L1C_P.py 48.4 KB
Newer Older
Daniel Scheffler's avatar
Daniel Scheffler committed
1
# -*- coding: utf-8 -*-
Daniel Scheffler's avatar
Daniel Scheffler committed
2
"""Level 1C Processor:   Atmospheric correction of TOA-reflectance data."""
Daniel Scheffler's avatar
Daniel Scheffler committed
3

4
import warnings
5
6
import re
import logging
7
import dill
8
import traceback
Daniel Scheffler's avatar
Daniel Scheffler committed
9
from typing import List  # noqa F401  # flake8 issue
10
11
from time import time
import os
12
import timeout_decorator
13

14
import numpy as np
15
16
from ecmwfapi.api import APIKeyFetchError
from ecmwfapi.api import APIException as ECMWFAPIException
Daniel Scheffler's avatar
Daniel Scheffler committed
17

18
from geoarray import GeoArray
19
from py_tools_ds.geo.map_info import mapinfo2geotransform
20

21
from ..options.config import GMS_config as CFG
22
from . import geoprocessing as GEOP
Daniel Scheffler's avatar
Daniel Scheffler committed
23
from .L1B_P import L1B_object
24
from ..model.metadata import get_LayerBandsAssignment
25
from ..misc.definition_dicts import get_outFillZeroSaturated, proc_chain, get_mask_classdefinition
26
from ..misc.locks import MultiSlotLock
27
from ..io.input_reader import SRF
28
# from .cloud_masking import Cloud_Mask_Creator  # circular dependencies
29

30
from sicor.sicor_ac import ac_gms
31
from sicor.sensors import RSImage
32
from sicor.Mask import S2Mask
33
from sicor.ECMWF import download_variables
34

Daniel Scheffler's avatar
Daniel Scheffler committed
35
36
__author__ = 'Daniel Scheffler'

Daniel Scheffler's avatar
Daniel Scheffler committed
37

38
class L1C_object(L1B_object):
39
    def __init__(self, L1B_obj=None):
40
        super(L1C_object, self).__init__()
41
42
43

        if L1B_obj:
            # populate attributes
Daniel Scheffler's avatar
Daniel Scheffler committed
44
            [setattr(self, key, value) for key, value in L1B_obj.__dict__.items()]
45

46
47
48
49
50
51
52
53
        # private attributes
        self._VZA_arr = None
        self._VAA_arr = None
        self._SZA_arr = None
        self._SAA_arr = None
        self._RAA_arr = None
        self._lonlat_arr = None

54
        self.proc_level = 'L1C'
55
        self.proc_status = 'initialized'
56

57
58
59
    @property
    def lonlat_arr(self):
        """Calculates pixelwise 2D-array with longitude and latitude coordinates.
60

61
62
63
64
65
66
        :return:
        """
        if self._lonlat_arr is None:
            self.logger.info('Calculating LonLat array...')
            self._lonlat_arr = \
                GEOP.get_lonlat_coord_array(self.shape_fullArr, self.arr_pos,
67
68
                                            mapinfo2geotransform(self.MetaObj.map_info),
                                            self.MetaObj.projection,
Daniel Scheffler's avatar
Daniel Scheffler committed
69
70
                                            meshwidth=10,  # for faster processing
                                            nodata_mask=None,  # dont overwrite areas outside the image with nodata
71
72
                                            outFill=get_outFillZeroSaturated(np.float32)[0])[0]
        return self._lonlat_arr
73

74
75
76
    @lonlat_arr.setter
    def lonlat_arr(self, lonlat_arr):
        self._lonlat_arr = lonlat_arr
77

78
79
80
81
    @lonlat_arr.deleter
    def lonlat_arr(self):
        self._lonlat_arr = None

82
83
84
85
86
87
88
89
    @property
    def VZA_arr(self):
        """Get viewing zenith angle.

        :return:
        """
        if self._VZA_arr is None:
            self.logger.info('Calculating viewing zenith array...')
90
            if self.MetaObj.ViewingAngle_arrProv:
91
                # Sentinel-2
92
93
94
95
96
97
                self._VZA_arr = GEOP.adjust_acquisArrProv_to_shapeFullArr(
                    {k: v.tolist() for k, v in self.MetaObj.ViewingAngle_arrProv.items()},
                    self.shape_fullArr,
                    meshwidth=10,  # for faster processing
                    subset=None,
                    bandwise=0)
98
99
            else:
                self._VZA_arr = GEOP.calc_VZA_array(self.shape_fullArr, self.arr_pos, self.fullSceneCornerPos,
100
101
                                                    float(self.MetaObj.ViewingAngle),
                                                    float(self.MetaObj.FOV),
102
                                                    self.logger,
Daniel Scheffler's avatar
Daniel Scheffler committed
103
                                                    nodata_mask=None,  # dont overwrite areas outside image with nodata
104
                                                    outFill=get_outFillZeroSaturated(np.float32)[0],
Daniel Scheffler's avatar
Daniel Scheffler committed
105
                                                    meshwidth=10)  # for faster processing
106
107
108
109
110
        return self._VZA_arr

    @VZA_arr.setter
    def VZA_arr(self, VZA_arr):
        self._VZA_arr = VZA_arr
111

112
113
114
115
    @VZA_arr.deleter
    def VZA_arr(self):
        self._VZA_arr = None

116
117
118
    @property
    def VAA_arr(self):
        """Get viewing azimuth angle.
119

120
121
122
123
        :return:
        """
        if self._VAA_arr is None:
            self.logger.info('Calculating viewing azimuth array...')
124
            if self.MetaObj.IncidenceAngle_arrProv:
125
                # Sentinel-2
126
127
128
129
130
131
                self._VAA_arr = GEOP.adjust_acquisArrProv_to_shapeFullArr(
                    {k: v.tolist() for k, v in self.MetaObj.IncidenceAngle_arrProv.items()},
                    self.shape_fullArr,
                    meshwidth=10,  # for faster processing
                    subset=None,
                    bandwise=0)
132
133
134
            else:
                # only a mean VAA is available
                if self.VAA_mean is None:
135
136
                    self.VAA_mean = \
                        GEOP.calc_VAA_using_fullSceneCornerLonLat(self.fullSceneCornerLonLat, self.MetaObj.orbitParams)
137
138
                    assert isinstance(self.VAA_mean, float)

139
                self._VAA_arr = np.full(self.VZA_arr.shape, self.VAA_mean, np.float32)
140
141
142
143
144
        return self._VAA_arr

    @VAA_arr.setter
    def VAA_arr(self, VAA_arr):
        self._VAA_arr = VAA_arr
145

146
147
148
149
    @VAA_arr.deleter
    def VAA_arr(self):
        self._VAA_arr = None

150
151
152
153
154
155
156
157
158
159
160
    @property
    def SZA_arr(self):
        """Get solar zenith angle.

