definition_dicts.py 8.05 KB
Newer Older
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-

import collections
import re

import numpy as np

8
from ..options.config import GMS_config as CFG
9

10
11
12
13
14
15
16
17
18
19
20
__author__ = 'Daniel Scheffler'

dtype_lib_Python_IDL = {'bool_': 0, 'uint8': 1, 'int8': 1, 'int_': 1, 'int16': 2, 'uint16': 12, 'int32': 3,
                        'uint32': 13, 'int64': 14, 'uint64': 15, 'float32': 4, 'float64': 5, 'complex_': 6,
                        'complex64': 9}
dtype_lib_IDL_Python = {0: np.bool_, 1: np.uint8, 2: np.int16, 3: np.int32, 4: np.float32, 5: np.float64,
                        6: np.complex64, 9: np.complex128, 12: np.uint16, 13: np.uint32, 14: np.int64, 15: np.uint64}
dtype_lib_GDAL_Python = {"uint8": 1, "int8": 1, "uint16": 2, "int16": 3, "uint32": 4, "int32": 5, "float32": 6,
                         "float64": 7, "complex64": 10, "complex128": 11}
proc_chain = ['L1A', 'L1B', 'L1C', 'L2A', 'L2B', 'L2C']
db_jobs_statistics_def = {'downloaded': 1, 'started': 2, None: 2, 'L1A': 3, 'L1B': 4, 'L1C': 5, 'L2A': 6, 'L2B': 7,
21
                          'L2C': 8, 'FAILED': 9}  # NOTE: OrderedDicts passed to L1A_map have proc_level=None
22
23
24


def get_GMS_sensorcode(GMS_identifier):
25
26
    # type: (dict) -> str

27
28
29
    Satellite, Sensor, Subsystem = (GMS_identifier['Satellite'], GMS_identifier['Sensor'], GMS_identifier['Subsystem'])
    Sensor = Sensor[:-1] if re.match('SPOT', Satellite, re.I) and Sensor[-1] not in ['1', '2'] else Sensor
    meta_sensorcode = Satellite + '_' + Sensor + ('_' + Subsystem if Subsystem not in ["", None] else "")
30
    sensorcode_dic = {
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
        'ALOS_AVNIR-2': 'AVNIR-2',
        'Landsat-4_TM': 'TM4',  # call from layerstacker
        'Landsat-4_TM_SAM': 'TM4',  # call from metadata object
        'Landsat-5_TM': 'TM5',
        'Landsat-5_TM_SAM': 'TM5',
        'Landsat-7_ETM+': 'TM7',
        'Landsat-7_ETM+_SAM': 'TM7',
        'Landsat-8_OLI': 'LDCM',
        'Landsat-8_OLI_TIRS': 'LDCM',
        'Landsat-8_LDCM': 'LDCM',
        'SPOT-1_HRV1': 'SPOT1a',  # MS
        'SPOT-1_HRV2': 'SPOT1b',
        'SPOT-2_HRV1': 'SPOT2a',
        'SPOT-2_HRV2': 'SPOT2b',
        'SPOT-3_HRV1': 'SPOT3a',
        'SPOT-3_HRV2': 'SPOT3b',
        'SPOT-4_HRVIR1': 'SPOT4a',
        'SPOT-4_HRVIR2': 'SPOT4b',
        'SPOT-5_HRG1': 'SPOT5a',  # PAN HRG2A
        'SPOT-5_HRG2': 'SPOT5b',  # MS HRG2J
        'RapidEye-1_MSI': 'RE1',
        'RapidEye-2_MSI': 'RE2',
        'RapidEye-3_MSI': 'RE3',
        'RapidEye-4_MSI': 'RE4',
        'RapidEye-5_MSI': 'RE5',
        'SRTM_SRTM2': 'SRTM2',
        'Terra_ASTER': 'AST_full',
        'Terra_ASTER_VNIR1': 'AST_V1',
        'Terra_ASTER_VNIR2': 'AST_V2',
        'Terra_ASTER_SWIR': 'AST_S',
        'Terra_ASTER_TIR': 'AST_T',
        'Sentinel-2A_MSI': 'S2A_full',
        'Sentinel-2B_MSI': 'S2B_full',
        'Sentinel-2A_MSI_S2A10': 'S2A10',
        'Sentinel-2A_MSI_S2A20': 'S2A20',
        'Sentinel-2A_MSI_S2A60': 'S2A60',
        'Sentinel-2B_MSI_S2B10': 'S2B10',
        'Sentinel-2B_MSI_S2B20': 'S2B20',
        'Sentinel-2B_MSI_S2B60': 'S2B60'
70
71
72
73
74
    }
    try:
        return sensorcode_dic[meta_sensorcode]
    except KeyError:
        raise KeyError('Sensor %s is not included in sensorcode dictionary and can not be converted into GMS '
75
                       'sensorcode.' % meta_sensorcode)
76
77


78
def get_mask_classdefinition(maskname, satellite):
79
    if maskname == 'mask_nodata':
80
        return {'No data': 0,
81
                'Data': 1}
82
    elif maskname == 'mask_clouds':
83
        legends = {
84
            'FMASK': {
85
                'No Data': 0,
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
                'Clear': 1,
                'Cloud': 2,
                'Shadow': 3,
                'Snow': 4,
                'Water': 5},
            # seems to be outdated:
            # {'Clear Land': 0, 'Clear Water': 1, 'Cloud Shadow': 2, 'Snow': 3, 'Cloud': 4, 'No data': 255}
            'Classical Bayesian': {
                'Clear': 10,
                'Thick Clouds': 20,
                'Thin Clouds': 30,
                'Snow': 40},  # Classical Bayesian py_tools_ah
            'SICOR': {
                'Clear': 10,
                'Water': 20,
101
102
                'Shadow': 30,
                'Cirrus': 40,
103
104
105
                'Cloud': 50,
                'Snow': 60}  # SICOR
        }
106

