L1B_P.py 37.1 KB
Newer Older
Daniel Scheffler's avatar
Daniel Scheffler committed
1
# -*- coding: utf-8 -*-
2
3
4
5
6
7
"""
Level 1B Processor:

Detection of global/local geometric displacements.
"""

Daniel Scheffler's avatar
Daniel Scheffler committed
8

9
import collections
10
import os
11
import time
12
import warnings
13
from datetime import datetime, timedelta
14
15

import numpy as np
16
from geopandas import GeoDataFrame
17
from shapely.geometry import box
18
import pytz
19
from typing import Union  # noqa F401  # flake8 issue
Daniel Scheffler's avatar
Daniel Scheffler committed
20

21
from arosics import COREG, DESHIFTER
22
from geoarray import GeoArray
23
24
25
26
27
28
from py_tools_ds.geo.coord_grid import is_coord_grid_equal
from py_tools_ds.geo.coord_calc import corner_coord_to_minmax
from py_tools_ds.geo.coord_trafo import reproject_shapelyGeometry, transform_any_prj
from py_tools_ds.geo.projection import prj_equal, EPSG2WKT, WKT2EPSG
from py_tools_ds.geo.vector.topology import get_overlap_polygon

29
from ..options.config import GMS_config as CFG
30
from ..model.gms_object import GMS_object
31
32
33
34
from .L1A_P import L1A_object
from ..misc import database_tools as DB_T
from ..misc import helper_functions as HLP_F
from ..misc import path_generator as PG
35
from ..misc.logging import GMS_logger
36
from ..misc.spatial_index_mediator import SpatialIndexMediator
37
from ..misc.definition_dicts import get_GMS_sensorcode, get_outFillZeroSaturated
38

39
__author__ = 'Daniel Scheffler'
40
41


42
class Scene_finder(object):
43
44
    """Scene_finder class to query the postgreSQL database to find a suitable reference scene for co-registration."""

45
    def __init__(self, src_boundsLonLat, src_AcqDate, src_prj, src_footprint_poly, sceneID_excluded=None,
46
                 min_overlap=20, min_cloudcov=0, max_cloudcov=20, plusminus_days=30, plusminus_years=10, logger=None):
47
48
49
50
51
52
53
54
55
56
57
58
59
        """Initialize Scene_finder.

        :param src_boundsLonLat:
        :param src_AcqDate:
        :param src_prj:
        :param src_footprint_poly:
        :param sceneID_excluded:
        :param min_overlap:         minimum overlap of reference scene in percent
        :param min_cloudcov:        minimum cloud cover of reference scene in percent
        :param max_cloudcov:        maximum cloud cover of reference scene in percent
        :param plusminus_days:      maximum time interval between target and reference scene in days
        :param plusminus_years:     maximum time interval between target and reference scene in years
        """
60
61
62
        self.boundsLonLat = src_boundsLonLat
        self.src_AcqDate = src_AcqDate
        self.src_prj = src_prj
63
        self.src_footprint_poly = src_footprint_poly
64
        self.sceneID_excluded = sceneID_excluded
65
66
67
68
69
        self.min_overlap = min_overlap
        self.min_cloudcov = min_cloudcov
        self.max_cloudcov = max_cloudcov
        self.plusminus_days = plusminus_days
        self.plusminus_years = plusminus_years
70
        self.logger = logger or GMS_logger('ReferenceSceneFinder')
71

72
        # get temporal constraints
73
        def add_years(dt, years): return dt.replace(dt.year + years) \
74
75
76
            if not (dt.month == 2 and dt.day == 29) else dt.replace(dt.year + years, 3, 1)
        self.timeStart = add_years(self.src_AcqDate, -plusminus_years)
        timeEnd = add_years(self.src_AcqDate, +plusminus_years)
77
78
        timeNow = datetime.utcnow().replace(tzinfo=pytz.UTC)
        self.timeEnd = timeEnd if timeEnd <= timeNow else timeNow
79

80
81
82
        self.possib_ref_scenes = None  # set by self.spatial_query()
        self.GDF_ref_scenes = GeoDataFrame()  # set by self.spatial_query()
        self.ref_scene = None
83

84
    def spatial_query(self, timeout=5):
85
86
87
88
        """Query the postgreSQL database to find possible reference scenes matching the specified criteria.