        :return:
        """
        if self._SZA_arr is None:
            self.logger.info('Calculating solar zenith and azimuth arrays...')
            self._SZA_arr, self._SAA_arr = \
                GEOP.calc_SZA_SAA_array(
                    self.shape_fullArr, self.arr_pos,
161
162
                    self.MetaObj.AcqDate,
                    self.MetaObj.AcqTime,
163
164
                    self.fullSceneCornerPos,
                    self.fullSceneCornerLonLat,
165
                    self.MetaObj.overpassDurationSec,
166
167
168
169
                    self.logger,
                    meshwidth=10,
                    nodata_mask=None,  # dont overwrite areas outside the image with nodata
                    outFill=get_outFillZeroSaturated(np.float32)[0],
170
171
                    accurracy=CFG.SZA_SAA_calculation_accurracy,
                    lonlat_arr=self.lonlat_arr if CFG.SZA_SAA_calculation_accurracy == 'fine' else None)
172
173
174
175
176
177
        return self._SZA_arr

    @SZA_arr.setter
    def SZA_arr(self, SZA_arr):
        self._SZA_arr = SZA_arr

178
179
180
181
    @SZA_arr.deleter
    def SZA_arr(self):
        self._SZA_arr = None

182
183
184
185
186
187
188
    @property
    def SAA_arr(self):
        """Get solar azimuth angle.

        :return:
        """
        if self._SAA_arr is None:
189
190
            # noinspection PyStatementEffect
            self.SZA_arr  # getter also sets self._SAA_arr
191
192
193
194
195
196
        return self._SAA_arr

    @SAA_arr.setter
    def SAA_arr(self, SAA_arr):
        self._SAA_arr = SAA_arr

197
198
199
200
    @SAA_arr.deleter
    def SAA_arr(self):
        self._SAA_arr = None

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    @property
    def RAA_arr(self):
        """Get relative azimuth angle.

        :return:
        """
        if self._RAA_arr is None:
            self.logger.info('Calculating relative azimuth array...')
            self._RAA_arr = GEOP.calc_RAA_array(self.SAA_arr, self.VAA_mean,
                                                nodata_mask=None, outFill=get_outFillZeroSaturated(np.float32)[0])
        return self._RAA_arr

    @RAA_arr.setter
    def RAA_arr(self, RAA_arr):
        self._RAA_arr = RAA_arr
216

217
218
219
220
    @RAA_arr.deleter
    def RAA_arr(self):
        self._RAA_arr = None

221
    def delete_ac_input_arrays(self):
222
223
224
225
226
227
228
        """Delete AC input arrays if they are not needed anymore."""
        self.logger.info('Deleting input arrays for atmospheric correction...')
        del self.VZA_arr
        del self.SZA_arr
        del self.SAA_arr
        del self.RAA_arr
        del self.lonlat_arr
Daniel Scheffler's avatar
Daniel Scheffler committed
229
230
231
232
233

        # use self.dem deleter
        # would have to be resampled when writing MGRS tiles
        # -> better to directly warp it to the output dims and projection
        del self.dem
234
235
236


class AtmCorr(object):
237
    def __init__(self, *L1C_objs, reporting=False):
238
        """Wrapper around atmospheric correction by Andre Hollstein, GFZ Potsdam
239
240
241
242
243
244

        Creates the input arguments for atmospheric correction from one or multiple L1C_object instance(s) belonging to
        the same scene ID, performs the atmospheric correction and returns the atmospherically corrected L1C object(s).

        :param L1C_objs: one or more instances of L1C_object belonging to the same scene ID
        """
245
        # FIXME not yet usable for data < 2012 due to missing ECMWF archive
246
247
248
        L1C_objs = L1C_objs if isinstance(L1C_objs, tuple) else (L1C_objs,)

        # hidden attributes
Daniel Scheffler's avatar
Daniel Scheffler committed
249
250
251
        self._logger = None
        self._GSDs = []
        self._data = {}
252
        self._metadata = {}
Daniel Scheffler's avatar
Daniel Scheffler committed
253
        self._nodata = {}
254
        self._band_spatial_sampling = {}
Daniel Scheffler's avatar
Daniel Scheffler committed
255
        self._options = {}
256
257
258

        # assertions
        scene_IDs = [obj.scene_ID for obj in L1C_objs]
Daniel Scheffler's avatar
Daniel Scheffler committed
259
        assert len(list(set(scene_IDs))) == 1, \
Daniel Scheffler's avatar
Daniel Scheffler committed
260
            "Input GMS objects for 'AtmCorr' must all belong to the same scene ID!. Received %s." % scene_IDs
261

Daniel Scheffler's avatar
Daniel Scheffler committed
262
        self.inObjs = L1C_objs  # type: List[L1C_object]
263
        self.reporting = reporting
Daniel Scheffler's avatar
Daniel Scheffler committed
264
265
        self.ac_input = {}  # set by self.run_atmospheric_correction()
        self.results = None  # direct output of external atmCorr module (set by run_atmospheric_correction)
266
        self.proc_info = {}
Daniel Scheffler's avatar
Daniel Scheffler committed
267
        self.outObjs = []  # atmospherically corrected L1C objects
268
269

