process_controller.py 34.7 KB
Newer Older
1
2
# -*- coding: utf-8 -*-

3
from __future__ import (division, print_function, unicode_literals, absolute_import)
4
5
6

import numpy as np
from pandas import DataFrame
7
8
9
10
import datetime
import os
import time
from itertools import chain
11
import signal
12
import re
Daniel Scheffler's avatar
Daniel Scheffler committed
13
from typing import TYPE_CHECKING
14

15
16
from ..io import output_writer as OUT_W
from ..io import input_reader as INP_R
17
18
19
20
21
22
from ..misc import database_tools as DB_T
from ..misc import helper_functions as HLP_F
from ..misc import environment as ENV
from ..misc.path_generator import path_generator
from ..misc.logging import GMS_logger, shutdown_loggers
from ..algorithms import L1A_P, L1B_P, L1C_P, L2A_P, L2B_P, L2C_P
23
from ..model.metadata import get_LayerBandsAssignment
24
25
from ..model.gms_object import failed_GMS_object
from .pipeline import (L1A_map, L1A_map_1, L1A_map_2, L1A_map_3, L1B_map, L1C_map,
26
                       L2A_map, L2B_map, L2C_map)
27
28
from ..config import set_config, GMS_config
from .multiproc import MAP
29
from ..misc.definition_dicts import proc_chain, db_jobs_statistics_def
30

31
if TYPE_CHECKING:
Daniel Scheffler's avatar
Daniel Scheffler committed
32
    from collections import OrderedDict  # noqa F401  # flake8 issue
33
34
35
36


__author__ = 'Daniel Scheffler'

37
38

class process_controller(object):
39
    def __init__(self, job_ID, call_type='webapp', exec_mode='Python', db_host='localhost',
40
                 parallelization_level='scenes', delete_old_output=False, job_config_kwargs=None):
41
42
        # type: (int, str, str, str, str, bool) -> None

43
        """gms_preprocessing process controller
44
45
46
47
48

        :param job_ID:                  <int> a job ID belonging to a valid database record within table 'jobs'
        :param call_type:               <str> choices: 'webapp' and 'console'
        :param exec_mode:               <str> choices: 'Python' - writes all intermediate data to disk
                                                       'Flink'  - keeps all intermediate data in memory
49
        :param db_host:                 <str> hostname of the host where database is hosted
50
51
        :param parallelization_level:   <str> choices: 'scenes' - parallelization on scene-level
                                                       'tiles'  - parallelisation on tile-level
52
53
        :param delete_old_output:       <bool> whether to delete previously created output of the given job ID
                                        before running the job (default = False)
54
55
56
        """

        # assertions
57
58
59
60
61
62
        if not isinstance(job_ID, int):
            raise ValueError("'job_ID' must be an integer value. Got %s." % type(job_ID))
        if call_type not in ['webapp', 'console']:
            raise ValueError("Unexpected call_type '%s'!" % call_type)
        if exec_mode not in ['Python', 'Flink']:
            raise ValueError("Unexpected exec_mode '%s'!" % exec_mode)
63
        if parallelization_level not in ['scenes', 'tiles']:
64
            raise ValueError("Unexpected parallelization_level '%s'!" % parallelization_level)
65

66
67
68
        self.call_type = call_type
        self.parallLev = parallelization_level
        self._logger = None
69
        self._DB_job_record = None
70
        self.profiler = None
71
72
73
74
75

        self.failed_objects = []
        self.L1A_newObjects = []
        self.L1B_newObjects = []
        self.L1C_newObjects = []
76
        self.L2A_tiles = []
77
78
79
80
        self.L2B_newObjects = []
        self.L2C_newObjects = []

        self.summary_detailed = None
81
        self.summary_quick = None
82
83

        # set GMS configuration
84
85
        set_config(call_type=call_type, exec_mode=exec_mode, job_ID=job_ID, db_host=db_host, reset=True,
                   job_kwargs=job_config_kwargs)
86
        self.job = GMS_config.job
87
88
89
        self.usecase = GMS_config.usecase

        # check environment
90
91
        self.GMSEnv = ENV.GMSEnvironment(self.logger)
        self.GMSEnv.check_dependencies()
92
        self.GMSEnv.check_read_write_permissions()
93

94
95
        # check if process_controller is executed by debugger
        # isdebugging = 1 if True in [frame[1].endswith("pydevd.py") for frame in inspect.stack()] else False
96
        # if isdebugging:  # override the existing settings in order to get write access everywhere
97
98
        #    pass