        :param timeout:     maximum query duration allowed (seconds)
        """
89
90
91
92
93
94
95
96
97
98
        SpIM = SpatialIndexMediator(host=CFG.spatial_index_server_host, port=CFG.spatial_index_server_port,
                                    timeout=timeout, retries=10)
        self.possib_ref_scenes = SpIM.getFullSceneDataForDataset(envelope=self.boundsLonLat,
                                                                 timeStart=self.timeStart,
                                                                 timeEnd=self.timeEnd,
                                                                 minCloudCover=self.min_cloudcov,
                                                                 maxCloudCover=self.max_cloudcov,
                                                                 datasetid=CFG.datasetid_spatial_ref,
                                                                 refDate=self.src_AcqDate,
                                                                 maxDaysDelta=self.plusminus_days)
99

100
101
102
        if self.possib_ref_scenes:
            # fill GeoDataFrame with possible ref scene parameters
            GDF = GeoDataFrame(self.possib_ref_scenes, columns=['object'])
103
104
105
106
            GDF['sceneid'] = list(GDF['object'].map(lambda scene: scene.sceneid))
            GDF['acquisitiondate'] = list(GDF['object'].map(lambda scene: scene.acquisitiondate))
            GDF['cloudcover'] = list(GDF['object'].map(lambda scene: scene.cloudcover))
            GDF['polyLonLat'] = list(GDF['object'].map(lambda scene: scene.polyLonLat))
107

108
109
            def LonLat2UTM(polyLL):
                return reproject_shapelyGeometry(polyLL, 4326, self.src_prj)
110

111
112
            GDF['polyUTM'] = list(GDF['polyLonLat'].map(LonLat2UTM))
            self.GDF_ref_scenes = GDF
113

114
115
116
    def _collect_refscene_metadata(self):
        """Collect some reference scene metadata needed for later filtering."""
        GDF = self.GDF_ref_scenes
117

118
119
120
121
122
123
124
125
126
127
128
        # get overlap parameter
        def get_OL_prms(poly): return get_overlap_polygon(poly, self.src_footprint_poly)

        GDF['overlapParams'] = list(GDF['polyLonLat'].map(get_OL_prms))
        GDF['overlap area'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap area']))
        GDF['overlap percentage'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap percentage']))
        GDF['overlap poly'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap poly']))
        del GDF['overlapParams']

        # get processing level of reference scenes
        procL = GeoDataFrame(
129
            DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes_proc', ['sceneid', 'proc_level'],
130
131
132
133
134
135
136
137
138
139
140
141
                                            {'sceneid': list(GDF.sceneid)}), columns=['sceneid', 'proc_level'])
        GDF = GDF.merge(procL, on='sceneid', how='left')
        GDF = GDF.where(GDF.notnull(), None)  # replace NaN values with None

        # get path of binary file
        def get_path_binary(GDF_row):
            return PG.path_generator(scene_ID=GDF_row['sceneid'], proc_level=GDF_row['proc_level']) \
                .get_path_imagedata() if GDF_row['proc_level'] else None
        GDF['path_ref'] = GDF.apply(lambda GDF_row: get_path_binary(GDF_row), axis=1)
        GDF['refDs_exists'] = list(GDF['path_ref'].map(lambda p: os.path.exists(p) if p else False))

        # check if a proper entity ID can be gathered from database
142
        eID = GeoDataFrame(DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes', ['id', 'entityid'],
143
144
145
146
147
148
149
150
                                                           {'id': list(GDF.sceneid)}), columns=['sceneid', 'entityid'])
        GDF = GDF.merge(eID, on='sceneid', how='left')
        self.GDF_ref_scenes = GDF.where(GDF.notnull(), None)

    def _filter_excluded_sceneID(self):
        """Filter reference scene with the same scene ID like the target scene."""
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
151
            self.logger.info('Excluding scene with the same ID like the target scene.')
152
            self.GDF_ref_scenes = GDF.loc[GDF['sceneid'] != self.sceneID_excluded]
153
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
154

155
    def _filter_by_overlap(self):
156
        """Filter all scenes with less spatial overlap than self.min_overlap."""
157
158
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
159
            self.logger.info('Excluding all scenes with less than %s percent spatial overlap.' % self.min_overlap)
160
            self.GDF_ref_scenes = GDF.loc[GDF['overlap percentage'] >= self.min_overlap]
161
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
162

163
    def _filter_by_proc_status(self):
164
        """Filter all scenes that have not been processed before according to proc. status (at least L1A is needed)."""
165
166
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
167
168
            self.logger.info('Exclude all scenes that have not been processed before according to processing status '
                             '(at least L1A is needed).')
169
            self.GDF_ref_scenes = GDF[GDF['proc_level'].notnull()]
170
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
171

172
    def _filter_by_dataset_existance(self):
173
        """Filter all scenes where no processed data can be found on fileserver."""
174
175
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
176
            self.logger.info('Excluding all scenes where no processed data have been found.')
177
            self.GDF_ref_scenes = GDF[GDF['refDs_exists']]
178
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
179

180
    def _filter_by_entity_ID_availability(self):
181
        """Filter all scenes where no proper entity ID can be found in the database (database errors)."""
182
183
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
184
185
            self.logger.info('Exclude all scenes where no proper entity ID can be found in the database '
                             '(database errors).')
186
            self.GDF_ref_scenes = GDF[GDF['entityid'].notnull()]
187
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
188