        # append AtmCorr object to input L1C objects
Daniel Scheffler's avatar
Daniel Scheffler committed
270
        # [setattr(L1C_obj, 'AtmCorr', self) for L1C_obj in self.inObjs] # too big for serialization
271

272
        if not re.search('Sentinel-2', self.inObjs[0].satellite, re.I):
Daniel Scheffler's avatar
Daniel Scheffler committed
273
274
            self.logger.warning('Calculation of acquisition geometry arrays is currently only validated for '
                                'Sentinel-2!')
275
276
            # validation possible by comparing S2 angles provided by ESA with own angles

277
278
279
280
281
    @property
    def logger(self):
        if self._logger and self._logger.handlers[:]:
            return self._logger
        else:
Daniel Scheffler's avatar
Daniel Scheffler committed
282
            if len(self.inObjs) == 1:
283
284
285
286
287
288
289
290
291
292
                # just use the logger of the inObj
                logger_atmCorr = self.inObjs[0].logger
            else:
                # in case of multiple GMS objects to be processed at once:
                # get the logger of the first inObj
                logger_atmCorr = self.inObjs[0].logger

                # add additional file handlers for the remaining inObj (that belong to the same scene_ID)
                for inObj in self.inObjs[1:]:
                    path_logfile = inObj.pathGen.get_path_logfile()
Daniel Scheffler's avatar
Daniel Scheffler committed
293
                    fileHandler = logging.FileHandler(path_logfile, mode='a')
294
                    fileHandler.setFormatter(logger_atmCorr.formatter_fileH)
295
                    fileHandler.setLevel(CFG.log_level)
296
297
298

                    logger_atmCorr.addHandler(fileHandler)

299
                    inObj.close_loggers()
Daniel Scheffler's avatar
Daniel Scheffler committed
300

301
302
303
304
305
306
            self._logger = logger_atmCorr
            return self._logger

    @logger.setter
    def logger(self, logger):
        assert isinstance(logger, logging.Logger) or logger in ['not set', None], \
Daniel Scheffler's avatar
Daniel Scheffler committed
307
            "AtmCorr.logger can not be set to %s." % logger
308
309
310
311
312
313
314
315
        if logger in ['not set', None]:
            self._logger.close()
            self._logger = logger
        else:
            self._logger = logger

    @logger.deleter
    def logger(self):
316
317
318
        if self._logger not in [None, 'not set']:
            self._logger.close()
            self._logger = None
319

320
        [inObj.close_loggers() for inObj in self.inObjs]
Daniel Scheffler's avatar
Daniel Scheffler committed
321

322
323
324
325
326
327
328
329
    @property
    def GSDs(self):
        """
        Returns a list of spatial samplings within the input GMS objects, e.g. [10,20,60].
        """
        for obj in self.inObjs:
            if obj.arr.xgsd != obj.arr.ygsd:
                warnings.warn("X/Y GSD is not equal for entity ID %s" % obj.entity_ID +
Daniel Scheffler's avatar
Daniel Scheffler committed
330
                              (' (%s)' % obj.subsystem if obj.subsystem else '') +
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
                              'Using X-GSD as key for spatial sampling dictionary.')
                self._GSDs.append(obj.arr.xgsd)

        return self._GSDs

    @property
    def data(self):
        """

        :return:
            ___ attribute: data, type:<class 'dict'>
            ______ key:B05, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 085998540.0803833 ]]
            ______ key:B01, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 131225590.13208008]]
            ______ key:B06, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .14965820.13977051]]
            ______ key:B11, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .11492920.10192871]]
            ______ key:B02, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 104187010.10308838]]
            ______ key:B10, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 013099670.01300049]]
            ______ key:B08, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .16857910.15783691]]
            ______ key:B04, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 065490720.06228638]]
            ______ key:B03, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 082702640.08148193]]
            ______ key:B12, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 068420410.06060791]]
            ______ key:B8A, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 192138670.17553711]]
            ______ key:B09, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .09600830.09887695]]
            ______ key:B07, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 173339840.15600586]]
        """
        if not self._data:
357
358
            data_dict = {}

359
            for inObj in self.inObjs:
360
                for bandN, bandIdx in inObj.arr.bandnames.items():
361
                    if bandN not in data_dict:
Daniel Scheffler's avatar
Daniel Scheffler committed
362
363
364
                        # float32! -> conversion to np.float16 will convert -9999 to -10000
                        arr2pass = inObj.arr[:, :, bandIdx].astype(np.float32)
                        arr2pass[arr2pass == inObj.arr.nodata] = np.nan  # set nodata values to np.nan
365
                        data_dict[bandN] = (arr2pass / inObj.MetaObj.ScaleFactor).astype(np.float16)
366
                    else:
367
                        inObj.logger.warning("Band '%s' cannot be included into atmospheric correction because it "
Daniel Scheffler's avatar
Daniel Scheffler committed
368
                                             "exists multiple times." % bandN)
369

370
            # validate: data must have all bands needed for AC
Daniel Scheffler's avatar
Daniel Scheffler committed
371
372
            full_LBA = get_LayerBandsAssignment(self.inObjs[0].GMS_identifier, return_fullLBA=True)
            all_bNs_AC = ['B%s' % i if len(i) == 2 else 'B0%s' % i for i in full_LBA]
373
374
            if not all([bN in list(data_dict.keys()) for bN in all_bNs_AC]):
                raise RuntimeError('Atmospheric correction did not receive all the needed bands. \n\tExpected: %s;\n\t'
Daniel Scheffler's avatar
Daniel Scheffler committed
375
                                   'Received: %s' % (str(all_bNs_AC), str(list(sorted(data_dict.keys())))))
376
377
378

            self._data = data_dict

379
380
381
382
383
384
385
386
        return self._data

    @data.setter
    def data(self, data_dict):
        assert isinstance(data_dict, dict), \
            "'data' can only be set to a dictionary with band names as keys and numpy arrays as values."
        self._data = data_dict

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
    @property
    def nodata(self):
        """

