L1C_P.py 40.9 KB
Newer Older
Daniel Scheffler's avatar
Daniel Scheffler committed
1
# -*- coding: utf-8 -*-
Daniel Scheffler's avatar
Daniel Scheffler committed
2
3
4
5
6
7
8
9
10
"""
Level 1C Processor:

   Performed operations:
   Atmospheric correction of TOA-reflectance data:

   Written by Daniel Scheffler
"""

11
import warnings
12
13
import re
import logging
14
import dill
15
import traceback
Daniel Scheffler's avatar
Daniel Scheffler committed
16
from typing import List
17

18
import numpy as np
19
20
21
22
try:
    from osgeo import osr
except ImportError:
    import osr
Daniel Scheffler's avatar
Daniel Scheffler committed
23

24
from geoarray import GeoArray
25
from py_tools_ds.geo.map_info import mapinfo2geotransform
26

Daniel Scheffler's avatar
Daniel Scheffler committed
27
28
29
from ..config import GMS_config as CFG
from . import GEOPROCESSING as GEOP
from .L1B_P import L1B_object
30
from ..model.METADATA import get_LayerBandsAssignment
31
from ..misc.definition_dicts import get_outFillZeroSaturated, proc_chain, get_mask_classdefinition
32
from ..io.Input_reader import SRF
33
# from .cloud_masking import Cloud_Mask_Creator  # circular dependencies
34

35
from sicor.sicor_ac import ac_gms
36
from sicor.sensors import RSImage
37
from sicor.Mask import S2Mask
38

Daniel Scheffler's avatar
Daniel Scheffler committed
39

40
class L1C_object(L1B_object):
41
42
43
44
45
46
47
    def __init__(self, L1B_obj=None):
        super().__init__()

        if L1B_obj:
            # populate attributes
            [setattr(self, key, value) for key,value in L1B_obj.__dict__.items()]

48
49
50
51
52
53
54
55
        # private attributes
        self._VZA_arr = None
        self._VAA_arr = None
        self._SZA_arr = None
        self._SAA_arr = None
        self._RAA_arr = None
        self._lonlat_arr = None

56
        self.proc_level = 'L1C'
57

58
59
60
    @property
    def lonlat_arr(self):
        """Calculates pixelwise 2D-array with longitude and latitude coordinates.
61

62
63
64
65
66
67
68
69
        :return:
        """
        if self._lonlat_arr is None:
            self.logger.info('Calculating LonLat array...')
            self._lonlat_arr = \
                GEOP.get_lonlat_coord_array(self.shape_fullArr, self.arr_pos,
                                            mapinfo2geotransform(self.meta_odict['map info']),
                                            self.meta_odict['coordinate system string'],
Daniel Scheffler's avatar
Daniel Scheffler committed
70
71
                                            meshwidth=10,  # for faster processing
                                            nodata_mask=None,  # dont overwrite areas outside the image with nodata
72
73
                                            outFill=get_outFillZeroSaturated(np.float32)[0])[0]
        return self._lonlat_arr
74

75
76
77
    @lonlat_arr.setter
    def lonlat_arr(self, lonlat_arr):
        self._lonlat_arr = lonlat_arr
78

79
80
81
82
83
84
85
86
87
88
89
90
    @property
    def VZA_arr(self):
        """Get viewing zenith angle.

        :return:
        """
        if self._VZA_arr is None:
            self.logger.info('Calculating viewing zenith array...')
            if 'ViewingAngle_arrProv' in self.meta_odict and self.meta_odict['ViewingAngle_arrProv']:
                # Sentinel-2
                self._VZA_arr = GEOP.adjust_acquisArrProv_to_shapeFullArr(self.meta_odict['ViewingAngle_arrProv'],
                                                                          self.shape_fullArr,
Daniel Scheffler's avatar
Daniel Scheffler committed
91
                                                                          meshwidth=10,  # for faster processing
92
93
94
95
                                                                          subset=None,
                                                                          bandwise=0)
            else:
                self._VZA_arr = GEOP.calc_VZA_array(self.shape_fullArr, self.arr_pos, self.fullSceneCornerPos,
96
97
98
99
100
                                                    float(self.meta_odict['ViewingAngle']),
                                                    float(self.meta_odict['FieldOfView']),
                                                    self.logger,
                                                    nodata_mask=None,  # dont overwrite areas outside the image with nodata
                                                    outFill=get_outFillZeroSaturated(np.float32)[0],
Daniel Scheffler's avatar
Daniel Scheffler committed
101
                                                    meshwidth=10)  # for faster processing
102
103
104
105
106
        return self._VZA_arr

    @VZA_arr.setter
    def VZA_arr(self, VZA_arr):
        self._VZA_arr = VZA_arr
107

