
        'AST_V2': True,
        'AST_S': True,
        'AST_T': True,
        'TM4': True,
        'TM5': True,
        'TM7': True,
        'LDCM': True,
        'SPOT1a': True,
        'SPOT2a': True,
        'SPOT3a': True,
        'SPOT4a': True,
        'SPOT5a': True,
        'SPOT1b': True,
        'SPOT2b': True,
        'SPOT3b': True,
        'SPOT4b': True,
        'SPOT5b': True,
        'RE5': False,
181
        'S2A_full': False,
182
183
184
        'S2A10': False,
        'S2A20': False,
        'S2A60': False,
185
        'S2B_full': False,
186
187
188
        'S2B10': False,
        'S2B20': False,
        'S2B60': False, }
189
    return dict_fullScene_or_tiles[sensorcode]
190
191


192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def datasetid_to_sat_sen(dsid):
    # type: (int) -> tuple
    conv_dict = {
        8: ('Terra', 'ASTER'),  # ASTER L1B
        104: ('Landsat-8', 'OLI_TIRS'),  # pre-collection-ID
        108: ('Landsat-5', 'TM'),  # pre-collection-ID
        112: ('Landsat-7', 'ETM+'),  # pre-collection-ID SLC-off
        113: ('Landsat-7', 'ETM+'),  # pre-collection-ID SLC-on
        189: ('Terra', 'ASTER'),  # ASTER L1T
        249: ('Sentinel-2A', 'MSI'),  # actually only Sentinel-2
        250: ('Landsat-8', 'OLI_TIRS'),
        251: ('Landsat-7', 'ETM+'),
        252: ('Landsat-5', 'TM'),  # also includes Landsat-4
        }
    try:
        return conv_dict[dsid]
    except KeyError:
        raise ValueError('No satellite / sensor tuple available for dataset ID %s.' % dsid)


def sat_sen_to_datasetid(satellite, sensor):
    # type: (str, str) -> int
    conv_dict = {
        ('Landsat-5', 'TM'): 252,
        ('Landsat-7', 'ETM+'): 251,
        ('Landsat-8', 'OLI_TIRS'): 250,
        ('Sentinel-2A', 'MSI'): 249,
        ('Sentinel-2B', 'MSI'): 249,
        ('Terra', 'ASTER'): 189  # ASTER L1T
    }
    try:
        return conv_dict[(satellite, sensor)]
    except KeyError:
        raise ValueError('No dataset ID available for %s %s.' % (satellite, sensor))