L1B_P.py 34.2 KB
Newer Older
Daniel Scheffler's avatar
Daniel Scheffler committed
1
# -*- coding: utf-8 -*-
2
3
4
5
6
7
"""
Level 1B Processor:

Detection of global/local geometric displacements.
"""

Daniel Scheffler's avatar
Daniel Scheffler committed
8

9
import collections
10
import os
11
import socket
12
import time
13
import warnings
14
from datetime import datetime, timedelta
15
16

import numpy as np
17
from geopandas import GeoDataFrame
18
from shapely.geometry import box
19
import pytz
20
from typing import Union  # noqa F401  # flake8 issue
Daniel Scheffler's avatar
Daniel Scheffler committed
21

22
from arosics import COREG, DESHIFTER
23
from geoarray import GeoArray
24
25
26
27
28
29
from py_tools_ds.geo.coord_grid import is_coord_grid_equal
from py_tools_ds.geo.coord_calc import corner_coord_to_minmax
from py_tools_ds.geo.coord_trafo import reproject_shapelyGeometry, transform_any_prj
from py_tools_ds.geo.projection import prj_equal, EPSG2WKT, WKT2EPSG
from py_tools_ds.geo.vector.topology import get_overlap_polygon

30
from ..options.config import GMS_config as CFG
31
from ..model.gms_object import GMS_object
32
33
34
35
from .L1A_P import L1A_object
from ..misc import database_tools as DB_T
from ..misc import helper_functions as HLP_F
from ..misc import path_generator as PG
36
from ..misc.spatial_index_mediator import SpatialIndexMediator
37
from ..misc.definition_dicts import get_GMS_sensorcode, get_outFillZeroSaturated
38

39
__author__ = 'Daniel Scheffler'
40
41


42
class Scene_finder(object):
43
44
    def __init__(self, src_boundsLonLat, src_AcqDate, src_prj, src_footprint_poly, sceneID_excluded=None,
                 min_overlap=20, min_cloudcov=0, max_cloudcov=20, plusminus_days=30, plusminus_years=10):
45

46
47
48
        self.boundsLonLat = src_boundsLonLat
        self.src_AcqDate = src_AcqDate
        self.src_prj = src_prj
49
        self.src_footprint_poly = src_footprint_poly
50
        self.sceneID_excluded = sceneID_excluded
51
52
53
54
55
        self.min_overlap = min_overlap
        self.min_cloudcov = min_cloudcov
        self.max_cloudcov = max_cloudcov
        self.plusminus_days = plusminus_days
        self.plusminus_years = plusminus_years
56

57
        # get temporal constraints
58
        def add_years(dt, years): return dt.replace(dt.year + years) \
59
60
61
            if not (dt.month == 2 and dt.day == 29) else dt.replace(dt.year + years, 3, 1)
        self.timeStart = add_years(self.src_AcqDate, -plusminus_years)
        timeEnd = add_years(self.src_AcqDate, +plusminus_years)
62
63
        timeNow = datetime.utcnow().replace(tzinfo=pytz.UTC)
        self.timeEnd = timeEnd if timeEnd <= timeNow else timeNow
64

65
66
67
        self.possib_ref_scenes = None  # set by self.spatial_query()
        self.GDF_ref_scenes = GeoDataFrame()  # set by self.spatial_query()
        self.ref_scene = None
68

69
    def spatial_query(self, timeout=5):
70
71
72
73
        """Query the postgreSQL database to find possible reference scenes matching the specified criteria.

        :param timeout:     maximum query duration allowed (seconds)
        """
74
75
        for i in range(10):
            try:
76
77
                SpIM = SpatialIndexMediator(timeout=timeout)
                self.possib_ref_scenes = \
78
                    SpIM.getFullSceneDataForDataset(self.boundsLonLat, self.timeStart, self.timeEnd, self.min_cloudcov,
79
                                                    self.max_cloudcov, CFG.datasetid_spatial_ref,
80
                                                    refDate=self.src_AcqDate, maxDaysDelta=self.plusminus_days)
81
82
                break
            except socket.timeout:
83
                if i < 9:
84
85
86
                    continue
                else:
                    raise TimeoutError('Spatial query timed out 10 times!')
87
88
                    # TODO catch error when index server is not running:
                    # TODO ConnectionRefusedError: [Errno 111] Connection refused
89