189
    def _filter_by_projection(self):
190
        """Filter all scenes that have a different projection than the target image."""
191
        GDF = self.GDF_ref_scenes[self.GDF_ref_scenes.refDs_exists]
192
193
        if not GDF.empty:
            # compare projections of target and reference image
194
195
            GDF['prj_equal'] = \
                list(GDF['path_ref'].map(lambda path_ref: prj_equal(self.src_prj, GeoArray(path_ref).prj)))
196

197
            self.logger.info('Exclude all scenes that have a different projection than the target image.')
198
            self.GDF_ref_scenes = GDF[GDF['prj_equal']]
199
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
200

201
202
    def choose_ref_scene(self):
        """Choose reference scene with minimum cloud cover and maximum overlap."""
203
204
205
        if self.possib_ref_scenes:
            # First, collect some relavant reference scene metadata
            self._collect_refscene_metadata()
206

207
208
209
210
211
212
213
            # Filter possible scenes by running all filter functions
            self._filter_excluded_sceneID()
            self._filter_by_overlap()
            self._filter_by_proc_status()
            self._filter_by_dataset_existance()
            self._filter_by_entity_ID_availability()
            self._filter_by_projection()
214

215
216
217
218
219
        # Choose the reference scene out of the filtered DataFrame
        if not self.GDF_ref_scenes.empty:
            GDF = self.GDF_ref_scenes
            GDF = GDF[GDF['cloudcover'] == GDF['cloudcover'].min()]
            GDF = GDF[GDF['overlap percentage'] == GDF['overlap percentage'].max()]
220

221
222
223
224
225
            if not GDF.empty:
                GDF_res = GDF.iloc[0]
                return ref_Scene(GDF_res)
        else:
            return None
226

227

228
229
class ref_Scene:
    def __init__(self, GDF_record):
230
231
232
        self.scene_ID = int(GDF_record['sceneid'])
        self.entity_ID = GDF_record['entityid']
        self.AcqDate = GDF_record['acquisitiondate']
233
234
        self.cloudcover = GDF_record['cloudcover']
        self.polyLonLat = GDF_record['polyLonLat']
235
        self.polyUTM = GDF_record['polyUTM']
236
        self.proc_level = GDF_record['proc_level']
237
        self.filePath = GDF_record['path_ref']
238
239
240
241
242


class L1B_object(L1A_object):
    def __init__(self, L1A_obj=None):

243
        super(L1B_object, self).__init__()
244
245
246

        # set defaults
        self._spatRef_available = None
247
248
        self.spatRef_scene = None  # set by self.get_spatial_reference_scene()
        self.deshift_results = collections.OrderedDict()
249
250
251
252
253
254

        if L1A_obj:
            # populate attributes
            [setattr(self, key, value) for key, value in L1A_obj.__dict__.items()]

        self.proc_level = 'L1B'
255
        self.proc_status = 'initialized'
256
257
258

    @property
    def spatRef_available(self):
259
        if self._spatRef_available is not None:
260
261
262
263
264
265
266
267
268
269
            return self._spatRef_available
        else:
            self.get_spatial_reference_scene()
            return self._spatRef_available

    @spatRef_available.setter
    def spatRef_available(self, spatRef_available):
        self._spatRef_available = spatRef_available

    def get_spatial_reference_scene(self):
270
        boundsLonLat = corner_coord_to_minmax(self.trueDataCornerLonLat)
271
        footprint_poly = HLP_F.CornerLonLat_to_shapelyPoly(self.trueDataCornerLonLat)
272
        RSF = Scene_finder(boundsLonLat, self.acq_datetime, self.meta_odict['coordinate system string'],
273
274
275
276
277
                           footprint_poly, self.scene_ID,
                           min_overlap=CFG.spatial_ref_min_overlap,
                           min_cloudcov=CFG.spatial_ref_min_cloudcov,
                           max_cloudcov=CFG.spatial_ref_max_cloudcov,
                           plusminus_days=CFG.spatial_ref_plusminus_days,
278
279
                           plusminus_years=CFG.spatial_ref_plusminus_years,
                           logger=self.logger)
280
281
282
283
284
285
286

        # run spatial query
        self.logger.info('Querying database in order to find a suitable reference scene for co-registration.')
        RSF.spatial_query(timeout=5)
        if RSF.possib_ref_scenes:
            self.logger.info('Query result: %s reference scenes with matching metadata.' % len(RSF.possib_ref_scenes))