108
109
110
    @property
    def VAA_arr(self):
        """Get viewing azimuth angle.
111

112
113
114
115
116
117
118
119
        :return:
        """
        if self._VAA_arr is None:
            self.logger.info('Calculating viewing azimuth array...')
            if 'IncidenceAngle_arrProv' in self.meta_odict and self.meta_odict['IncidenceAngle_arrProv']:
                # Sentinel-2
                self._VAA_arr = GEOP.adjust_acquisArrProv_to_shapeFullArr(self.meta_odict['IncidenceAngle_arrProv'],
                                                                          self.shape_fullArr,
Daniel Scheffler's avatar
Daniel Scheffler committed
120
                                                                          meshwidth=10,  # for faster processing
121
122
123
124
125
                                                                          subset=None,
                                                                          bandwise=0)
            else:
                # only a mean VAA is available
                if self.VAA_mean is None:
126
127
                    self.VAA_mean = \
                        GEOP.calc_VAA_using_fullSceneCornerLonLat(self.fullSceneCornerLonLat, self.MetaObj.orbitParams)
128
129
                    assert isinstance(self.VAA_mean, float)

130
                self._VAA_arr = np.full(self.VZA_arr.shape, self.VAA_mean, np.float32)
131
132
133
134
135
        return self._VAA_arr

    @VAA_arr.setter
    def VAA_arr(self, VAA_arr):
        self._VAA_arr = VAA_arr
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    @property
    def SZA_arr(self):
        """Get solar zenith angle.

        :return:
        """
        if self._SZA_arr is None:
            self.logger.info('Calculating solar zenith and azimuth arrays...')
            self._SZA_arr, self._SAA_arr = \
                GEOP.calc_SZA_SAA_array(
                    self.shape_fullArr, self.arr_pos,
                    self.meta_odict['AcqDate'],
                    self.meta_odict['AcqTime'],
                    self.fullSceneCornerPos,
                    self.fullSceneCornerLonLat,
                    self.meta_odict['overpass duraction sec'],
                    self.logger,
                    meshwidth=10,
                    nodata_mask=None,  # dont overwrite areas outside the image with nodata
                    outFill=get_outFillZeroSaturated(np.float32)[0],
                    accurracy=CFG.job.SZA_SAA_calculation_accurracy,
                    lonlat_arr=self.lonlat_arr if CFG.job.SZA_SAA_calculation_accurracy == 'fine' else None)
        return self._SZA_arr

    @SZA_arr.setter
    def SZA_arr(self, SZA_arr):
        self._SZA_arr = SZA_arr

    @property
    def SAA_arr(self):
        """Get solar azimuth angle.

        :return:
        """
        if self._SAA_arr is None:
Daniel Scheffler's avatar
Daniel Scheffler committed
172
            _ = self.SZA_arr  # getter also sets self._SAA_arr
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
        return self._SAA_arr

    @SAA_arr.setter
    def SAA_arr(self, SAA_arr):
        self._SAA_arr = SAA_arr

    @property
    def RAA_arr(self):
        """Get relative azimuth angle.

        :return:
        """
        if self._RAA_arr is None:
            self.logger.info('Calculating relative azimuth array...')
            self._RAA_arr = GEOP.calc_RAA_array(self.SAA_arr, self.VAA_mean,
                                                nodata_mask=None, outFill=get_outFillZeroSaturated(np.float32)[0])
        return self._RAA_arr

    @RAA_arr.setter
    def RAA_arr(self, RAA_arr):
        self._RAA_arr = RAA_arr
194

195
    def delete_ac_input_arrays(self):
Daniel Scheffler's avatar
Daniel Scheffler committed
196
197
198
199
200
201
        self.VZA_arr = None  # not needed anymore
        self.SZA_arr = None  # not needed anymore
        self.SAA_arr = None  # not needed anymore
        self.RAA_arr = None  # not needed anymore
        self.lonlat_arr = None  # not needed anymore
        del self.dem  # uses deleter # would have to be resampled when writing MGRS tiles -> better to directly warp it to the output dims and projection
202
203
204


class AtmCorr(object):
205
    def __init__(self, *L1C_objs, reporting=False):
206
        """Wrapper around atmospheric correction by Andre Hollstein, GFZ Potsdam
207
208
209
210
211
212

        Creates the input arguments for atmospheric correction from one or multiple L1C_object instance(s) belonging to
        the same scene ID, performs the atmospheric correction and returns the atmospherically corrected L1C object(s).