90
91
92
        if self.possib_ref_scenes:
            # fill GeoDataFrame with possible ref scene parameters
            GDF = GeoDataFrame(self.possib_ref_scenes, columns=['object'])
93
94
95
96
            GDF['sceneid'] = list(GDF['object'].map(lambda scene: scene.sceneid))
            GDF['acquisitiondate'] = list(GDF['object'].map(lambda scene: scene.acquisitiondate))
            GDF['cloudcover'] = list(GDF['object'].map(lambda scene: scene.cloudcover))
            GDF['polyLonLat'] = list(GDF['object'].map(lambda scene: scene.polyLonLat))
97

98
99
            def LonLat2UTM(polyLL):
                return reproject_shapelyGeometry(polyLL, 4326, self.src_prj)
100

101
102
            GDF['polyUTM'] = list(GDF['polyLonLat'].map(LonLat2UTM))
            self.GDF_ref_scenes = GDF
103

104
105
106
    def _collect_refscene_metadata(self):
        """Collect some reference scene metadata needed for later filtering."""
        GDF = self.GDF_ref_scenes
107

108
109
110
111
112
113
114
115
116
117
118
        # get overlap parameter
        def get_OL_prms(poly): return get_overlap_polygon(poly, self.src_footprint_poly)

        GDF['overlapParams'] = list(GDF['polyLonLat'].map(get_OL_prms))
        GDF['overlap area'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap area']))
        GDF['overlap percentage'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap percentage']))
        GDF['overlap poly'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap poly']))
        del GDF['overlapParams']

        # get processing level of reference scenes
        procL = GeoDataFrame(
119
            DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes_proc', ['sceneid', 'proc_level'],
120
121
122
123
124
125
126
127
128
129
130
131
                                            {'sceneid': list(GDF.sceneid)}), columns=['sceneid', 'proc_level'])
        GDF = GDF.merge(procL, on='sceneid', how='left')
        GDF = GDF.where(GDF.notnull(), None)  # replace NaN values with None

        # get path of binary file
        def get_path_binary(GDF_row):
            return PG.path_generator(scene_ID=GDF_row['sceneid'], proc_level=GDF_row['proc_level']) \
                .get_path_imagedata() if GDF_row['proc_level'] else None
        GDF['path_ref'] = GDF.apply(lambda GDF_row: get_path_binary(GDF_row), axis=1)
        GDF['refDs_exists'] = list(GDF['path_ref'].map(lambda p: os.path.exists(p) if p else False))

        # check if a proper entity ID can be gathered from database
132
        eID = GeoDataFrame(DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes', ['id', 'entityid'],
133
134
135
136
137
138
139
140
141
                                                           {'id': list(GDF.sceneid)}), columns=['sceneid', 'entityid'])
        GDF = GDF.merge(eID, on='sceneid', how='left')
        self.GDF_ref_scenes = GDF.where(GDF.notnull(), None)

    def _filter_excluded_sceneID(self):
        """Filter reference scene with the same scene ID like the target scene."""
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
            self.GDF_ref_scenes = GDF.loc[GDF['sceneid'] != self.sceneID_excluded]
142

143
    def _filter_by_overlap(self):
144
        """Filter all scenes with less spatial overlap than self.min_overlap."""
145
146
147
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
            self.GDF_ref_scenes = GDF.loc[GDF['overlap percentage'] >= self.min_overlap]
148

149
    def _filter_by_proc_status(self):
150
        """Filter all scenes that have not been processed before according to proc. status (at least L1A is needed)."""
151
152
153
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
            self.GDF_ref_scenes = GDF[GDF['proc_level'].notnull()]
154

155
    def _filter_by_dataset_existance(self):
156
        """Filter all scenes where no processed data can be found on fileserver."""
157
158
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
159
            self.GDF_ref_scenes = GDF[GDF['refDs_exists']]
160

161
    def _filter_by_entity_ID_availability(self):
162
        """Filter all scenes where no proper entity ID can be found in the database (database errors)."""
163
164
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
165
            self.GDF_ref_scenes = GDF[GDF['entityid'].notnull()]
166

167
    def _filter_by_projection(self):
168
        """Filter all scenes that have a different projection than the target image."""
169
        GDF = self.GDF_ref_scenes[self.GDF_ref_scenes.refDs_exists]
170
171
        if not GDF.empty:
            # compare projections of target and reference image
172
173
            GDF['prj_equal'] = \
                list(GDF['path_ref'].map(lambda path_ref: prj_equal(self.src_prj, GeoArray(path_ref).prj)))
174