99
        # called_from_iPyNb = 1 if 'ipykernel/__main__.py' in sys.argv[0] else 0
100

101
102
103
        self.logger.info('Process Controller initialized for job ID %s (comment: %s).'
                         % (self.job.ID, self.DB_job_record.comment))

104
105
106
        if delete_old_output:
            self.logger.info('Deleting previously processed data...')
            self.DB_job_record.delete_procdata_of_entire_job(force=True)
107

108
109
110
111
112
    @property
    def logger(self):
        if self._logger and self._logger.handlers[:]:
            return self._logger
        else:
113
114
            self._logger = GMS_logger('log__%s' % self.job.ID,
                                      path_logfile=os.path.join(self.job.path_job_logs, '%s.log' % self.job.ID),
115
                                      log_level=self.job.log_level, append=False)
116
117
118
119
120
121
122
123
124
125
126
127
128
            return self._logger

    @logger.setter
    def logger(self, logger):
        self._logger = logger

    @logger.deleter
    def logger(self):
        if self._logger not in [None, 'not set']:
            self.logger.close()
            self.logger = None

    @property
129
130
131
132
133
134
135
    def DB_job_record(self):
        if self._DB_job_record:
            return self._DB_job_record
        else:
            self._DB_job_record = DB_T.GMS_JOB(self.job.conn_database)
            self._DB_job_record.from_job_ID(self.job.ID)
            return self._DB_job_record
136

137
138
139
    @DB_job_record.setter
    def DB_job_record(self, value):
        self._DB_job_record = value
140

141
142
143
    @property
    def sceneids_failed(self):
        return [obj.scene_ID for obj in self.failed_objects]
144

145
146
147
    @staticmethod
    def add_local_availability(dataset):
        # TODO revise this function
148
149
150
        # TODO this does not respect that all subsystems of the same scene ID must be available at the same proc level!

        # query the database and get the last written processing level and LayerBandsAssignment
151
        if GMS_config.job.call_type == 'webapp':
152
153
154
            DB_match = DB_T.get_info_from_postgreSQLdb(
                GMS_config.job.conn_database, 'scenes_proc', ['proc_level', 'layer_bands_assignment'],
                dict(sceneid=dataset['scene_ID']))
155

156
        else:  # call_type == 'console'
157
158
            DB_match = DB_T.get_info_from_SQLdb(
                GMS_config.job.path_database, 'processed_data', ['proc_level', 'LayerBandsAssignment'],
159
160
161
162
163
164
                dict(image_type=dataset['image_type'],
                     satellite=dataset['satellite'],
                     sensor=dataset['sensor'],
                     subsystem=dataset['subsystem'],
                     sensormode=dataset['sensormode'],
                     entity_ID=dataset['entity_ID']))
165
166

        # get the corresponding logfile
167
168
        path_logfile = path_generator(
            dataset).get_path_logfile()  # FIXME this always returns the logfile for the subsystem.
169

170
171
        # FIXME -> merged logfiles (L2A+) are ignored
        # FIXME -> for subsystems the highest start procL is L2A
172

173
        def get_AllWrittenProcL_dueLog(path_log):  # TODO replace this by database query + os.path.exists
174
175
            """Returns all processing level that have been successfully written according to logfile."""

176
            if not os.path.exists(path_log):
177
                print("No logfile named '%s' found for %s at %s. Dataset has to be reprocessed."
178
179
180
181
182
183
                      % (os.path.basename(path_log), dataset['entity_ID'], os.path.dirname(path_log)))
                AllWrittenProcL_dueLog = []
            else:
                logfile = open(path_log, 'r').read()
                AllWrittenProcL_dueLog = re.findall(":*(\S*\s*) data successfully saved.", logfile, re.I)
                if not AllWrittenProcL_dueLog:  # AllWrittenProcL_dueLog = []
184
                    print('%s: According to logfile no completely processed data exist at any processing level. '
185
186
187
188
189
                          'Dataset has to be reprocessed.' % dataset['entity_ID'])
                else:
                    AllWrittenProcL_dueLog = HLP_F.sorted_nicely(list(set(AllWrittenProcL_dueLog)))
            return AllWrittenProcL_dueLog

190
        # check if there are not multiple database records for this dataset
191
        if len(DB_match) == 1 or DB_match == [] or DB_match == 'database connection fault':
192
193

            # get all processing level that have been successfully written
194
195
            AllWrittenProcL = get_AllWrittenProcL_dueLog(path_logfile)
            dataset['proc_level'] = None  # default (dataset has to be reprocessed)
196
197