287
288
289
290
291
292
293
294
295
296
297
            # try to get a spatial reference scene by applying some filter criteria
            self.spatRef_scene = RSF.choose_ref_scene()  # type: Union[ref_Scene, None]
            if self.spatRef_scene:
                self.spatRef_available = True
                self.logger.info('Found a suitable reference image for coregistration: scene ID %s (entity ID %s).'
                                 % (self.spatRef_scene.scene_ID, self.spatRef_scene.entity_ID))
            else:
                self.spatRef_available = False
                self.logger.warning('No scene fulfills all requirements to serve as spatial reference for scene %s '
                                    '(entity ID %s). Coregistration impossible.' % (self.scene_ID, self.entity_ID))

298
        else:
299
            self.logger.warning('Spatial query returned no matches. Coregistration impossible.')
300
            self.spatRef_available = False
301
302

    def _get_reference_image_params_pgSQL(self):
303
        # TODO implement earlier version of this function as a backup for SpatialIndexMediator
304
305
        """postgreSQL query: get IDs of overlapping scenes and select most suitable scene_ID
            (with respect to DGM, cloud cover"""
306
307
        warnings.warn('_get_reference_image_params_pgSQL is deprecated an will not work anymore.', DeprecationWarning)

308
309
        # vorab-check anhand wolkenmaske, welche region von im2shift überhaupt für shift-corr tauglich ist
        # -> diese region als argument in postgresql abfrage
310
        # scene_ID            = 14536400 # LE71510322000093SGS00 im2shift
311

312
        # set query conditions
313
314
        min_overlap = 20  # %
        max_cloudcov = 20  # %
315
        plusminus_days = 30
316
317
        AcqDate = self.im2shift_objDict['acquisition_date']
        date_minmax = [AcqDate - timedelta(days=plusminus_days), AcqDate + timedelta(days=plusminus_days)]
318
        dataset_cond = 'datasetid=%s' % CFG.datasetid_spatial_ref
319
320
321
322
323
        cloudcov_cond = 'cloudcover < %s' % max_cloudcov
        # FIXME cloudcover noch nicht für alle scenes im proc_level METADATA verfügbar
        dayrange_cond = "(EXTRACT(MONTH FROM scenes.acquisitiondate), EXTRACT(DAY FROM scenes.acquisitiondate)) " \
                        "BETWEEN (%s, %s) AND (%s, %s)" \
                        % (date_minmax[0].month, date_minmax[0].day, date_minmax[1].month, date_minmax[1].day)
324
325
        # TODO weitere Kriterien einbauen!

326
327
        def query_scenes(condlist):
            return DB_T.get_overlapping_scenes_from_postgreSQLdb(
328
                CFG.conn_database,
329
330
331
332
333
                table='scenes',
                tgt_corners_lonlat=self.trueDataCornerLonLat,
                conditions=condlist,
                add_cmds='ORDER BY scenes.cloudcover ASC',
                timeout=30000)
334
335
        conds_descImportance = [dataset_cond, cloudcov_cond, dayrange_cond]

336
        self.logger.info('Querying database in order to find a suitable reference scene for co-registration.')
337

338
        count, filt_overlap_scenes = 0, []
339
        while not filt_overlap_scenes:
340
341
342
343
            if count == 0:
                # search within already processed scenes
                # das ist nur Ergebnis aus scenes_proc
                # -> dort liegt nur eine referenz, wenn die szene schon bei CFG.job-Beginn in Datensatzliste drin war
344
                res = DB_T.get_overlapping_scenes_from_postgreSQLdb(
345
                    CFG.conn_database,
346
                    tgt_corners_lonlat=self.trueDataCornerLonLat,
347
                    conditions=['datasetid=%s' % CFG.datasetid_spatial_ref],
348
349
                    add_cmds='ORDER BY scenes.cloudcover ASC',
                    timeout=25000)
350
                filt_overlap_scenes = self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], 20.)
351

352
            else:
353
354
355
                # search within complete scenes table using less filter criteria with each run
                # TODO: Daniels Index einbauen, sonst  bei wachsender Tabellengröße evtl. irgendwann zu langsam
                res = query_scenes(conds_descImportance)
356
                filt_overlap_scenes = self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], min_overlap)
357

358
                if len(conds_descImportance) > 1:  # FIXME anderer Referenzsensor?
359
360
361
362
                    del conds_descImportance[-1]
                else:  # reduce min_overlap to 10 percent if there are overlapping scenes
                    if res:
                        min_overlap = 10
363
364
                        filt_overlap_scenes = \
                            self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], min_overlap)
365
366