175
            self.GDF_ref_scenes = GDF[GDF['prj_equal']]
176

177
178
    def choose_ref_scene(self):
        """Choose reference scene with minimum cloud cover and maximum overlap."""
179
180
181
        if self.possib_ref_scenes:
            # First, collect some relavant reference scene metadata
            self._collect_refscene_metadata()
182

183
184
185
186
187
188
189
            # Filter possible scenes by running all filter functions
            self._filter_excluded_sceneID()
            self._filter_by_overlap()
            self._filter_by_proc_status()
            self._filter_by_dataset_existance()
            self._filter_by_entity_ID_availability()
            self._filter_by_projection()
190

191
192
193
194
195
        # Choose the reference scene out of the filtered DataFrame
        if not self.GDF_ref_scenes.empty:
            GDF = self.GDF_ref_scenes
            GDF = GDF[GDF['cloudcover'] == GDF['cloudcover'].min()]
            GDF = GDF[GDF['overlap percentage'] == GDF['overlap percentage'].max()]
196

197
198
199
200
201
            if not GDF.empty:
                GDF_res = GDF.iloc[0]
                return ref_Scene(GDF_res)
        else:
            return None
202

203

204
205
class ref_Scene:
    def __init__(self, GDF_record):
206
207
208
        self.scene_ID = int(GDF_record['sceneid'])
        self.entity_ID = GDF_record['entityid']
        self.AcqDate = GDF_record['acquisitiondate']
209
210
        self.cloudcover = GDF_record['cloudcover']
        self.polyLonLat = GDF_record['polyLonLat']
211
        self.polyUTM = GDF_record['polyUTM']
212
        self.proc_level = GDF_record['proc_level']
213
        self.filePath = GDF_record['path_ref']
214
215
216
217
218


class L1B_object(L1A_object):
    def __init__(self, L1A_obj=None):

219
        super(L1B_object, self).__init__()
220
221
222

        # set defaults
        self._spatRef_available = None
223
224
        self.spatRef_scene = None  # set by self.get_spatial_reference_scene()
        self.deshift_results = collections.OrderedDict()
225
226
227
228
229
230
231
232
233

        if L1A_obj:
            # populate attributes
            [setattr(self, key, value) for key, value in L1A_obj.__dict__.items()]

        self.proc_level = 'L1B'

    @property
    def spatRef_available(self):
234
        if self._spatRef_available is not None:
235
236
237
238
239
240
241
242
243
244
            return self._spatRef_available
        else:
            self.get_spatial_reference_scene()
            return self._spatRef_available

    @spatRef_available.setter
    def spatRef_available(self, spatRef_available):
        self._spatRef_available = spatRef_available

    def get_spatial_reference_scene(self):
245
        boundsLonLat = corner_coord_to_minmax(self.trueDataCornerLonLat)
246
        footprint_poly = HLP_F.CornerLonLat_to_shapelyPoly(self.trueDataCornerLonLat)
247
        RSF = Scene_finder(boundsLonLat, self.acq_datetime, self.meta_odict['coordinate system string'],
248
                           footprint_poly, self.scene_ID, 20, 0, 20, 30, 10)
249
250
251
252
253
254
255

        # run spatial query
        self.logger.info('Querying database in order to find a suitable reference scene for co-registration.')
        RSF.spatial_query(timeout=5)
        if RSF.possib_ref_scenes:
            self.logger.info('Query result: %s reference scenes with matching metadata.' % len(RSF.possib_ref_scenes))

256
257
258
259
260
261
262
263
264
265
266
            # try to get a spatial reference scene by applying some filter criteria
            self.spatRef_scene = RSF.choose_ref_scene()  # type: Union[ref_Scene, None]
            if self.spatRef_scene:
                self.spatRef_available = True
                self.logger.info('Found a suitable reference image for coregistration: scene ID %s (entity ID %s).'
                                 % (self.spatRef_scene.scene_ID, self.spatRef_scene.entity_ID))
            else:
                self.spatRef_available = False
                self.logger.warning('No scene fulfills all requirements to serve as spatial reference for scene %s '
                                    '(entity ID %s). Coregistration impossible.' % (self.scene_ID, self.entity_ID))

267
        else:
268
            self.logger.warning('Spatial query returned no matches. Coregistration impossible.')
269
            self.spatRef_available = False
270
271

    def _get_reference_image_params_pgSQL(self):
272
        # TODO implement earlier version of this function as a backup for SpatialIndexMediator
273
274
        """postgreSQL query: get IDs of overlapping scenes and select most suitable scene_ID
            (with respect to DGM, cloud cover"""
275
276
        warnings.warn('_get_reference_image_params_pgSQL is deprecated an will not work anymore.', DeprecationWarning)