        :return:
            ___ attribute: nodata, type:<class 'dict'>
            ______ key:60.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
            ______ key:10.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
            ______ key:20.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
        """

        if not self._nodata:
            for inObj in self.inObjs:
                self._nodata[inObj.arr.xgsd] = ~inObj.arr.mask_nodata[:]

        return self._nodata

    @property
    def tile_name(self):
406
        """Returns S2A tile name.
407
        NOTE: this is only needed if no DEM is passed to ac_gms
408
409
410
411
412

        :return: e.g.
            '32UMA'
        """

Daniel Scheffler's avatar
Daniel Scheffler committed
413
        return ''  # FIXME
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

    @property
    def band_spatial_sampling(self):
        """

        :return: e.g.
            {'B01': 60.0,
             'B02': 10.0,
             'B03': 10.0,
             'B04': 10.0,
             'B05': 20.0,
             'B06': 20.0,
             'B07': 20.0,
             'B08': 10.0,
             'B09': 60.0,
             'B10': 60.0,
             'B11': 20.0,
             'B12': 20.0,
             'B8A': 20.0}
        """

        if not self._band_spatial_sampling:
            for inObj in self.inObjs:
                for bandN in inObj.arr.bandnames:
                    if bandN not in self._band_spatial_sampling:
                        self._band_spatial_sampling[bandN] = inObj.arr.xgsd
        return self._band_spatial_sampling

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    @property
    def metadata(self):
        """

        :return:
            ___ attribute: metadata, type:<class 'dict'>
            ______ key:spatial_samplings
            _________ key:60.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 1830
            ____________ key:XDIM, value_type:<class 'int'>, repr: 60
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 1830
            ____________ key:YDIM, value_type:<class 'int'>, repr: -60
            _________ key:10.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 10980
            ____________ key:XDIM, value_type:<class 'int'>, repr: 10
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 10980
            ____________ key:YDIM, value_type:<class 'int'>, repr: -10
            _________ key:20.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 5490
            ____________ key:XDIM, value_type:<class 'int'>, repr: 20
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 5490
            ____________ key:YDIM, value_type:<class 'int'>, repr: -20
            ______ key:SENSING_TIME, value_type:<class 'datetime.datetime'>, repr: 2016-03-26 10:34:06.538000+00:00
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
472

473
        if not self._metadata:
Daniel Scheffler's avatar
Daniel Scheffler committed
474
            del self.logger  # otherwise each input object would have multiple fileHandlers
475

Daniel Scheffler's avatar
Daniel Scheffler committed
476
            metadata = dict(
477
                U=self.inObjs[0].MetaObj.EarthSunDist,
Daniel Scheffler's avatar
Daniel Scheffler committed
478
479
480
481
482
                SENSING_TIME=self.inObjs[0].acq_datetime,
                # SENSING_TIME=datetime.strptime('2015-08-12 10:40:21 +0000', '%Y-%m-%d %H:%M:%S %z'),
                viewing_zenith=self._meta_get_viewing_zenith(),
                viewing_azimuth=self._meta_get_viewing_azimuth(),
                relative_viewing_azimuth=self._meta_get_relative_viewing_azimuth(),
483
484
                sun_mean_azimuth=self.inObjs[0].MetaObj.SunAzimuth,
                sun_mean_zenith=90 - self.inObjs[0].MetaObj.SunElevation,
Daniel Scheffler's avatar
Daniel Scheffler committed
485
486
487
488
                solar_irradiance=self._meta_get_solar_irradiance(),
                aux_data=self._meta_get_aux_data(),
                spatial_samplings=self._meta_get_spatial_samplings()
            )
489
490

            self._metadata = metadata
491
492
493

        return self._metadata

494
495
    @property
    def options(self):
496
        # type: () -> dict
497
498
499
500
501
502
        """Returns a dictionary containing AC options.
        """
        if self._options:
            return self._options
        else:
            self._options = self.inObjs[0].ac_options
Daniel Scheffler's avatar
Daniel Scheffler committed
503
            self._options["AC"]['bands'] = [b for b in self.data.keys() if b in self._options["AC"]['bands']]
504
            self._options["report"]["reporting"] = self.reporting
505
506
            return self._options

507
    def _meta_get_spatial_samplings(self):
508
509
510
        """

        :return:
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
         {10.0: {'NCOLS': 10980,
           'NROWS': 10980,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 10.0,
           'YDIM': -10.0},
          20.0: {'NCOLS': 5490,
           'NROWS': 5490,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 20.0,
           'YDIM': -20.0},
          60.0: {'NCOLS': 1830,
           'NROWS': 1830,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 60.0,
           'YDIM': -60.0}}
529
        """
530
531
        # set corner coordinates and dims
        spatial_samplings = {}
532
533
534

        for inObj in self.inObjs:

535
536
537
538
539
            # validate GSD
            if inObj.arr.xgsd != inObj.arr.ygsd:
                warnings.warn("X/Y GSD is not equal for entity ID %s" % inObj.entity_ID +
                              (' (%s)' % inObj.subsystem if inObj.subsystem else '') +
                              'Using X-GSD as key for spatial sampling dictionary.')
540

541
542
            # set spatial information
            spatial_samplings[inObj.arr.xgsd] = dict(
Daniel Scheffler's avatar
Daniel Scheffler committed
543
544
545
546
547
548
                ULX=inObj.arr.box.boxMapYX[0][1],
                ULY=inObj.arr.box.boxMapYX[0][0],
                XDIM=inObj.arr.xgsd,
                YDIM=-inObj.arr.ygsd,
                NROWS=inObj.arr.rows,
                NCOLS=inObj.arr.cols)
549

550
551
552
        return spatial_samplings

    def _meta_get_solar_irradiance(self):
553
554
555
        """

        :return:
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
        {'B01': 1913.57,
         'B02': 1941.63,
         'B03': 1822.61,
         'B04': 1512.79,
         'B05': 1425.56,
         'B06': 1288.32,
         'B07': 1163.19,
         'B08': 1036.39,
         'B09': 813.04,
         'B10': 367.15,
         'B11': 245.59,
         'B12': 85.25,
         'B8A': 955.19}
        """

        solar_irradiance = {}

        for inObj in self.inObjs:
574
575
            for bandN in inObj.arr.bandnames:
                lba_key = bandN[2:] if bandN.startswith('B0') else bandN[1:]
576
                if bandN not in solar_irradiance:
577
578
                    solar_irradiance[bandN] = inObj.MetaObj.SolIrradiance[lba_key]