            # loop through all the found proc. levels and find the one that fulfills all requirements
198
            for ProcL in reversed(AllWrittenProcL):
199
200
                if dataset['proc_level']:
                    break  # proc_level found; no further searching for lower proc_levels
201
                assumed_path_GMS_file = '%s_%s.gms' % (os.path.splitext(path_logfile)[0], ProcL)
202
203

                # check if there is also a corresponding GMS_file on disk
204
205
                if os.path.isfile(assumed_path_GMS_file):
                    GMS_file_dict = INP_R.GMSfile2dict(assumed_path_GMS_file)
206
                    target_LayerBandsAssignment = \
207
                        get_LayerBandsAssignment(dict(
208
209
210
211
212
                            image_type=dataset['image_type'],
                            Satellite=dataset['satellite'],
                            Sensor=dataset['sensor'],
                            Subsystem=dataset['subsystem'],
                            proc_level=ProcL,  # must be respected because LBA changes after atm. Corr.
213
                            dataset_ID=dataset['dataset_ID'],
214
215
216
217
                            logger=None), nBands=(1 if dataset['sensormode'] == 'P' else None))

                    # check if the LayerBandsAssignment of the written dataset on disk equals the
                    # desired LayerBandsAssignment
218
                    if target_LayerBandsAssignment == GMS_file_dict['LayerBandsAssignment']:
219
220

                        # update the database record if the dataset could not be found in database
221
                        if DB_match == [] or DB_match == 'database connection fault':
222
223
                            print('The dataset %s is not included in the database of processed data but according to '
                                  'logfile %s has been written successfully. Recreating missing database entry.'
224
225
                                  % (dataset['entity_ID'], ProcL))
                            DB_T.data_DB_updater(GMS_file_dict)
226

227
228
229
                            if GMS_config.job.call_type == 'console':
                                DB_T.SQL_DB_to_csv()
                            dataset['proc_level'] = ProcL
230
231

                        # if the dataset could be found in database
232
233
                        elif len(DB_match) == 1:
                            try:
234
                                print('Found a matching %s dataset for %s. Processing skipped until %s.'
235
                                      % (ProcL, dataset['entity_ID'], proc_chain[proc_chain.index(ProcL) + 1]))
236
                            except IndexError:
237
                                print('Found a matching %s dataset for %s. Processing already done.'
238
                                      % (ProcL, dataset['entity_ID']))
239

240
241
242
243
                            if DB_match[0][0] == ProcL:
                                dataset['proc_level'] = DB_match[0][0]
                            else:
                                dataset['proc_level'] = ProcL
244

245
                    else:
246
                        print('Found a matching dataset for %s but with a different LayerBandsAssignment. '
247
248
249
250
251
                              'Dataset has to be reprocessed.' % dataset['entity_ID'])
                else:
                    print('%s for dataset %s has been written due to logfile but no corresponding dataset has been '
                          'found.' % (ProcL, dataset['entity_ID']) + ' Searching for lower processing level...'
                          if AllWrittenProcL.index(ProcL) != 0 else '')
252

253
        elif len(DB_match) > 1:
254
            print('According to database there are multiple matches for the dataset %s. Dataset has to be reprocessed.'
255
256
                  % dataset['entity_ID'])
            dataset['proc_level'] = None
257

258
259
260
261
262
        else:
            dataset['proc_level'] = None

        return dataset

263
264
    @staticmethod
    def _is_inMEM(GMS_objects, dataset):
Daniel Scheffler's avatar
Daniel Scheffler committed
265
        # type: (list, OrderedDict) -> bool
266
267
268
269
        """Checks whether a dataset within a dataset list has been processed in the previous processing level.
        :param GMS_objects: <list> a list of GMS objects that has been recently processed
        :param dataset:     <collections.OrderedDict> as generated by L0A_P.get_data_list_of_current_jobID()
        """
270
        # check if the scene ID of the given dataset is in the scene IDs of the previously processed datasets
271
272
273
274
        return dataset['scene_ID'] in [obj.scene_ID for obj in GMS_objects]

    @staticmethod
    def _is_already_present(dataset, procLvl):
275
276
277
278
279
280
        """Checks if the given dataset is already available on disk.