277
278
        # vorab-check anhand wolkenmaske, welche region von im2shift überhaupt für shift-corr tauglich ist
        # -> diese region als argument in postgresql abfrage
279
        # scene_ID            = 14536400 # LE71510322000093SGS00 im2shift
280

281
        # set query conditions
282
283
        min_overlap = 20  # %
        max_cloudcov = 20  # %
284
        plusminus_days = 30
285
286
        AcqDate = self.im2shift_objDict['acquisition_date']
        date_minmax = [AcqDate - timedelta(days=plusminus_days), AcqDate + timedelta(days=plusminus_days)]
287
        dataset_cond = 'datasetid=%s' % CFG.datasetid_spatial_ref
288
289
290
291
292
        cloudcov_cond = 'cloudcover < %s' % max_cloudcov
        # FIXME cloudcover noch nicht für alle scenes im proc_level METADATA verfügbar
        dayrange_cond = "(EXTRACT(MONTH FROM scenes.acquisitiondate), EXTRACT(DAY FROM scenes.acquisitiondate)) " \
                        "BETWEEN (%s, %s) AND (%s, %s)" \
                        % (date_minmax[0].month, date_minmax[0].day, date_minmax[1].month, date_minmax[1].day)
293
294
        # TODO weitere Kriterien einbauen!

295
296
        def query_scenes(condlist):
            return DB_T.get_overlapping_scenes_from_postgreSQLdb(
297
                CFG.conn_database,
298
299
300
301
302
                table='scenes',
                tgt_corners_lonlat=self.trueDataCornerLonLat,
                conditions=condlist,
                add_cmds='ORDER BY scenes.cloudcover ASC',
                timeout=30000)
303
304
        conds_descImportance = [dataset_cond, cloudcov_cond, dayrange_cond]

305
        self.logger.info('Querying database in order to find a suitable reference scene for co-registration.')
306

307
        count, filt_overlap_scenes = 0, []
308
        while not filt_overlap_scenes:
309
310
311
312
            if count == 0:
                # search within already processed scenes
                # das ist nur Ergebnis aus scenes_proc
                # -> dort liegt nur eine referenz, wenn die szene schon bei CFG.job-Beginn in Datensatzliste drin war
313
                res = DB_T.get_overlapping_scenes_from_postgreSQLdb(
314
                    CFG.conn_database,
315
                    tgt_corners_lonlat=self.trueDataCornerLonLat,
316
                    conditions=['datasetid=%s' % CFG.datasetid_spatial_ref],
317
318
                    add_cmds='ORDER BY scenes.cloudcover ASC',
                    timeout=25000)
319
                filt_overlap_scenes = self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], 20.)
320

321
            else:
322
323
324
                # search within complete scenes table using less filter criteria with each run
                # TODO: Daniels Index einbauen, sonst  bei wachsender Tabellengröße evtl. irgendwann zu langsam
                res = query_scenes(conds_descImportance)
325
                filt_overlap_scenes = self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], min_overlap)
326

327
                if len(conds_descImportance) > 1:  # FIXME anderer Referenzsensor?
328
329
330
331
                    del conds_descImportance[-1]
                else:  # reduce min_overlap to 10 percent if there are overlapping scenes
                    if res:
                        min_overlap = 10
332
333
                        filt_overlap_scenes = \
                            self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], min_overlap)
334
335

                    # raise warnings if no match found
336
                    if not filt_overlap_scenes:
337
338
                        if not res:
                            warnings.warn('No reference scene found for %s (scene ID %s). Coregistration of this scene '
339
                                          'failed.' % (self.baseN, self.scene_ID))
340
341
342
                        else:
                            warnings.warn('Reference scenes for %s (scene ID %s) have been found but none has more '
                                          'than %s percent overlap. Coregistration of this scene failed.'
343
                                          % (self.baseN, self.scene_ID, min_overlap))
344
                        break
345
            count += 1
346
347
348
349

        if filt_overlap_scenes:
            ref_available = False
            for count, sc in enumerate(filt_overlap_scenes):
350
                if count == 2:  # FIXME Abbuch schon bei 3. Szene?
351
                    warnings.warn('No reference scene for %s (scene ID %s) available. '
352
                                  'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
353
354
355
                    break

                # start download of scene data not available and start L1A processing
356
                def dl_cmd(scene_ID): print('%s %s %s' % (
357
358
                    CFG.java_commands['keyword'].strip(),  # FIXME CFG.java_commands is deprecated
                    CFG.java_commands["value_download"].strip(), scene_ID))
359