579
580
581
582
583
584
585
586
587
588
        return solar_irradiance

    def _meta_get_viewing_zenith(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
        """

        viewing_zenith = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
589
        for inObj in self.inObjs:  # type: L1C_object
590
            for bandN, bandIdx in inObj.arr.bandnames.items():
591
                if bandN not in viewing_zenith:
592
593
                    arr2pass = inObj.VZA_arr[:, :, bandIdx] if inObj.VZA_arr.ndim == 3 else inObj.VZA_arr
                    viewing_zenith[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
594
                    # viewing_zenith[bandN] = inObj.VZA_arr[:, :, bandIdx] if inObj.VZA_arr.ndim==3 else inObj.VZA_arr
595
596
597
598
599
600
601
602
603
604
        return viewing_zenith

    def _meta_get_viewing_azimuth(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
        """

        viewing_azimuth = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
605
        for inObj in self.inObjs:  # type: L1C_object
606
            for bandN, bandIdx in inObj.arr.bandnames.items():
607
                if bandN not in viewing_azimuth:
Daniel Scheffler's avatar
Daniel Scheffler committed
608
                    arr2pass = inObj.VAA_arr[:, :, bandIdx] if inObj.VAA_arr.ndim == 3 else inObj.VAA_arr
609
                    viewing_azimuth[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
610
                    # viewing_azimuth[bandN] = inObj.VAA_arr[:, :, bandIdx] if inObj.VAA_arr.ndim==3 else inObj.VAA_arr
611

612
613
614
615
616
617
        return viewing_azimuth

    def _meta_get_relative_viewing_azimuth(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
618
619
        """

620
621
        relative_viewing_azimuth = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
622
        for inObj in self.inObjs:  # type: L1C_object
623
            for bandN, bandIdx in inObj.arr.bandnames.items():
624
                if bandN not in relative_viewing_azimuth:
625
626
                    arr2pass = inObj.RAA_arr[:, :, bandIdx] if inObj.RAA_arr.ndim == 3 else inObj.RAA_arr
                    relative_viewing_azimuth[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
627
628
                    # relative_viewing_azimuth[bandN] = \
                    #     inObj.RAA_arr[:, :, bandIdx] if inObj.RAA_arr.ndim==3 else inObj.RAA_arr
629

630
        return relative_viewing_azimuth
631

632
633
634
635
636
637
638
639
    def _meta_get_aux_data(self):
        """

        :return:  {lons:ndarray(dtype=float16),,lats:ndarray(dtype=float16)}
        """

        aux_data = dict(
            # set lons and lats (a 2D array for all bands is enough (different band resolutions dont matter))
Daniel Scheffler's avatar
Daniel Scheffler committed
640
641
            lons=self.inObjs[0].lonlat_arr[::10, ::10, 0].astype(np.float16),  # 2D array of lon values: 0° - 360°
            lats=self.inObjs[0].lonlat_arr[::10, ::10, 1].astype(np.float16)  # 2D array of lat values: -90° - 90°
642
            # FIXME correct to reduce resolution here by factor 10?
643
644
645
646
647
648
649
650
651
652
653
654
        )

        return aux_data

    def _get_dem(self):
        """Get a DEM to be used in atmospheric correction.

        :return: <np.ndarray> 2D array (with 20m resolution in case of Sentinel-2)
        """
        # determine which input GMS object is used to generate DEM
        if re.search('Sentinel-2', self.inObjs[0].satellite):
            # in case of Sentinel-2 the 20m DEM must be passed
Daniel Scheffler's avatar
Daniel Scheffler committed
655
            inObj4dem = [obj for obj in self.inObjs if obj.arr.xgsd == 20]
656
657
658
            if not inObj4dem:
                self.logger.warning('Sentinel-2 20m subsystem could not be found. DEM passed to '
                                    'atmospheric correction might have wrong resolution.')
659
660
661
662
            inObj4dem = inObj4dem[0]
        else:
            inObj4dem = self.inObjs[0]

663
664
665
666
        try:
            dem = inObj4dem.dem[:].astype(np.float32)
        except Exception as e:
            dem = None
Daniel Scheffler's avatar
Daniel Scheffler committed
667
            self.logger.warning('A static elevation is assumed during atmospheric correction due to an error during '
668
669
670
                                'creation of the DEM corresponding to scene %s (entity ID: %s). Error message was: '
                                '\n%s\n' % (self.inObjs[0].scene_ID, self.inObjs[0].entity_ID, repr(e)))
            self.logger.info("Print traceback in case you care:")
671
            self.logger.warning(traceback.format_exc())
672
673

        return dem
674
675

    def _get_srf(self):
676
        """Returns an instance of SRF in the same structure like sicor.sensors.SRF.SensorSRF
677
        """
678
679
680
        # FIXME calculation of center wavelengths within SRF() used not the GMS algorithm
        # SRF instance must be created for all bands and the previous proc level
        GMS_identifier_fullScene = self.inObjs[0].GMS_identifier
Mathias Peters's avatar
Mathias Peters committed
681
682
        GMS_identifier_fullScene.subsystem = ''
        GMS_identifier_fullScene.proc_level = proc_chain[proc_chain.index(self.inObjs[0].proc_level) - 1]
683
684

        return SRF(GMS_identifier_fullScene, wvl_unit='nanometers', format_bandnames=True)
685

686
687
688
689
690
691
    def _get_mask_clouds(self):
        """Returns an instance of S2Mask in case cloud mask is given by input GMS objects. Otherwise None is returned.