        :param dataset:     <GMS object>
        :param procLvl:     <str> processing level to be checked
        :return:            <bool>
        """
281
282
283
        return HLP_F.proc_level_already_present(dataset['proc_level'], procLvl)

    def _get_processor_data_list(self, procLvl, prevLvl_objects=None):
284
        """Returns a list of datasets that have to be read from disk and then processed by a specific processor.
285
286
287
288
289

        :param procLvl:
        :param prevLvl_objects:
        :return:
        """
290
291
        def is_already_present(dataset):
            return HLP_F.proc_level_already_present(dataset['proc_level'], target_lvl=procLvl)
292
293

        if prevLvl_objects is None:
294
            return [dataset for dataset in self.usecase.data_list if not is_already_present(dataset)]  # TODO generator?
295
        else:
296
297
            return [dataset for dataset in self.usecase.data_list if not is_already_present(dataset) and
                    not self._is_inMEM(prevLvl_objects + self.failed_objects, dataset)]
298
299
300
301
302
303
304
305
306
307
308
309
310

    def get_DB_objects(self, procLvl, prevLvl_objects=None, parallLev=None, blocksize=None):
        """
        Returns a list of GMS objects for datasets available on disk that have to be processed by the current processor.

        :param procLvl:         <str> processing level oof the current processor
        :param prevLvl_objects: <list> of in-mem GMS objects produced by the previous processor
        :param parallLev:       <str> parallelization level ('scenes' or 'tiles')
                                -> defines if full cubes or blocks are to be returned
        :param blocksize:       <tuple> block size in case blocks are to be returned, e.g. (2000,2000)
        :return:
        """
        # TODO get prevLvl_objects automatically from self
311
        if procLvl == 'L1A':
312
313
314
315
316
            return []
        else:
            # handle input parameters
            parallLev = parallLev if parallLev else self.parallLev
            blocksize = blocksize if blocksize else self.job.tiling_block_size_XY
317
            prevLvl = proc_chain[proc_chain.index(procLvl) - 1]  # TODO replace by enum
318
319

            # get GMSfile list
320
            dataset_dicts = self._get_processor_data_list(procLvl, prevLvl_objects)
321
322
323
324
325
            GMSfile_list_prevLvl_inDB = INP_R.get_list_GMSfiles(dataset_dicts, prevLvl)

            # create GMS objects from disk with respect to parallelization level and block size
            if parallLev == 'scenes':
                # get input parameters for creating GMS objects as full cubes
326
                work = [[GMS, ['cube', None]] for GMS in GMSfile_list_prevLvl_inDB]
327
328
            else:
                # define tile positions and size
329
330
331
                def get_tilepos_list(GMSfile):
                    return HLP_F.get_image_tileborders('block', blocksize,
                                                       shape_fullArr=INP_R.GMSfile2dict(GMSfile)['shape_fullArr'])
332
333
334

                # get input parameters for creating GMS objects as blocks
                work = [[GMSfile, ['block', tp]] for GMSfile in GMSfile_list_prevLvl_inDB
335
                        for tp in get_tilepos_list(GMSfile)]
336

337
338
339
340
            # create GMS objects for the found files on disk
            # NOTE: DON'T multiprocess that with MAP(GMS_object(*initargs).from_disk, work)
            # in case of multiple subsystems GMS_object(*initargs) would always point to the same object in memory
            # -> subsystem attribute will be overwritten each time
341
            def init_GMS_obj(): return HLP_F.parentObjDict[prevLvl](*HLP_F.initArgsDict[prevLvl])
342
343
            DB_objs = [init_GMS_obj().from_disk(tuple_GMS_subset=w) for w in work]  # init

344
345
346
347
348
            if DB_objs:
                DB_objs = list(chain.from_iterable(DB_objs)) if list in [type(i) for i in DB_objs] else list(DB_objs)

            return DB_objs

349
350
351
352
    def run_all_processors(self, custom_data_list=None):
        """
        Run all processors at once.
        """
353

354
        signal.signal(signal.SIGINT, self.stop)  # enable clean shutdown possibility
355

356
357
358
359
360
361
        try:
            if self.job.profiling:
                from pyinstrument import Profiler
                self.profiler = Profiler()  # or Profiler(use_signal=False), see below
                self.profiler.start()

362
363
364
            self.logger.info('Execution of entire GeoMultiSens pre-processing chain started for job ID %s...'
                             % self.job.ID)
            self.DB_job_record.reset_job_progress()  # updates attributes of DB_job_record and related DB entry
365
            self.job.status = 'running'
366
            self.update_DB_job_record()  # TODO implement that into job.status.setter
367
368
369
370
371
372
373
374
375

            self.failed_objects = []

            # get list of datasets to be processed
            if custom_data_list:
                self.usecase.data_list = custom_data_list