360
                path = PG.path_generator(scene_ID=sc['scene_ID']).get_path_imagedata()
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
361

362
363
364
365
366
367
368
369
                if not os.path.exists(path):
                    # add scene 2 download to scenes_jobs.missing_scenes

                    # print JAVA download command
                    t_dl_start = time.time()
                    dl_cmd(sc['scene_ID'])

                    # check if scene is downloading
370
371
                    download_start_timeout = 5  # seconds
                    # set timout for external processing
372
                    # -> DEPRECATED BECAUSE CREATION OF EXTERNAL CFG WITHIN CFG IS NOT ALLOWED
373
                    processing_timeout = 5  # seconds # FIXME increase timeout if processing is really started
374
375
376
                    proc_level = None
                    while True:
                        proc_level_chk = DB_T.get_info_from_postgreSQLdb(
377
                            CFG.conn_database, 'scenes', ['proc_level'], {'id': sc['scene_ID']})[0][0]
378
                        if proc_level != proc_level_chk:
379
                            print('Reference scene %s, current processing level: %s' % (sc['scene_ID'], proc_level_chk))
380
                        proc_level = proc_level_chk
381
382
                        if proc_level_chk in ['SCHEDULED', 'METADATA'] and \
                           time.time() - t_dl_start >= download_start_timeout:
383
                            warnings.warn('Download of reference scene %s (entity ID %s) timed out. '
384
                                          'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
385
386
                            break
                        if proc_level_chk == 'L1A':
387
388
389
390
                            ref_available = True
                            break
                        elif proc_level_chk == 'DOWNLOADED' and time.time() - t_dl_start >= processing_timeout:
                            # proc_level='DOWNLOADED' but scene has not been processed
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
391
392
393
                            warnings.warn('L1A processing of reference scene %s (entity ID %s) timed out. '
                                          'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
                            break
394
                            # DB_T.set_info_in_postgreSQLdb(CFG.conn_database,'scenes',
395
                            #                             {'proc_level':'METADATA'},{'id':sc['scene_ID']})
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
396

397
398
399
400
401
402
403
                        time.sleep(5)
                else:
                    ref_available = True

                if not ref_available:
                    continue
                else:
404
405
                    self.path_imref = path
                    self.imref_scene_ID = sc['scene_ID']
406
                    self.imref_footprint_poly = sc['scene poly']
407
408
409
410
                    self.overlap_poly = sc['overlap poly']
                    self.overlap_percentage = sc['overlap percentage']
                    self.overlap_area = sc['overlap area']

411
                    query_res = DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes', ['entityid'],
412
413
414
                                                                {'id': self.imref_scene_ID}, records2fetch=1)
                    assert query_res != [], 'No entity-ID found for scene number %s' % self.imref_scene_ID
                    self.imref_entity_ID = query_res[0][0]  # [('LC81510322013152LGN00',)]
415
                    break
416
        self.logger.close()
417

418
    def _sceneIDList_to_filt_overlap_scenes(self, sceneIDList, min_overlap):
419
420
421
        """find reference scenes that cover at least 20% of the scene with the given ID
        ONLY FIRST 50 scenes are considered"""

422
423
424
        # t0 = time.time()
        dict_sceneID_poly = [{'scene_ID': ID, 'scene poly': HLP_F.scene_ID_to_shapelyPolygon(ID)}
                             for ID in sceneIDList]  # always returns LonLot polygons
425
426

        # get overlap polygons and their parameters. result: [{overlap poly, overlap percentage, overlap area}]
427
428
        for dic in dict_sceneID_poly:  # input: dicts {scene_ID, ref_poly}
            dict_overlap_poly_params = get_overlap_polygon(dic['scene poly'], self.arr.footprint_poly)
429
            dic.update(dict_overlap_poly_params)  # adds {overlap poly, overlap percentage, overlap area}
430
        # print('polygon creation time', time.time()-t0)
431
432
433
434
435
436
437
438

        # filter those scene_IDs out where overlap percentage is below 20%
        if min_overlap:
            filt_overlap_scenes = [scene for scene in dict_sceneID_poly if scene['overlap percentage'] >= min_overlap]
        else:
            filt_overlap_scenes = dict_sceneID_poly

        return filt_overlap_scenes
439

440
441
442
443
444
445
    def get_opt_bands4matching(self, target_cwlPos_nm=550, v=False):
        """Automatically determines the optimal bands used für fourier shift theorem matching