        :return:
        """

692
693
        tgt_res = self.inObjs[0].ac_options['cld_mask']['target_resolution']

694
        # check if input GMS objects provide a cloud mask
695
        avail_cloud_masks = {inObj.GMS_identifier.subsystem: inObj.mask_clouds for inObj in self.inObjs}
696
        no_avail_CMs = list(set(avail_cloud_masks.values())) == [None]
697
698

        # compute cloud mask if not already provided
699
        if no_avail_CMs:
700
            algorithm = CFG.cloud_masking_algorithm[self.inObjs[0].satellite]
701

702
703
            if algorithm == 'SICOR':
                return None
704

705
706
707
708
709
            else:
                # FMASK or Classical Bayesian
                try:
                    from .cloud_masking import Cloud_Mask_Creator

710
                    CMC = Cloud_Mask_Creator(self.inObjs[0], algorithm=algorithm, tempdir_root=CFG.path_tempdir)
711
712
713
714
                    CMC.calc_cloud_mask()
                    cm_geoarray = CMC.cloud_mask_geoarray
                    cm_array = CMC.cloud_mask_array
                    cm_legend = CMC.cloud_mask_legend
Daniel Scheffler's avatar
Daniel Scheffler committed
715
                except Exception:
716
717
                    self.logger.error('\nAn error occurred during FMASK cloud masking. Error message was: ')
                    self.logger.error(traceback.format_exc())
718
                    return None
719

720
721
        else:
            # check if there is a cloud mask with suitable GSD
Daniel Scheffler's avatar
Daniel Scheffler committed
722
            inObjs2use = [obj for obj in self.inObjs if obj.mask_clouds is not None and obj.mask_clouds.xgsd == tgt_res]
723
724
            if not inObjs2use:
                raise ValueError('Error appending cloud mask to input arguments of atmospheric correction. No input '
Daniel Scheffler's avatar
Daniel Scheffler committed
725
                                 'GMS object provides a cloud mask with spatial resolution of %s.' % tgt_res)
726
727
728
729
730
731
732
733
            inObj2use = inObjs2use[0]

            # get mask (geo)array
            cm_geoarray = inObj2use.mask_clouds
            cm_array = inObj2use.mask_clouds[:]

            # get legend
            cm_legend = get_mask_classdefinition('mask_clouds', inObj2use.satellite)
734
            #    {'Clear': 10, 'Thick Clouds': 20, 'Thin Clouds': 30, 'Snow': 40}  # FIXME hardcoded
735
736
737
738
739
740

            # validate that xGSD equals yGSD
            if cm_geoarray.xgsd != cm_geoarray.ygsd:
                warnings.warn("Cloud mask X/Y GSD is not equal for entity ID %s" % inObj2use.entity_ID +
                              (' (%s)' % inObj2use.subsystem if inObj2use.subsystem else '') +
                              'Using X-GSD as key for cloud mask geocoding.')
741
742
743
744

        # get geocoding
        cm_geocoding = self.metadata["spatial_samplings"][tgt_res]

745
746
        # get nodata value
        self.options['cld_mask']['nodata_value_mask'] = cm_geoarray.nodata
747

748
        # append cloud mask to input object with the same spatial resolution if there was no mask before
749
        for inObj in self.inObjs:
750
            if inObj.arr.xgsd == cm_geoarray.xgsd:
751
752
                inObj.mask_clouds = cm_geoarray
                inObj.build_combined_masks_array()
Daniel Scheffler's avatar
Daniel Scheffler committed
753
                break  # appending it to one inObj is enough
754

755
756
757
        return S2Mask(mask_array=cm_array,
                      mask_legend=cm_legend,
                      geo_coding=cm_geocoding)
758

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
    def _check_or_download_ECMWF_data(self):
        """Check if ECMWF files are already downloaded. If not, start the downloader."""
        self.logger.info('Checking if ECMWF data are available... (if not, run download!)')

        default_products = [
            "fc_T2M",
            "fc_O3",
            "fc_SLP",
            "fc_TCWV",
            "fc_GMES_ozone",
            "fc_total_AOT_550nm",
            "fc_sulphate_AOT_550nm",
            "fc_black_carbon_AOT_550nm",
            "fc_dust_AOT_550nm",
            "fc_organic_matter_AOT_550nm",
            "fc_sea_salt_AOT_550nm"]

776
777
        # NOTE: use_signals must be set to True while executed as multiprocessing worker (e.g., in multiprocessing.Pool)
        @timeout_decorator.timeout(seconds=60*5, timeout_exception=TimeoutError)
778
779
        def run_request():
            try:
780
781
782
783
784
785
786
787
788
789
790
791
792
793
                with MultiSlotLock('ECMWF download lock', allowed_slots=1, logger=self.logger):
                    t0 = time()
                    # NOTE: download_variables does not accept a logger -> so the output may be invisible in WebApp
                    results = download_variables(date_from=self.inObjs[0].acq_datetime,
                                                 date_to=self.inObjs[0].acq_datetime,
                                                 db_path=CFG.path_ECMWF_db,
                                                 max_step=120,  # default
                                                 ecmwf_variables=default_products,
                                                 processes=0,  # singleprocessing
                                                 force=False)  # dont force download if files already exist
                    t1 = time()
                    self.logger.info("Runtime: %.2f" % (t1 - t0))
                    for result in results:
                        self.logger.info(result)
794
795
796
797
798
799
800
801
802

            except APIKeyFetchError:
                self.logger.error("ECMWF data download failed due to missing API credentials.")

            except (ECMWFAPIException, Exception):
                self.logger.error("ECMWF data download failed for scene %s (entity ID: %s). Traceback: "
                                  % (self.inObjs[0].scene_ID, self.inObjs[0].entity_ID))
                self.logger.error(traceback.format_exc())

803
        try:
804
805
806
            run_request()
        except TimeoutError:
            self.logger.error("ECMWF data download failed due to API request timeout after waiting 5 minutes.")
807
808
809
810

    def _validate_snr_source(self):
        """Check if the given file path for the SNR model exists - if not, use a constant SNR of 500."""
        if not os.path.isfile(self.options["uncertainties"]["snr_model"]):
811
812
            self.logger.warning('No valid SNR model found for %s %s. Using constant SNR to compute uncertainties of '
                                'atmospheric correction.' % (self.inObjs[0].satellite, self.inObjs[0].sensor))
813
814
815
            # self.options["uncertainties"]["snr_model"] = np.nan  # causes the computed uncertainties to be np.nan
            self.options["uncertainties"]["snr_model"] = 500  # use a constant SNR of 500 to compute uncertainties

816
817
    def run_atmospheric_correction(self, dump_ac_input=False):
        # type: (bool) -> list
818
819
820
        """Collects all input data for atmospheric correction, runs the AC and returns the corrected L1C objects
        containing surface reflectance.