107
        return legends[CFG.cloud_masking_algorithm[satellite]]
108
    else:
109
        raise ValueError("'%s' is not a supported mask name." % maskname)
110
111


Daniel Scheffler's avatar
Bugfix    
Daniel Scheffler committed
112
113
def get_mask_colormap(maskname):
    if maskname == 'mask_clouds':
114
115
116
        # return collections.OrderedDict(zip(['No data','Clear','Thick Clouds','Thin Clouds','Snow','Unknown Class'],
        #                                     [[0,0,0] ,[0,255,0],[80,80,80], [175,175,175],[255,255,255],[255,0,0]]))
        return collections.OrderedDict((
117
118
119
120
121
122
123
124
125
126
            ('No data', [0, 0, 0]),
            ('Clear', [0, 255, 0]),
            ('Water', [0, 0, 255]),
            ('Shadow', [50, 50, 50]),
            ('Cirrus', [175, 175, 175]),
            ('Cloud', [80, 80, 80]),
            ('Snow', [255, 255, 255]),
            ('Unknown Class', [255, 0, 0]),))
    else:
        return None
Daniel Scheffler's avatar
Bugfix    
Daniel Scheffler committed
127
128


129
130
131
def get_outFillZeroSaturated(dtype):
    """Returns the values for 'fill-', 'zero-' and 'saturated' pixels of an image
    to be written with regard to the target data type.
132

133
    :param dtype: data type of the image to be written"""
134

135
    dtype = str(np.dtype(dtype))
136
137
138
139
140
    assert dtype in ['bool', 'int8', 'uint8', 'int16', 'uint16', 'float32'], \
        "get_outFillZeroSaturated: Unknown dType: '%s'." % dtype
    dict_outFill = {'bool': None, 'int8': -128, 'uint8': 0, 'int16': -9999, 'uint16': 9999, 'float32': -9999.}
    dict_outZero = {'bool': None, 'int8': 0, 'uint8': 1, 'int16': 0, 'uint16': 0, 'float32': 0.}
    dict_outSaturated = {'bool': None, 'int8': 127, 'uint8': 256, 'int16': 32767, 'uint16': 65535, 'float32': 65535.}
141
142
143
    return dict_outFill[dtype], dict_outZero[dtype], dict_outSaturated[dtype]


144
145
146
147
148
149
150
151
152
153
154
def is_dataset_provided_as_fullScene(GMS_identifier):
    # type: (dict) -> bool
    """Returns True if the dataset belonging to the given GMS_identifier is provided as full scene and returns False if
     it is provided as multiple tiles.

    :param GMS_identifier:
    :return:
    """

    sensorcode = get_GMS_sensorcode(GMS_identifier)
    dict_fullScene_or_tiles = {
155
        'AVNIR-2': True,
156
        'AST_full': True,
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        'AST_V1': True,
        'AST_V2': True,
        'AST_S': True,
        'AST_T': True,
        'TM4': True,
        'TM5': True,
        'TM7': True,
        'LDCM': True,
        'SPOT1a': True,
        'SPOT2a': True,
        'SPOT3a': True,
        'SPOT4a': True,
        'SPOT5a': True,
        'SPOT1b': True,
        'SPOT2b': True,
        'SPOT3b': True,
        'SPOT4b': True,
        'SPOT5b': True,
        'RE5': False,
176
        'S2A_full': False,
177
178
179
        'S2A10': False,
        'S2A20': False,
        'S2A60': False,
180
        'S2B_full': False,
181
182
183
        'S2B10': False,
        'S2B20': False,
        'S2B60': False, }
184
    return dict_fullScene_or_tiles[sensorcode]
185
186


187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
def datasetid_to_sat_sen(dsid):
    # type: (int) -> tuple
    conv_dict = {
        8: ('Terra', 'ASTER'),  # ASTER L1B
        104: ('Landsat-8', 'OLI_TIRS'),  # pre-collection-ID
        108: ('Landsat-5', 'TM'),  # pre-collection-ID
        112: ('Landsat-7', 'ETM+'),  # pre-collection-ID SLC-off
        113: ('Landsat-7', 'ETM+'),  # pre-collection-ID SLC-on
        189: ('Terra', 'ASTER'),  # ASTER L1T
        249: ('Sentinel-2A', 'MSI'),  # actually only Sentinel-2
        250: ('Landsat-8', 'OLI_TIRS'),
        251: ('Landsat-7', 'ETM+'),
        252: ('Landsat-5', 'TM'),  # also includes Landsat-4
        }
    try:
        return conv_dict[dsid]
    except KeyError:
        raise ValueError('No satellite / sensor tuple available for dataset ID %s.' % dsid)


def sat_sen_to_datasetid(satellite, sensor):
    # type: (str, str) -> int
    conv_dict = {
        ('Landsat-5', 'TM'): 252,
        ('Landsat-7', 'ETM+'): 251,
        ('Landsat-8', 'OLI_TIRS'): 250,
        ('Sentinel-2A', 'MSI'): 249,
        ('Sentinel-2B', 'MSI'): 249,
        ('Terra', 'ASTER'): 189  # ASTER L1T
    }
    try:
        return conv_dict[(satellite, sensor)]
    except KeyError:
        raise ValueError('No dataset ID available for %s %s.' % (satellite, sensor))