            # add local availability
            self.usecase.data_list = MAP(self.add_local_availability, self.usecase.data_list)
376
            self.update_DB_job_statistics(self.usecase.data_list)
377
378
379
380
381
382
383
384
385
386
387
388

            self.L1A_processing()
            self.L1B_processing()
            self.L1C_processing()
            self.L2A_processing()
            self.L2B_processing()
            self.L2C_processing()

            # create summary
            self.create_job_summary()

            self.logger.info('Execution finished.')
389
390
391
392
            # TODO implement failed_with_warnings:
            self.job.status = 'finished' if not self.failed_objects else 'finished_with_errors'
            self.job.end_time = datetime.datetime.now()
            self.job.computation_time = self.job.end_time - self.job.start_time
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
            self.logger.info('Time for execution: %s' % self.job.computation_time)

            # update database entry of current job
            self.update_DB_job_record()

            if self.job.profiling:
                self.profiler.stop()
                print(self.profiler.output_text(unicode=True, color=True))

            shutdown_loggers()

        except Exception as e:
            if self.job.profiling:
                self.profiler.stop()
                print(self.profiler.output_text(unicode=True, color=True))

            self.job.status = 'failed'
            self.update_DB_job_record()
411
            self.logger.error('Execution failed with an error:', e)
412
413
414
415
416
417
418

            if not self.job.disable_exception_handler:
                self.logger.error(e)
                shutdown_loggers()
            else:
                shutdown_loggers()
                raise
419

420
421
    def stop(self, signum, frame):
        """Interrupt the running process controller gracefully."""
422

423
        self.job.status = 'canceled'
424
425
        self.update_DB_job_record()

426
        self.logger.warning('Process controller stopped by user.')
427
428
        del self.logger
        shutdown_loggers()
429

430
        raise KeyboardInterrupt  # terminate execution and show traceback
431

432
433
434
435
    def benchmark(self):
        """
        Run a benchmark.
        """
436
        data_list_bench = self.usecase.data_list
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        for count_datasets in range(len(data_list_bench)):
            t_processing_all_runs, t_IO_all_runs = [], []
            for count_run in range(10):
                current_data_list = data_list_bench[0:count_datasets + 1]
                if os.path.exists(self.job.path_database):
                    os.remove(self.job.path_database)
                t_start = time.time()
                self.run_all_processors(current_data_list)
                t_processing_all_runs.append(time.time() - t_start)
                t_IO_all_runs.append(globals()['time_IO'])

            assert current_data_list, 'Empty data list.'
            OUT_W.write_global_benchmark_output(t_processing_all_runs, t_IO_all_runs, current_data_list)

    def L1A_processing(self):
        """
453
        Run Level 1A processing: Data import and metadata homogenization
454
        """
455
        if self.job.exec_L1AP[0]:
456
            self.logger.info('\n\n##### Level 1A Processing started - raster format and metadata homogenization ####\n')
457

458
459
460
461
            datalist_L1A_P = self._get_processor_data_list('L1A')

            if self.parallLev == 'scenes':
                # map
462
                L1A_resObjects = MAP(L1A_map, datalist_L1A_P, CPUs=12)
463
            else:  # tiles
464
465
                all_L1A_tiles_map1 = MAP(L1A_map_1, datalist_L1A_P,
                                         flatten_output=True)  # map_1 # merge results to new list of splits
466

467
468
469
                L1A_obj_tiles = MAP(L1A_map_2, all_L1A_tiles_map1)  # map_2
                grouped_L1A_Tiles = HLP_F.group_objects_by_attributes(
                    L1A_obj_tiles, 'scene_ID', 'subsystem')  # group results
470

471
                L1A_objects = MAP(L1A_P.L1A_object().from_tiles, grouped_L1A_Tiles)  # reduce
472

473
                L1A_resObjects = MAP(L1A_map_3, L1A_objects)  # map_3
474

475
            self.L1A_newObjects = [obj for obj in L1A_resObjects if isinstance(obj, L1A_P.L1A_object)]
476
            self.failed_objects += [obj for obj in L1A_resObjects if isinstance(obj, failed_GMS_object) and
477
478
479
480
481
482
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L1A_newObjects

    def L1B_processing(self):
        """
483
        Run Level 1B processing: calculation of geometric shifts
484
485
486
487
        """
        # TODO implement check for running spatial index mediator server
        # run on full cubes

488
        if self.job.exec_L1BP[0]:
489
            self.logger.info('\n\n####### Level 1B Processing started - detection of geometric displacements #######\n')
490

491
492
            L1A_DBObjects = self.get_DB_objects('L1B', self.L1A_newObjects, parallLev='scenes')
            L1A_Instances = self.L1A_newObjects + L1A_DBObjects  # combine newly and earlier processed L1A data
493