821
822
        :param dump_ac_input:   allows to dump the inputs of AC to the scene's processing folder in case AC fails
        :return:                list of L1C_object instances containing atmospherically corrected data
823
        """
824
825

        # collect input args/kwargs for AC
826
827
        self.logger.info('Calculating input data for atmospheric correction...')

828
        rs_data = dict(
Daniel Scheffler's avatar
Daniel Scheffler committed
829
830
831
832
833
834
835
836
837
            data=self.data,
            metadata=self.metadata,
            nodata=self.nodata,
            band_spatial_sampling=self.band_spatial_sampling,
            tile_name=self.tile_name,
            dem=self._get_dem(),
            srf=self._get_srf(),
            mask_clouds=self._get_mask_clouds()
            # returns an instance of S2Mask or None if cloud mask is not given by input GMS objects
Daniel Scheffler's avatar
Daniel Scheffler committed
838
        )  # NOTE: all keys of this dict are later converted to attributes of RSImage
839

840
841
842
843
        # remove empty values from RSImage kwargs because SICOR treats any kind of RSImage attributes as given
        # => 'None'-attributes may cause issues
        rs_data = {k: v for k, v in rs_data.items() if v is not None}

Daniel Scheffler's avatar
Daniel Scheffler committed
844
        script = False
845

846
        # check if ECMWF data are available - if not, start the download
847
        if CFG.auto_download_ecmwf:
848
            self._check_or_download_ECMWF_data()
849
850

        # validate SNR
851
852
        if CFG.ac_estimate_accuracy:
            self._validate_snr_source()
853

854
855
856
        # create an instance of RSImage
        rs_image = RSImage(**rs_data)

857
        self.ac_input = dict(
858
            rs_image=rs_image,
Daniel Scheffler's avatar
Daniel Scheffler committed
859
            options=self.options,  # type: dict
860
861
            logger=repr(self.logger),  # only a string
            script=script
862
        )
863

864
865
866
867
        # path_dump = self.inObjs[0].pathGen.get_path_ac_input_dump()
        # with open(path_dump, 'wb') as outF:
        #     dill.dump(self.ac_input, outF)

868
        # run AC
869
        self.logger.info('Atmospheric correction started.')
870
        try:
871
            rs_image.logger = self.logger
872
            self.results = ac_gms(rs_image, self.options, logger=self.logger, script=script)
873

874
        except Exception as e:
875
876
877
878
879
880
            self.logger.error('\nAn error occurred during atmospheric correction. BE AWARE THAT THE SCENE %s '
                              '(ENTITY ID %s) HAS NOT BEEN ATMOSPHERICALLY CORRECTED! Error message was: \n%s\n'
                              % (self.inObjs[0].scene_ID, self.inObjs[0].entity_ID, repr(e)))
            self.logger.error(traceback.format_exc())
            # TODO include that in the job summary

881
            # serialialize AC input
882
883
884
885
886
887
            if dump_ac_input:
                path_dump = self.inObjs[0].pathGen.get_path_ac_input_dump()
                with open(path_dump, 'wb') as outF:
                    dill.dump(self.ac_input, outF)

                self.logger.error('An error occurred during atmospheric correction. Inputs have been dumped to %s.'
Daniel Scheffler's avatar
Daniel Scheffler committed
888
                                  % path_dump)
889
890

            # delete AC input arrays
Daniel Scheffler's avatar
Daniel Scheffler committed
891
            for inObj in self.inObjs:  # type: L1C_object
892
893
                inObj.delete_ac_input_arrays()

894
895
            return list(self.inObjs)

896
        # get processing infos
897
        self.proc_info = self.ac_input['options']['processing']
898

899
        # join results
Daniel Scheffler's avatar
Daniel Scheffler committed
900
        self._join_results_to_inObjs()  # sets self.outObjs
901

902
903
        # delete input arrays that are not needed anymore
        [inObj.delete_ac_input_arrays() for inObj in self.inObjs]
904

905
906
907
        return self.outObjs

    def _join_results_to_inObjs(self):
908
909
910
        """
        Join results of atmospheric correction to the input GMS objects.
        """
911

912
        self.logger.info('Joining results of atmospheric correction to input GMS objects.')
Daniel Scheffler's avatar
Daniel Scheffler committed
913
914
915
        # delete logger
        # -> otherwise logging in inObjs would open a second FileHandler to the same file (which is permitted)
        del self.logger
916
917

        self._join_data_ac()
918
        self._join_data_errors(bandwise=CFG.ac_bandwise_accuracy)
919
920
921
922
923
        self._join_mask_clouds()
        self._join_mask_confidence_array()

        # update masks (always do that because masks can also only contain one layer)
        [inObj.build_combined_masks_array() for inObj in self.inObjs]
924

925
926
927
        # update AC processing info
        [inObj.ac_options['processing'].update(self.proc_info) for inObj in self.inObjs]

928
929
930
931
        self.outObjs = self.inObjs

    def _join_data_ac(self):
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
932
933
        Join ATMOSPHERICALLY CORRECTED ARRAY as 3D int8 or int16 BOA reflectance array, scaled to scale factor from
        config.
934
        """
935

936
        if self.results.data_ac is not None:
937
            for inObj in self.inObjs:
Daniel Scheffler's avatar
Daniel Scheffler committed
938
939
                self.logger.info('Joining image data to %s.' % (inObj.entity_ID if not inObj.subsystem else
                                                                '%s %s' % (inObj.entity_ID, inObj.subsystem)))
940