                    # raise warnings if no match found
367
                    if not filt_overlap_scenes:
368
369
                        if not res:
                            warnings.warn('No reference scene found for %s (scene ID %s). Coregistration of this scene '
370
                                          'failed.' % (self.baseN, self.scene_ID))
371
372
373
                        else:
                            warnings.warn('Reference scenes for %s (scene ID %s) have been found but none has more '
                                          'than %s percent overlap. Coregistration of this scene failed.'
374
                                          % (self.baseN, self.scene_ID, min_overlap))
375
                        break
376
            count += 1
377
378
379
380

        if filt_overlap_scenes:
            ref_available = False
            for count, sc in enumerate(filt_overlap_scenes):
381
                if count == 2:  # FIXME Abbuch schon bei 3. Szene?
382
                    warnings.warn('No reference scene for %s (scene ID %s) available. '
383
                                  'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
384
385
386
                    break

                # start download of scene data not available and start L1A processing
387
                def dl_cmd(scene_ID): print('%s %s %s' % (
388
389
                    CFG.java_commands['keyword'].strip(),  # FIXME CFG.java_commands is deprecated
                    CFG.java_commands["value_download"].strip(), scene_ID))
390

391
                path = PG.path_generator(scene_ID=sc['scene_ID']).get_path_imagedata()
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
392

393
394
395
396
397
398
399
400
                if not os.path.exists(path):
                    # add scene 2 download to scenes_jobs.missing_scenes

                    # print JAVA download command
                    t_dl_start = time.time()
                    dl_cmd(sc['scene_ID'])

                    # check if scene is downloading
401
402
                    download_start_timeout = 5  # seconds
                    # set timout for external processing
403
                    # -> DEPRECATED BECAUSE CREATION OF EXTERNAL CFG WITHIN CFG IS NOT ALLOWED
404
                    processing_timeout = 5  # seconds # FIXME increase timeout if processing is really started
405
406
407
                    proc_level = None
                    while True:
                        proc_level_chk = DB_T.get_info_from_postgreSQLdb(
408
                            CFG.conn_database, 'scenes', ['proc_level'], {'id': sc['scene_ID']})[0][0]
409
                        if proc_level != proc_level_chk:
410
                            print('Reference scene %s, current processing level: %s' % (sc['scene_ID'], proc_level_chk))
411
                        proc_level = proc_level_chk
412
413
                        if proc_level_chk in ['SCHEDULED', 'METADATA'] and \
                           time.time() - t_dl_start >= download_start_timeout:
414
                            warnings.warn('Download of reference scene %s (entity ID %s) timed out. '
415
                                          'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
416
417
                            break
                        if proc_level_chk == 'L1A':
418
419
420
421
                            ref_available = True
                            break
                        elif proc_level_chk == 'DOWNLOADED' and time.time() - t_dl_start >= processing_timeout:
                            # proc_level='DOWNLOADED' but scene has not been processed
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
422
423
424
                            warnings.warn('L1A processing of reference scene %s (entity ID %s) timed out. '
                                          'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
                            break
425
                            # DB_T.set_info_in_postgreSQLdb(CFG.conn_database,'scenes',
426
                            #                             {'proc_level':'METADATA'},{'id':sc['scene_ID']})
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
427

428
429
430
431
432
433
434
                        time.sleep(5)
                else:
                    ref_available = True

                if not ref_available:
                    continue
                else:
435
436
                    self.path_imref = path
                    self.imref_scene_ID = sc['scene_ID']
437
                    self.imref_footprint_poly = sc['scene poly']
438
439
440
441
                    self.overlap_poly = sc['overlap poly']
                    self.overlap_percentage = sc['overlap percentage']
                    self.overlap_area = sc['overlap area']

442
                    query_res = DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes', ['entityid'],
443
444
445
                                                                {'id': self.imref_scene_ID}, records2fetch=1)
                    assert query_res != [], 'No entity-ID found for scene number %s' % self.imref_scene_ID
                    self.imref_entity_ID = query_res[0][0]  # [('LC81510322013152LGN00',)]
446
                    break
447
        self.logger.close()
448

449
    def _sceneIDList_to_filt_overlap_scenes(self, sceneIDList, min_overlap):
450
451
452
        """find reference scenes that cover at least 20% of the scene with the given ID
        ONLY FIRST 50 scenes are considered"""

453
454
455
        # t0 = time.time()
        dict_sceneID_poly = [{'scene_ID': ID, 'scene poly': HLP_F.scene_ID_to_shapelyPolygon(ID)}
                             for ID in sceneIDList]  # always returns LonLot polygons
456
457

        # get overlap polygons and their parameters. result: [{overlap poly, overlap percentage, overlap area}]
458
459
        for dic in dict_sceneID_poly:  # input: dicts {scene_ID, ref_poly}
            dict_overlap_poly_params = get_overlap_polygon(dic['scene poly'], self.arr.footprint_poly)
460
            dic.update(dict_overlap_poly_params)  # adds {overlap poly, overlap percentage, overlap area}
461
        # print('polygon creation time', time.time()-t0)
462
463
464
465
466
467
468
469