494
            L1B_resObjects = MAP(L1B_map, L1A_Instances)
495

496
497
498
            self.L1B_newObjects = [obj for obj in L1B_resObjects if isinstance(obj, L1B_P.L1B_object)]
            self.failed_objects += [obj for obj in L1B_resObjects if isinstance(obj, failed_GMS_object) and
                                    obj.scene_ID not in self.sceneids_failed]
499
500
501
502
503

        return self.L1B_newObjects

    def L1C_processing(self):
        """
504
        Run Level 1C processing: atmospheric correction
505
        """
506
        if self.job.exec_L1CP[0]:
507
            self.logger.info('\n\n############## Level 1C Processing started - atmospheric correction ##############\n')
508

509
            if self.parallLev == 'scenes':
510
511
512
513
                L1B_DBObjects = self.get_DB_objects('L1C', self.L1B_newObjects)
                L1B_Instances = self.L1B_newObjects + L1B_DBObjects  # combine newly and earlier processed L1B data

                # group by scene ID (all subsystems belonging to the same scene ID must be processed together)
514
                grouped_L1B_Instances = HLP_F.group_objects_by_attributes(L1B_Instances, 'scene_ID')
515

516
517
                L1C_resObjects = MAP(L1C_map, grouped_L1B_Instances, flatten_output=True,
                                     CPUs=15)  # FIXME CPUs set to 15 for testing
518

519
            else:  # tiles
520
521
                raise NotImplementedError("Tiled processing is not yet completely implemented for L1C processor. Use "
                                          "parallelization level 'scenes' instead!")
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
                # blocksize = (5000, 5000)
                # """if newly processed L1A objects are present: cut them into tiles"""
                # L1B_newTiles = []
                # if self.L1B_newObjects:
                #     tuples_obj_blocksize = [(obj, blocksize) for obj in self.L1B_newObjects]
                #     L1B_newTiles = MAP(HLP_F.cut_GMS_obj_into_blocks, tuples_obj_blocksize, flatten_output=True)
                #
                # """combine newly and earlier processed L1B data"""
                # L1B_newDBTiles = self.get_DB_objects('L1C', self.L1B_newObjects, blocksize=blocksize)
                # L1B_tiles = L1B_newTiles + L1B_newDBTiles
                #
                # # TODO merge subsets of S2/Aster in order to provide all bands for atm.correction
                # L1C_tiles = MAP(L1C_map, L1B_tiles)
                # grouped_L1C_Tiles = \
                #     HLP_F.group_objects_by_attributes(L1C_tiles, 'scene_ID', 'subsystem')  # group results
                # [L1C_tiles_group[0].delete_tempFiles() for L1C_tiles_group in grouped_L1C_Tiles]
                # L1C_resObjects = MAP(L1C_P.L1C_object().from_tiles, grouped_L1C_Tiles)  # reduce

            self.L1C_newObjects = [obj for obj in L1C_resObjects if isinstance(obj, L1C_P.L1C_object)]
541
            self.failed_objects += [obj for obj in L1C_resObjects if isinstance(obj, failed_GMS_object) and
542
543
544
545
546
547
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L1C_newObjects

    def L2A_processing(self):
        """
548
        Run Level 2A processing: geometric homogenization
549
        """
550
        if self.job.exec_L2AP[0]:
551
552
            self.logger.info(
                '\n\n#### Level 2A Processing started - shift correction / geometric homogenization ####\n')
553

554
            """combine newly and earlier processed L1C data"""
555
556
            L1C_DBObjects = self.get_DB_objects('L2A', self.L1C_newObjects, parallLev='scenes')
            L1C_Instances = self.L1C_newObjects + L1C_DBObjects  # combine newly and earlier processed L1C data
557
558
559
560

            # group by scene ID (all subsystems belonging to the same scene ID must be processed together)
            grouped_L1C_Instances = HLP_F.group_objects_by_attributes(L1C_Instances, 'scene_ID')

561
            L2A_resTiles = MAP(L2A_map, grouped_L1C_Instances, flatten_output=True)
562

563
            self.L2A_tiles = [obj for obj in L2A_resTiles if isinstance(obj, L2A_P.L2A_object)]
564
            self.failed_objects += [obj for obj in L2A_resTiles if isinstance(obj, failed_GMS_object) and
565
566
567
568
569
570
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L2A_tiles

    def L2B_processing(self):
        """
571
        Run Level 2B processing: spectral homogenization
572
        """
573
        if self.job.exec_L2BP[0]:
574
            self.logger.info('\n\n############# Level 2B Processing started - spectral homogenization ##############\n')
575