941
                assert isinstance(inObj, L1B_object)
942
                nodata = self.results.nodata[inObj.arr.xgsd]  # 2D mask with True outside of image coverage
Daniel Scheffler's avatar
Daniel Scheffler committed
943
                ac_bandNs = [bandN for bandN in inObj.arr.bandnames if bandN in self.results.data_ac.keys()]
944
                out_LBA = [bN.split('B0')[1] if bN.startswith('B0') else bN.split('B')[1] for bN in ac_bandNs]
945

946
947
948
                # update metadata #
                ###################

949
950
                inObj.arr_desc = 'BOA_Ref'
                inObj.MetaObj.bands = len(self.results.data_ac)
951
                inObj.MetaObj.PhysUnit = 'BOA_Reflectance in [0-%d]' % CFG.scale_factor_BOARef
952
                inObj.MetaObj.LayerBandsAssignment = out_LBA
953
                inObj.LayerBandsAssignment = out_LBA
954
955
                inObj.MetaObj.filter_layerdependent_metadata()

956
957
958
959
                ##################################################################################
                # join SURFACE REFLECTANCE as 3D int16 array, scaled to scale factor from config #
                ##################################################################################

960
                oF_refl, oZ_refl, oS_refl = get_outFillZeroSaturated(inObj.arr.dtype)
961
                surf_refl = np.dstack((self.results.data_ac[bandN] for bandN in ac_bandNs))
962
                surf_refl *= CFG.scale_factor_BOARef  # scale using scale factor (output is float16)
963
964
965
966
967
968
969
970
971

                # set AC nodata values to GMS outFill
                # NOTE: AC nodata contains a pixel mask where at least one band is no data
                #       => Setting these pixels to outZero would also reduce pixel values of surrounding pixels in
                #          spatial homogenization (because resampling only ignores -9999).
                #       It would be possible to generate a zero-data mask here for each subsystem and apply it after
                #       spatial homogenization. Alternatively zero-data pixels could be interpolated spectrally or
                #       spatially within L1A processor (also see issue #74).
                surf_refl[nodata] = oF_refl  # overwrite AC nodata values with GMS outFill
972

Daniel Scheffler's avatar
Daniel Scheffler committed
973
                # apply the original nodata mask (indicating background values)
974
                surf_refl[np.array(inObj.mask_nodata).astype(np.int8) == 0] = oF_refl
975

976
977
                # set AC NaNs to GMS outFill
                # NOTE: SICOR result has NaNs at no data positions AND non-clear positions
Daniel Scheffler's avatar
Daniel Scheffler committed
978
                if self.results.bad_data_value is np.nan:
979
                    surf_refl[np.isnan(surf_refl)] = oF_refl
Daniel Scheffler's avatar
Daniel Scheffler committed
980
                else:
981
                    surf_refl[surf_refl == self.results.bad_data_value] = oF_refl
982

983
                # use inObj.arr setter to generate a GeoArray
984
                inObj.arr = surf_refl.astype(inObj.arr.dtype)  # -> int16 (also converts NaNs to 0 if needed
985

986
987
988
        else:
            self.logger.warning('Atmospheric correction did not return a result for the input array. '
                                'Thus the output keeps NOT atmospherically corrected.')
989

990
991
    def _join_data_errors(self, bandwise=False):
        """Join ERRORS ARRAY as 3D or 2D int8 or int16 BOA reflectance array, scaled to scale factor from config.
992

993
994
995
        :param bandwise:    if True, a 3D array with bandwise information for each pixel is generated
        :return:
        """
996
997
        # TODO ac_error values are very close to 0 -> a scale factor of 255 yields int8 values below 10
        # TODO => better to stretch the whole array to values between 0 and 100 and save original min/max?
998
        if self.results.data_errors is not None:
999

1000
            for inObj in self.inObjs:
Daniel Scheffler's avatar
Daniel Scheffler committed
1001
1002
                inObj.logger.info('Joining AC errors to %s.' % (inObj.entity_ID if not inObj.subsystem else
                                                                '%s %s' % (inObj.entity_ID, inObj.subsystem)))
1003

1004
1005
                nodata = self.results.nodata[inObj.arr.xgsd]  # 2D mask with True outside of image coverage
                ac_bandNs = [bandN for bandN in inObj.arr.bandnames if bandN in self.results.data_ac.keys()]
1006
1007
                out_dtype = np.int8 if CFG.ac_scale_factor_errors <= 255 else np.int16
                out_nodata_val = get_outFillZeroSaturated(out_dtype)[0]
1008

1009
                # generate raw ac_errors array
1010
                ac_errors = np.dstack((self.results.data_errors[bandN] for bandN in ac_bandNs))
1011

1012
1013
1014
1015
1016
1017
1018
                # apply scale factor from config to data pixels and overwrite nodata area with nodata value
                ac_errors *= CFG.ac_scale_factor_errors  # scale using scale factor (output is float16)
                ac_errors[np.isnan(ac_errors)] = out_nodata_val  # replace NaNs with outnodata
                ac_errors[nodata] = out_nodata_val  # set all positions where SICOR nodata mask is 1 to outnodata
                ac_errors = np.around(ac_errors).astype(out_dtype)  # round floats to next even int8/int16 value

                # average array over bands if no bandwise information is requested
1019
                if not bandwise:
1020
1021
                    # in case of only one subsystem: directly compute median errors here
                    if len(self.inObjs) == 1:
1022
                        ac_errors = np.median(ac_errors, axis=2).astype(ac_errors.dtype)
1023
1024
1025
1026
1027

                    # in case of multiple subsystems: dont compute median here but first apply geometric homogenization
                    # -> median could only be computed for each subsystem separately
                    else:
                        pass
1028
1029

                # set inObj.ac_errors
1030
                inObj.ac_errors = ac_errors  # setter generates a GeoArray with the same bandnames like inObj.arr
1031

1032
        elif not CFG.ac_estimate_accuracy:
1033
1034
            self.logger.info("Atmospheric correction did not provide a 'data_errors' array because "
                             "'ac_estimate_accuracy' was set to False in the job configuration.")
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
        else