        # filter those scene_IDs out where overlap percentage is below 20%
        if min_overlap:
            filt_overlap_scenes = [scene for scene in dict_sceneID_poly if scene['overlap percentage'] >= min_overlap]
        else:
            filt_overlap_scenes = dict_sceneID_poly

        return filt_overlap_scenes
470

471
    def get_opt_bands4matching(self, target_cwlPos_nm=550):
472
473
474
475
        """Automatically determines the optimal bands used für fourier shift theorem matching

        :param target_cwlPos_nm:   the desired wavelength used for matching
        """
476
477
478
479
        # get GMS_object for reference scene
        path_gmsFile = PG.path_generator(scene_ID=self.spatRef_scene.scene_ID).get_path_gmsfile()
        ref_obj = GMS_object().from_disk((path_gmsFile, ['cube', None]))

480
        # get spectral characteristics
481
482
        ref_cwl, shift_cwl = [[float(i) for i in GMS_obj.meta_odict['wavelength']] for GMS_obj in [ref_obj, self]]
        ref_fwhm, shift_fwhm = [[float(i) for i in GMS_obj.meta_odict['bandwidths']] for GMS_obj in [ref_obj, self]]
483
484

        # exclude cirrus/oxygen band of Landsat-8/Sentinel-2
485
        shift_bbl, ref_bbl = [False] * len(shift_cwl), [False] * len(ref_cwl)  # bad band lists
486
487
488
489
490
491
492
        for GMS_obj, s_r, bbl in zip([self, ref_obj], ['shift', 'ref'], [shift_bbl, ref_bbl]):
            GMS_obj.GMS_identifier['logger'] = None  # set a dummy value in order to avoid Exception
            sensorcode = get_GMS_sensorcode(GMS_obj.GMS_identifier)
            if sensorcode in ['LDCM', 'S2A', 'S2B'] and '9' in GMS_obj.LayerBandsAssignment:
                bbl[GMS_obj.LayerBandsAssignment.index('9')] = True
            if sensorcode in ['S2A', 'S2B'] and '10' in GMS_obj.LayerBandsAssignment:
                bbl[GMS_obj.LayerBandsAssignment.index('10')] = True
493

494
        # cwl_overlap = (max(min(shift_cwl),min(ref_cwl)),  min(max(shift_cwl),max(ref_cwl))) # -> (min wvl, max wvl)
495
        # find matching band of reference image for each band of image to be shifted
496
497
498
499
        match_dic = collections.OrderedDict()
        for idx, cwl, fwhm in zip(range(len(shift_cwl)), shift_cwl, shift_fwhm):
            if shift_bbl[idx]:
                continue  # skip cwl if it is declared as bad band above
500
501
502

            def is_inside(r_cwl, s_cwl, s_fwhm): return s_cwl - s_fwhm / 2 < r_cwl < s_cwl + s_fwhm / 2

503
504
            matching_r_cwls = [r_cwl for i, r_cwl in enumerate(ref_cwl) if
                               is_inside(r_cwl, cwl, fwhm) and not ref_bbl[i]]
505
506
            if matching_r_cwls:
                match_dic[cwl] = matching_r_cwls[0] if len(matching_r_cwls) else \
507
                    matching_r_cwls[np.abs(np.array(matching_r_cwls) - cwl).argmin()]
508
509
510
511
512

        # set bands4 match based on the above results
        poss_cwls = [cwl for cwl in shift_cwl if cwl in match_dic]
        if poss_cwls:
            if not target_cwlPos_nm:
513
514
515
516
517
518
519
                shift_band4match = shift_cwl.index(poss_cwls[0]) + 1  # first possible shift band
                ref_band4match = ref_cwl.index(match_dic[poss_cwls[0]]) + 1  # matching reference band
            else:  # target_cwlPos is given
                closestWvl_to_target = poss_cwls[np.abs(np.array(poss_cwls) - target_cwlPos_nm).argmin()]
                shift_band4match = shift_cwl.index(closestWvl_to_target) + 1  # the shift band closest to target
                ref_band4match = ref_cwl.index(match_dic[closestWvl_to_target]) + 1  # matching ref
        else:  # all reference bands are outside of shift-cwl +- fwhm/2
520
521
            self.logger.warning('Optimal bands for matching could not be automatically determined. '
                                'Choosing first band of each image.')
522
523
            shift_band4match = 1
            ref_band4match = 1
524

525
526
527
528
        self.logger.info(
            'Target band for matching:     %s (%snm)' % (shift_band4match, shift_cwl[shift_band4match - 1]))
        self.logger.info(
            'Reference band for matching: %s (%snm)' % (ref_band4match, ref_cwl[ref_band4match - 1]))
529
530
531

        return ref_band4match, shift_band4match

532
    def compute_global_shifts(self):
533
534
535
536
537
        spatIdxSrv_status = os.environ['GMS_SPAT_IDX_SRV_STATUS'] if 'GMS_SPAT_IDX_SRV_STATUS' in os.environ else True

        if spatIdxSrv_status == 'unavailable':
            self.logger.warning('Coregistration skipped due to unavailable Spatial Index Mediator Server!"')