576
577
            if self.parallLev == 'scenes':
                # don't know if scenes makes sense in L2B processing because full objects are very big!
578
                """if newly processed L2A objects are present: merge them to scenes"""
579
580
                grouped_L2A_Tiles = HLP_F.group_objects_by_attributes(self.L2A_tiles, 'scene_ID')  # group results
                # reduce # will be too slow because it has to pickle back really large L2A_newObjects
581
                # L2A_newObjects  = MAP(HLP_F.merge_GMS_tiles_to_GMS_obj, grouped_L2A_Tiles)
582
                L2A_newObjects = [L2A_P.L2A_object().from_tiles(tileList) for tileList in grouped_L2A_Tiles]
583

584
                """combine newly and earlier processed L2A data"""
585
586
                L2A_DBObjects = self.get_DB_objects('L2B', self.L2A_tiles)
                L2A_Instances = L2A_newObjects + L2A_DBObjects  # combine newly and earlier processed L2A data
587

588
                L2B_resObjects = MAP(L2B_map, L2A_Instances)
589
590

            else:  # tiles
591
                L2A_newTiles = self.L2A_tiles  # tiles have the block size specified in L2A_map_2
592
593

                """combine newly and earlier processed L2A data"""
594
595
596
                blocksize = (2048, 2048)  # must be equal to the blocksize of L2A_newTiles specified in L2A_map_2
                L2A_newDBTiles = self.get_DB_objects('L2B', self.L2A_tiles, blocksize=blocksize)
                L2A_tiles = L2A_newTiles + L2A_newDBTiles
597

598
                L2B_tiles = MAP(L2B_map, L2A_tiles)
599
600

                grouped_L2B_Tiles = \
601
602
                    HLP_F.group_objects_by_attributes(L2B_tiles,
                                                      'scene_ID')  # group results # FIXME nötig an dieser Stelle?
603
604
                [L2B_tiles_group[0].delete_tempFiles() for L2B_tiles_group in grouped_L2B_Tiles]

605
                L2B_resObjects = [L2B_P.L2B_object().from_tiles(tileList) for tileList in grouped_L2B_Tiles]
606

607
            self.L2B_newObjects = [obj for obj in L2B_resObjects if isinstance(obj, L2B_P.L2B_object)]
608
            self.failed_objects += [obj for obj in L2B_resObjects if isinstance(obj, failed_GMS_object) and
609
610
611
612
613
614
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L2B_newObjects

    def L2C_processing(self):
        """
615
        Run Level 2C processing: accurracy assessment and MGRS tiling
616
        """
617
        # FIXME only parallelization_level == 'scenes' implemented
618
        if self.job.exec_L2CP[0]:
619
            self.logger.info('\n\n########## Level 2C Processing started - calculation of quality layers ###########\n')
620

621
            """combine newly and earlier processed L2A data"""
622
623
            L2B_DBObjects = self.get_DB_objects('L2C', self.L2B_newObjects, parallLev='scenes')
            L2B_Instances = self.L2B_newObjects + L2B_DBObjects  # combine newly and earlier processed L2A data
624

625
            L2C_resObjects = MAP(L2C_map, L2B_Instances, CPUs=8)  # FIXME 8 workers due to heavy IO
626
            # FIXME in Flink mode results are too big to be back-pickled
627
            self.L2C_newObjects = [obj for obj in L2C_resObjects if isinstance(obj, L2C_P.L2C_object)]
628
            self.failed_objects += [obj for obj in L2C_resObjects if isinstance(obj, failed_GMS_object) and
629
630
631
632
633
634
635
636
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L2C_newObjects

    def update_DB_job_record(self):
        """
        Update the database records of the current job (table 'jobs').
        """
637
        # TODO move this method to config.Job
638
639
        # update 'failed_sceneids' column of job record within jobs table
        sceneids_failed = list(set([obj.scene_ID for obj in self.failed_objects]))
640
641
        DB_T.update_records_in_postgreSQLdb(
            self.job.conn_database, 'jobs',
642
643
644
            {'failed_sceneids': sceneids_failed,  # update 'failed_sceneids' column
             'finishtime': self.job.end_time,  # add job finish timestamp
             'status': self.job.status},  # update 'job_status' column
645
            {'id': self.job.ID})
646