        :param L1C_objs: one or more instances of L1C_object belonging to the same scene ID
        """
213
        # FIXME not yet usable for data < 2012 due to missing ECMWF archive
214
215
216
        L1C_objs = L1C_objs if isinstance(L1C_objs, tuple) else (L1C_objs,)

        # hidden attributes
217
        self._logger   = None
218
219
220
221
        self._GSDs     = []
        self._data     = {}
        self._metadata = {}
        self._nodata   = {}
222
        self._band_spatial_sampling = {}
223
        self._options  = {}
224
225
226

        # assertions
        scene_IDs = [obj.scene_ID for obj in L1C_objs]
Daniel Scheffler's avatar
Daniel Scheffler committed
227
        assert len(list(set(scene_IDs))) == 1, \
228
229
            "Input GMS objects for 'AtmCorr' must all belong to the same scene ID!. Received %s." %scene_IDs

Daniel Scheffler's avatar
Daniel Scheffler committed
230
        self.inObjs    = L1C_objs  # type: List[L1B_object]
231
        self.reporting = reporting
Daniel Scheffler's avatar
Daniel Scheffler committed
232
233
        self.ac_input  = {}  # set by self.run_atmospheric_correction()
        self.results   = None  # direct output of external atmCorr module (set by run_atmospheric_correction)
234
        self.proc_info = {}
Daniel Scheffler's avatar
Daniel Scheffler committed
235
        self.outObjs   = []  # atmospherically corrected L1C objects
236
237

        # append AtmCorr object to input L1C objects
Daniel Scheffler's avatar
Daniel Scheffler committed
238
        # [setattr(L1C_obj, 'AtmCorr', self) for L1C_obj in self.inObjs] # too big for serialization
239

240
241
242
243
        if not re.search('Sentinel-2', self.inObjs[0].satellite, re.I):
            warnings.warn('Calculation of acquisition geometry arrays is currently only validated for Sentinel-2!')
            # validation possible by comparing S2 angles provided by ESA with own angles

244
245
246
247
248
    @property
    def logger(self):
        if self._logger and self._logger.handlers[:]:
            return self._logger
        else:
Daniel Scheffler's avatar
Daniel Scheffler committed
249
            if len(self.inObjs) == 1:
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
                # just use the logger of the inObj
                logger_atmCorr = self.inObjs[0].logger
            else:
                # in case of multiple GMS objects to be processed at once:
                # get the logger of the first inObj
                logger_atmCorr = self.inObjs[0].logger

                # add additional file handlers for the remaining inObj (that belong to the same scene_ID)
                for inObj in self.inObjs[1:]:
                    path_logfile = inObj.pathGen.get_path_logfile()
                    fileHandler  = logging.FileHandler(path_logfile, mode='a')
                    fileHandler.setFormatter(logger_atmCorr.formatter_fileH)
                    fileHandler.setLevel(logging.DEBUG)

                    logger_atmCorr.addHandler(fileHandler)

Daniel Scheffler's avatar
Daniel Scheffler committed
266
267
                    inObj.close_GMS_loggers()

268
269
270
271
272
273
            self._logger = logger_atmCorr
            return self._logger

    @logger.setter
    def logger(self, logger):
        assert isinstance(logger, logging.Logger) or logger in ['not set', None], \
Daniel Scheffler's avatar
Daniel Scheffler committed
274
            "AtmCorr.logger can not be set to %s." % logger
275
276
277
278
279
280
281
282
        if logger in ['not set', None]:
            self._logger.close()
            self._logger = logger
        else:
            self._logger = logger

    @logger.deleter
    def logger(self):
283
284
285
        if self._logger not in [None, 'not set']:
            self._logger.close()
            self._logger = None
286

Daniel Scheffler's avatar
Daniel Scheffler committed
287
288
        [inObj.close_GMS_loggers() for inObj in self.inObjs]

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
    @property
    def GSDs(self):
        """
        Returns a list of spatial samplings within the input GMS objects, e.g. [10,20,60].
        """
        for obj in self.inObjs:
            if obj.arr.xgsd != obj.arr.ygsd:
                warnings.warn("X/Y GSD is not equal for entity ID %s" % obj.entity_ID +
                              (' (%s)'%obj.subsystem if obj.subsystem else '') +
                              'Using X-GSD as key for spatial sampling dictionary.')
                self._GSDs.append(obj.arr.xgsd)

        return self._GSDs

    @property
    def data(self):
        """

        :return:
            ___ attribute: data, type:<class 'dict'>
            ______ key:B05, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 085998540.0803833 ]]
            ______ key:B01, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 131225590.13208008]]
            ______ key:B06, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .14965820.13977051]]
            ______ key:B11, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .11492920.10192871]]
            ______ key:B02, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 104187010.10308838]]
            ______ key:B10, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 013099670.01300049]]
            ______ key:B08, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .16857910.15783691]]
            ______ key:B04, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 065490720.06228638]]
            ______ key:B03, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 082702640.08148193]]
            ______ key:B12, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 068420410.06060791]]
            ______ key:B8A, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 192138670.17553711]]
            ______ key:B09, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .09600830.09887695]]
            ______ key:B07, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 173339840.15600586]]
        """
        if not self._data:
324
325
            data_dict = {}