538
        elif CFG.skip_coreg:
539
            self.logger.warning('Coregistration skipped according to user configuration.')
540

541
        elif self.coreg_needed and self.spatRef_available:
542
543
            geoArr_ref = GeoArray(self.spatRef_scene.filePath)
            geoArr_shift = GeoArray(self.arr)
544
            r_b4match, s_b4match = self.get_opt_bands4matching(target_cwlPos_nm=CFG.coreg_band_wavelength_for_matching)
545
546
547
548
549
            coreg_kwargs = dict(
                r_b4match=r_b4match,
                s_b4match=s_b4match,
                align_grids=True,  # FIXME not needed here
                match_gsd=True,  # FIXME not needed here
550
                max_shift=CFG.coreg_max_shift_allowed,
Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
551
                ws=CFG.coreg_window_size,
552
553
554
555
556
557
558
559
560
                data_corners_ref=[[x, y] for x, y in self.spatRef_scene.polyUTM.convex_hull.exterior.coords],
                data_corners_tgt=[transform_any_prj(EPSG2WKT(4326), self.meta_odict['coordinate system string'], x, y)
                                  for x, y in HLP_F.reorder_CornerLonLat(self.trueDataCornerLonLat)],
                nodata=(get_outFillZeroSaturated(geoArr_ref.dtype)[0],
                        get_outFillZeroSaturated(geoArr_shift.dtype)[0]),
                ignore_errors=True,
                v=False,
                q=True
            )
561
562
563
564

            COREG_obj = COREG(geoArr_ref, geoArr_shift, **coreg_kwargs)
            COREG_obj.calculate_spatial_shifts()

565
566
567
568
            self.coreg_info.update(
                COREG_obj.coreg_info)  # no clipping to trueCornerLonLat until here -> only shift correction
            self.coreg_info.update({'reference scene ID': self.spatRef_scene.scene_ID})
            self.coreg_info.update({'reference entity ID': self.spatRef_scene.entity_ID})
569
            self.coreg_info.update({'shift_reliability': COREG_obj.shift_reliability})
570
571

            if COREG_obj.success:
572
                self.coreg_info['success'] = True
573
                self.logger.info("Calculated map shifts (X,Y): %s / %s"
574
575
                                 % (COREG_obj.x_shift_map,
                                    COREG_obj.y_shift_map))  # FIXME direkt in calculate_spatial_shifts loggen
576
                self.logger.info("Reliability of calculated shift: %.1f percent" % COREG_obj.shift_reliability)
577

578
579
580
            else:
                # TODO add database entry with error hint
                [self.logger.error('ERROR during coregistration of scene %s (entity ID %s):\n%s'
581
                                   % (self.scene_ID, self.entity_ID, err)) for err in COREG_obj.tracked_errors]
582

583
        else:
584
            if self.coreg_needed:
585
586
                self.logger.warning('Coregistration skipped because no suitable reference scene is available or '
                                    'spatial query failed.')
587
588
            else:
                self.logger.info('Coregistration of scene %s (entity ID %s) skipped because target dataset ID equals '
589
590
                                 'reference dataset ID.' % (self.scene_ID, self.entity_ID))

591
592
    def correct_spatial_shifts(self, cliptoextent=True, clipextent=None, clipextent_prj=None, v=False):
        # type: (bool, list, any, bool) -> None
593
        """Corrects the spatial shifts calculated by self.compute_global_shifts().
594
595
596
597
598
599
600
601
602

        :param cliptoextent:    whether to clip the output to the given extent
        :param clipextent:      list of XY-coordinate tuples giving the target extent (if not given and cliptoextent is
                                True, the 'trueDataCornerLonLat' attribute of the GMS object is used
        :param clipextent_prj:  WKT projection string or EPSG code of the projection for the coordinates in clipextent
        :param v:
        :return:
        """

603
604
        # cliptoextent is automatically True if an extent is given
        cliptoextent = cliptoextent if not clipextent else True
605

606
607
        if cliptoextent or self.resamp_needed or (self.coreg_needed and self.coreg_info['success']):