647
648
649
650
651
    def update_DB_job_statistics(self, usecase_datalist):
        """
        Update job statistics of the running job in the database.
        """
        # TODO move this method to config.Job
652
        already_updated_IDs = []
653
        for ds in usecase_datalist:
654
655
            if ds['proc_level'] is not None and ds['scene_ID'] not in already_updated_IDs:
                # update statistics column of jobs table
656
657
658
659
660
                DB_T.increment_decrement_arrayCol_in_postgreSQLdb(
                    self.job.conn_database, 'jobs', 'statistics', cond_dict={'id': self.job.ID},
                    idx_val2decrement=db_jobs_statistics_def['downloaded'],
                    idx_val2increment=db_jobs_statistics_def[ds['proc_level']])

661
662
663
                # avoid double updating in case of subsystems belonging to the same scene ID
                already_updated_IDs.append(ds['scene_ID'])

664
665
666
667
    def create_job_summary(self):
        """
        Create job success summary
        """
668
669
670

        # get objects with highest requested processing level
        highest_procL_Objs = []
671
        for pL in reversed(proc_chain):
672
673
            if getattr(self.job, 'exec_%sP' % pL)[0]:
                highest_procL_Objs = getattr(self, '%s_newObjects' % pL) if pL != 'L2A' else self.L2A_tiles
674
675
                break

676
677
678
679
680
        gms_objects2summarize = highest_procL_Objs + self.failed_objects
        if gms_objects2summarize:
            # create summaries
            detailed_JS, quick_JS = get_job_summary(gms_objects2summarize)
            detailed_JS.to_excel(os.path.join(self.job.path_job_logs, '%s_summary.xlsx' % self.job.ID))
681
            detailed_JS.to_csv(os.path.join(self.job.path_job_logs, '%s_summary.csv' % self.job.ID), sep='\t')
682
683
684
            self.logger.info('\nQUICK JOB SUMMARY (ID %s):\n' % self.job.ID + quick_JS.to_string())

            self.summary_detailed = detailed_JS
685
            self.summary_quick = quick_JS
686
687
688
689
690

        else:
            # TODO implement check if proc level with lowest procL has to be processed at all (due to job.exec_L1X)
            # TODO otherwise it is possible that get_job_summary receives an empty list
            self.logger.warning("Job summary skipped because get_job_summary() received an empty list of GMS objects.")
691
692
693
694
695
696

    def clear_lists_procObj(self):
        self.failed_objects = []
        self.L1A_newObjects = []
        self.L1B_newObjects = []
        self.L1C_newObjects = []
697
        self.L2A_tiles = []
698
        self.L2B_newObjects = []
699
700
701
702
703
        self.L2C_newObjects = []


def get_job_summary(list_GMS_objects):
    # get detailed job summary
704
705
    DJS_cols = ['GMS_object', 'scene_ID', 'entity_ID', 'satellite', 'sensor', 'subsystem', 'image_type', 'proc_level',
                'arr_shape', 'arr_pos', 'failedMapper', 'ExceptionType', 'ExceptionValue', 'ExceptionTraceback']
706
707
708
709
    DJS = DataFrame(columns=DJS_cols)
    DJS['GMS_object'] = list_GMS_objects

    for col in DJS_cols[1:]:
710
711
        def get_val(obj): return getattr(obj, col) if hasattr(obj, col) else None
        DJS[col] = list(DJS['GMS_object'].map(get_val))
712
713

    del DJS['GMS_object']
714
    DJS = DJS.sort_values(by=['satellite', 'sensor', 'entity_ID'])
715
716

    # get quick job summary
717
718
719
720
    QJS = DataFrame(columns=['satellite', 'sensor', 'count', 'proc_successfully', 'proc_failed'])
    all_sat, all_sen = zip(*[i.split('__') for i in (np.unique(DJS['satellite'] + '__' + DJS['sensor']))])
    QJS['satellite'] = all_sat
    QJS['sensor'] = all_sen
721
    # count objects with the same satellite/sensor/sceneid combination
722
723
    QJS['count'] = [len(DJS[(DJS['satellite'] == sat) & (DJS['sensor'] == sen)]['scene_ID'].unique())
                    for sat, sen in zip(all_sat, all_sen)]
724
    QJS['proc_successfully'] = [len(DJS[(DJS['satellite'] == sat) &
725
726
                                        (DJS['sensor'] == sen) &
                                        (DJS['failedMapper'].isnull())]['scene_ID'].unique())
727
                                for sat, sen in zip(all_sat, all_sen)]
728
    QJS['proc_failed'] = QJS['count'] - QJS['proc_successfully']
729
730
    QJS = QJS.sort_values(by=['satellite', 'sensor'])
    return DJS, QJS