        :param target_cwlPos_nm:   the desired wavelength used for matching
        :param v:                  verbose mode
        """
446
447
448
449
        # get GMS_object for reference scene
        path_gmsFile = PG.path_generator(scene_ID=self.spatRef_scene.scene_ID).get_path_gmsfile()
        ref_obj = GMS_object().from_disk((path_gmsFile, ['cube', None]))

450
        # get spectral characteristics
451
452
        ref_cwl, shift_cwl = [[float(i) for i in GMS_obj.meta_odict['wavelength']] for GMS_obj in [ref_obj, self]]
        ref_fwhm, shift_fwhm = [[float(i) for i in GMS_obj.meta_odict['bandwidths']] for GMS_obj in [ref_obj, self]]
453
454

        # exclude cirrus/oxygen band of Landsat-8/Sentinel-2
455
        shift_bbl, ref_bbl = [False] * len(shift_cwl), [False] * len(ref_cwl)  # bad band lists
456
457
458
459
460
461
462
        for GMS_obj, s_r, bbl in zip([self, ref_obj], ['shift', 'ref'], [shift_bbl, ref_bbl]):
            GMS_obj.GMS_identifier['logger'] = None  # set a dummy value in order to avoid Exception
            sensorcode = get_GMS_sensorcode(GMS_obj.GMS_identifier)
            if sensorcode in ['LDCM', 'S2A', 'S2B'] and '9' in GMS_obj.LayerBandsAssignment:
                bbl[GMS_obj.LayerBandsAssignment.index('9')] = True
            if sensorcode in ['S2A', 'S2B'] and '10' in GMS_obj.LayerBandsAssignment:
                bbl[GMS_obj.LayerBandsAssignment.index('10')] = True
463

464
        # cwl_overlap = (max(min(shift_cwl),min(ref_cwl)),  min(max(shift_cwl),max(ref_cwl))) # -> (min wvl, max wvl)
465
        # find matching band of reference image for each band of image to be shifted
466
467
468
469
        match_dic = collections.OrderedDict()
        for idx, cwl, fwhm in zip(range(len(shift_cwl)), shift_cwl, shift_fwhm):
            if shift_bbl[idx]:
                continue  # skip cwl if it is declared as bad band above
470
471
472

            def is_inside(r_cwl, s_cwl, s_fwhm): return s_cwl - s_fwhm / 2 < r_cwl < s_cwl + s_fwhm / 2

473
474
            matching_r_cwls = [r_cwl for i, r_cwl in enumerate(ref_cwl) if
                               is_inside(r_cwl, cwl, fwhm) and not ref_bbl[i]]
475
476
            if matching_r_cwls:
                match_dic[cwl] = matching_r_cwls[0] if len(matching_r_cwls) else \
477
                    matching_r_cwls[np.abs(np.array(matching_r_cwls) - cwl).argmin()]
478
479
480
481
482

        # set bands4 match based on the above results
        poss_cwls = [cwl for cwl in shift_cwl if cwl in match_dic]
        if poss_cwls:
            if not target_cwlPos_nm:
483
484
485
486
487
488
489
                shift_band4match = shift_cwl.index(poss_cwls[0]) + 1  # first possible shift band
                ref_band4match = ref_cwl.index(match_dic[poss_cwls[0]]) + 1  # matching reference band
            else:  # target_cwlPos is given
                closestWvl_to_target = poss_cwls[np.abs(np.array(poss_cwls) - target_cwlPos_nm).argmin()]
                shift_band4match = shift_cwl.index(closestWvl_to_target) + 1  # the shift band closest to target
                ref_band4match = ref_cwl.index(match_dic[closestWvl_to_target]) + 1  # matching ref
        else:  # all reference bands are outside of shift-cwl +- fwhm/2
490
491
            warnings.warn('Optimal bands for matching could not be automatically determined. Choosing first band of'
                          'each image.')
492
493
            shift_band4match = 1
            ref_band4match = 1
494

495
496
497
        if v:
            print('Shift band for matching:     %s (%snm)' % (shift_band4match, shift_cwl[shift_band4match - 1]))
            print('Reference band for matching: %s (%snm)' % (ref_band4match, ref_cwl[ref_band4match - 1]))
498
499
500

        return ref_band4match, shift_band4match

501
    def compute_global_shifts(self):
502
503
504
505
506
        spatIdxSrv_status = os.environ['GMS_SPAT_IDX_SRV_STATUS'] if 'GMS_SPAT_IDX_SRV_STATUS' in os.environ else True

        if spatIdxSrv_status == 'unavailable':
            self.logger.warning('Coregistration skipped due to unavailable Spatial Index Mediator Server!"')