608
            # get target bounds # TODO implement boxObj call instead here
609
            if not clipextent:
610
611
                trueDataCornerUTM = [transform_any_prj(EPSG2WKT(4326), self.MetaObj.projection, x, y)
                                     for x, y in self.trueDataCornerLonLat]
612
                xmin, xmax, ymin, ymax = corner_coord_to_minmax(trueDataCornerUTM)
613
                mapBounds = box(xmin, ymin, xmax, ymax).bounds
614
615
616
617
618
619
620
621
            else:
                assert clipextent_prj, \
                    "'clipextent_prj' must be given together with 'clipextent'. Received only 'clipextent'."
                clipextent_UTM = clipextent if prj_equal(self.MetaObj.projection, clipextent_prj) else \
                    [transform_any_prj(clipextent_prj, self.MetaObj.projection, x, y) for x, y in clipextent]
                xmin, xmax, ymin, ymax = corner_coord_to_minmax(clipextent_UTM)
                mapBounds = box(xmin, ymin, xmax, ymax).bounds

622
            # correct shifts and clip to extent
623
624
            # ensure self.masks exists (does not exist in case of inmem_serialization mode because
            # then self.fill_from_disk() is skipped)
625
626
627
            if not hasattr(self, 'masks') or self.masks is None:
                self.build_combined_masks_array()  # creates self.masks and self.masks_meta

628
629
630
            # exclude self.mask_nodata, self.mask_clouds from warping
            del self.mask_nodata, self.mask_clouds

631
632
633
            attributes2deshift = [attrname for attrname in
                                  ['arr', 'masks', 'dem', 'ac_errors', 'mask_clouds_confidence']
                                  if getattr(self, '_%s' % attrname) is not None]
634
            for attrname in attributes2deshift:
635
                geoArr = getattr(self, attrname)
636
637

                # do some logging
638
639
                if self.coreg_needed:
                    if self.coreg_info['success']:
640
641
                        self.logger.info("Correcting spatial shifts for attribute '%s'..." % attrname)
                    elif cliptoextent and is_coord_grid_equal(
642
                         geoArr.gt, CFG.spatial_ref_gridx, CFG.spatial_ref_gridy):
643
                        self.logger.info("Attribute '%s' has only been clipped to it's extent because no valid "
644
645
                                         "shifts have been detected and the pixel grid equals the target grid."
                                         % attrname)
646
647
                    elif self.resamp_needed:
                        self.logger.info("Resampling attribute '%s' to target grid..." % attrname)
648
649
650
651
                elif self.resamp_needed:
                    self.logger.info("Resampling attribute '%s' to target grid..." % attrname)

                # correct shifts
652
                DS = DESHIFTER(geoArr, self.coreg_info,
653
                               target_xyGrid=[CFG.spatial_ref_gridx, CFG.spatial_ref_gridy],
654
655
656
                               cliptoextent=cliptoextent,
                               clipextent=mapBounds,
                               align_grids=True,
657
                               resamp_alg='nearest' if attrname == 'masks' else CFG.spatial_resamp_alg,
658
                               CPUs=None if CFG.allow_subMultiprocessing else 1,
659
660
661
                               progress=True if v else False,
                               q=True,
                               v=v)
662
663
664
                DS.correct_shifts()

                # update coreg_info
665
666
                if attrname == 'arr':
                    self.coreg_info['is shifted'] = DS.is_shifted
667
                    self.coreg_info['is resampled'] = DS.is_resampled
668

669
                # update geoinformations and array shape related attributes
670
671
672
                self.logger.info("Updating geoinformations of '%s' attribute..." % attrname)
                if attrname == 'arr':
                    self.meta_odict['map info'] = DS.updated_map_info
673
                    self.meta_odict['coordinate system string'] = EPSG2WKT(WKT2EPSG(DS.updated_projection))
674
                    self.shape_fullArr = DS.arr_shifted.shape
675
676
                    self.meta_odict['lines'], self.meta_odict['samples'] = DS.arr_shifted.shape[:2]
                else:
677
678
                    self.masks_meta['map info'] = DS.updated_map_info
                    self.masks_meta['coordinate system string'] = EPSG2WKT(WKT2EPSG(DS.updated_projection))
679
680
                    self.masks_meta['lines'], self.masks_meta['samples'] = DS.arr_shifted.shape[:2]

681
682
                    # NOTE: mask_nodata and mask_clouds are updated later by L2A_map mapper function (module pipeline)

683
                # update the GeoArray instance without loosing its inherent metadata (nodata, ...)
684
685
686
                geoArr.arr, geoArr.gt, geoArr.prj = \
                    DS.GeoArray_shifted.arr, DS.GeoArray_shifted.gt, DS.GeoArray_shifted.prj
                # setattr(self,attrname, DS.GeoArray_shifted) # NOTE: don't set array earlier because setter will also
687
688
                #                                            # update arr.gt/.prj/.nodata from meta_odict

689
            self.resamp_needed = False
690
            self.coreg_needed = False
691

692
693
            # recreate self.masks_nodata and self.mask_clouds from self.masks
            self.mask_nodata = self.mask_nodata
694
695
            self.mask_clouds = self.mask_clouds
            # FIXME move functionality of self.masks only to output writer and remove self.masks completely