507
        elif CFG.skip_coreg:
508
            self.logger.warning('Coregistration skipped according to user configuration.')
509

510
        elif self.coreg_needed and self.spatRef_available:
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
            geoArr_ref = GeoArray(self.spatRef_scene.filePath)
            geoArr_shift = GeoArray(self.arr)
            r_b4match, s_b4match = self.get_opt_bands4matching(target_cwlPos_nm=550, v=False)
            coreg_kwargs = dict(
                r_b4match=r_b4match,
                s_b4match=s_b4match,
                align_grids=True,  # FIXME not needed here
                match_gsd=True,  # FIXME not needed here
                data_corners_ref=[[x, y] for x, y in self.spatRef_scene.polyUTM.convex_hull.exterior.coords],
                data_corners_tgt=[transform_any_prj(EPSG2WKT(4326), self.meta_odict['coordinate system string'], x, y)
                                  for x, y in HLP_F.reorder_CornerLonLat(self.trueDataCornerLonLat)],
                nodata=(get_outFillZeroSaturated(geoArr_ref.dtype)[0],
                        get_outFillZeroSaturated(geoArr_shift.dtype)[0]),
                ignore_errors=True,
                v=False,
                q=True
            )
528
529
530
531

            COREG_obj = COREG(geoArr_ref, geoArr_shift, **coreg_kwargs)
            COREG_obj.calculate_spatial_shifts()

532
533
534
535
            self.coreg_info.update(
                COREG_obj.coreg_info)  # no clipping to trueCornerLonLat until here -> only shift correction
            self.coreg_info.update({'reference scene ID': self.spatRef_scene.scene_ID})
            self.coreg_info.update({'reference entity ID': self.spatRef_scene.entity_ID})
536
537

            if COREG_obj.success:
538
                self.coreg_info['success'] = True
539
                self.logger.info("Calculated map shifts (X,Y): %s / %s"
540
541
                                 % (COREG_obj.x_shift_map,
                                    COREG_obj.y_shift_map))  # FIXME direkt in calculate_spatial_shifts loggen
542

543
544
545
            else:
                # TODO add database entry with error hint
                [self.logger.error('ERROR during coregistration of scene %s (entity ID %s):\n%s'
546
                                   % (self.scene_ID, self.entity_ID, err)) for err in COREG_obj.tracked_errors]
547

548
        else:
549
            if self.coreg_needed:
550
551
                self.logger.warning('Coregistration skipped because no suitable reference scene is available or '
                                    'spatial query failed.')
552
553
            else:
                self.logger.info('Coregistration of scene %s (entity ID %s) skipped because target dataset ID equals '
554
555
                                 'reference dataset ID.' % (self.scene_ID, self.entity_ID))

556
557
    def correct_spatial_shifts(self, cliptoextent=True, clipextent=None, clipextent_prj=None, v=False):
        # type: (bool, list, any, bool) -> None
558
        """Corrects the spatial shifts calculated by self.compute_global_shifts().
559
560
561
562
563
564
565
566
567

        :param cliptoextent:    whether to clip the output to the given extent
        :param clipextent:      list of XY-coordinate tuples giving the target extent (if not given and cliptoextent is
                                True, the 'trueDataCornerLonLat' attribute of the GMS object is used
        :param clipextent_prj:  WKT projection string or EPSG code of the projection for the coordinates in clipextent
        :param v:
        :return:
        """

568
569
        # cliptoextent is automatically True if an extent is given
        cliptoextent = cliptoextent if not clipextent else True
570

571
572
        if cliptoextent or self.resamp_needed or (self.coreg_needed and self.coreg_info['success']):

573
            # get target bounds # TODO implement boxObj call instead here
574
            if not clipextent:
575
576
                trueDataCornerUTM = [transform_any_prj(EPSG2WKT(4326), self.MetaObj.projection, x, y)
                                     for x, y in self.trueDataCornerLonLat]
577
                xmin, xmax, ymin, ymax = corner_coord_to_minmax(trueDataCornerUTM)
578
                mapBounds = box(xmin, ymin, xmax, ymax).bounds
579
580
581
582
583
584
585
586
            else:
                assert clipextent_prj, \
                    "'clipextent_prj' must be given together with 'clipextent'. Received only 'clipextent'."
                clipextent_UTM = clipextent if prj_equal(self.MetaObj.projection, clipextent_prj) else \
                    [transform_any_prj(clipextent_prj, self.MetaObj.projection, x, y) for x, y in clipextent]
                xmin, xmax, ymin, ymax = corner_coord_to_minmax(clipextent_UTM)
                mapBounds = box(xmin, ymin, xmax, ymax).bounds

587
            # correct shifts and clip to extent
588
589
            # ensure self.masks exists (does not exist in Flink mode because
            # in that case self.fill_from_disk() is skipped)
590
591
592
            if not hasattr(self, 'masks') or self.masks is None:
                self.build_combined_masks_array()  # creates self.masks and self.masks_meta

593
594
595
            # exclude self.mask_nodata, self.mask_clouds from warping
            del self.mask_nodata, self.mask_clouds

596
597
598
            attributes2deshift = [attrname for attrname in
                                  ['arr', 'masks', 'dem', 'ac_errors', 'mask_clouds_confidence']
                                  if getattr(self, '_%s' % attrname) is not None]
599
            for attrname in attributes2deshift:
600
                geoArr = getattr(self, attrname)
601
602

                # do some logging
603
604
                if self.coreg_needed:
                    if self.coreg_info['success']:
605
606
                        self.logger.info("Correcting spatial shifts for attribute '%s'..." % attrname)
                    elif cliptoextent and is_coord_grid_equal(
607
                         geoArr.gt, CFG.spatial_ref_gridx, CFG.spatial_ref_gridy):
608
                        self.logger.info("Attribute '%s' has only been clipped to it's extent because no valid "
609
610
                                         "shifts have been detected and the pixel grid equals the target grid."
                                         % attrname)
611
612
                    elif self.resamp_needed:
                        self.logger.info("Resampling attribute '%s' to target grid..." % attrname)
613
614
615
616
                elif self.resamp_needed:
                    self.logger.info("Resampling attribute '%s' to target grid..." % attrname)

                # correct shifts
617
                DS = DESHIFTER(geoArr, self.coreg_info,
618
                               target_xyGrid=[CFG.spatial_ref_gridx, CFG.spatial_ref_gridy],
619
620
621
622
                               cliptoextent=cliptoextent,
                               clipextent=mapBounds,
                               align_grids=True,
                               resamp_alg='nearest' if attrname == 'masks' else 'cubic',
623
                               CPUs=None if CFG.allow_subMultiprocessing else 1,
624
625
626
                               progress=True if v else False,
                               q=True,
                               v=v)
627
628
629
                DS.correct_shifts()

                # update coreg_info
630
631
                if attrname == 'arr':
                    self.coreg_info['is shifted'] = DS.is_shifted
632
                    self.coreg_info['is resampled'] = DS.is_resampled
633

634
                # update geoinformations and array shape related attributes
635
636
637
                self.logger.info("Updating geoinformations of '%s' attribute..." % attrname)
                if attrname == 'arr':
                    self.meta_odict['map info'] = DS.updated_map_info
638
                    self.meta_odict['coordinate system string'] = EPSG2WKT(WKT2EPSG(DS.updated_projection))
639
                    self.shape_fullArr = DS.arr_shifted.shape
640
641
                    self.meta_odict['lines'], self.meta_odict['samples'] = DS.arr_shifted.shape[:2]
                else:
642
643
                    self.masks_meta['map info'] = DS.updated_map_info
                    self.masks_meta['coordinate system string'] = EPSG2WKT(WKT2EPSG(DS.updated_projection))
644
645
                    self.masks_meta['lines'], self.masks_meta['samples'] = DS.arr_shifted.shape[:2]

646
647
                    # NOTE: mask_nodata and mask_clouds are updated later by L2A_map mapper function (module pipeline)

648
                # update the GeoArray instance without loosing its inherent metadata (nodata, ...)
649
650
651
                geoArr.arr, geoArr.gt, geoArr.prj = \
                    DS.GeoArray_shifted.arr, DS.GeoArray_shifted.gt, DS.GeoArray_shifted.prj
                # setattr(self,attrname, DS.GeoArray_shifted) # NOTE: don't set array earlier because setter will also
652
653
                #                                            # update arr.gt/.prj/.nodata from meta_odict

654
            self.resamp_needed = False
655
            self.coreg_needed = False
656

657
658
            # recreate self.masks_nodata and self.mask_clouds from self.masks
            self.mask_nodata = self.mask_nodata
659
660
            self.mask_clouds = self.mask_clouds
            # FIXME move functionality of self.masks only to output writer and remove self.masks completely