326
            for inObj in self.inObjs:
327
                for bandN, bandIdx in inObj.arr.bandnames.items():
328
                    if bandN not in data_dict:
Daniel Scheffler's avatar
Daniel Scheffler committed
329
330
                        arr2pass = inObj.arr[:,:,bandIdx].astype(np.float32)  # conversion to np.float16 will convert -9999 to -10000
                        arr2pass[arr2pass==inObj.arr.nodata] = np.nan  # set nodata values to np.nan
331
                        data_dict[bandN] = (arr2pass/inObj.meta_odict['ScaleFactor']).astype(np.float16)
332
                    else:
333
                        inObj.logger.warning("Band '%s' cannot be included into atmospheric correction because it "
Daniel Scheffler's avatar
Daniel Scheffler committed
334
                                             "exists multiple times." % bandN)
335

336
337
            # validate: data must have all bands needed for AC
            full_LBA   = get_LayerBandsAssignment(self.inObjs[0].GMS_identifier, return_fullLBA=True)
Daniel Scheffler's avatar
Daniel Scheffler committed
338
            all_bNs_AC = ['B%s'% i if len(i) == 2 else 'B0%s' % i for i in full_LBA]
339
340
341
342
343
344
            if not all([bN in list(data_dict.keys()) for bN in all_bNs_AC]):
                raise RuntimeError('Atmospheric correction did not receive all the needed bands. \n\tExpected: %s;\n\t'
                                   'Received: %s' %(str(all_bNs_AC), str(list(sorted(data_dict.keys())))))

            self._data = data_dict

345
346
347
348
349
350
351
352
        return self._data

    @data.setter
    def data(self, data_dict):
        assert isinstance(data_dict, dict), \
            "'data' can only be set to a dictionary with band names as keys and numpy arrays as values."
        self._data = data_dict

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    @property
    def nodata(self):
        """

        :return:
            ___ attribute: nodata, type:<class 'dict'>
            ______ key:60.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
            ______ key:10.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
            ______ key:20.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
        """

        if not self._nodata:
            for inObj in self.inObjs:
                self._nodata[inObj.arr.xgsd] = ~inObj.arr.mask_nodata[:]

        return self._nodata

    @property
    def tile_name(self):
372
        """Returns S2A tile name.
373
        NOTE: this is only needed if no DEM is passed to ac_gms
374
375
376
377
378

        :return: e.g.
            '32UMA'
        """

Daniel Scheffler's avatar
Daniel Scheffler committed
379
        return ''  # FIXME
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

    @property
    def band_spatial_sampling(self):
        """

        :return: e.g.
            {'B01': 60.0,
             'B02': 10.0,
             'B03': 10.0,
             'B04': 10.0,
             'B05': 20.0,
             'B06': 20.0,
             'B07': 20.0,
             'B08': 10.0,
             'B09': 60.0,
             'B10': 60.0,
             'B11': 20.0,
             'B12': 20.0,
             'B8A': 20.0}
        """

        if not self._band_spatial_sampling:
            for inObj in self.inObjs:
                for bandN in inObj.arr.bandnames:
                    if bandN not in self._band_spatial_sampling:
                        self._band_spatial_sampling[bandN] = inObj.arr.xgsd
        return self._band_spatial_sampling

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    @property
    def metadata(self):
        """

        :return:
            ___ attribute: metadata, type:<class 'dict'>
            ______ key:spatial_samplings
            _________ key:60.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 1830
            ____________ key:XDIM, value_type:<class 'int'>, repr: 60
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 1830
            ____________ key:YDIM, value_type:<class 'int'>, repr: -60
            _________ key:10.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 10980
            ____________ key:XDIM, value_type:<class 'int'>, repr: 10
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 10980
            ____________ key:YDIM, value_type:<class 'int'>, repr: -10
            _________ key:20.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 5490
            ____________ key:XDIM, value_type:<class 'int'>, repr: 20
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 5490
            ____________ key:YDIM, value_type:<class 'int'>, repr: -20
            ______ key:SENSING_TIME, value_type:<class 'datetime.datetime'>, repr: 2016-03-26 10:34:06.538000+00:00
        """
438
439
        # TODO add SRF object
        metadata = {}
440
        if not self._metadata:
Daniel Scheffler's avatar
Daniel Scheffler committed
441
            del self.logger  # otherwise each input object would have multiple fileHandlers
442
443
444

            metadata['U']                         = self.inObjs[0].meta_odict['EarthSunDist']
            metadata['SENSING_TIME']              = self.inObjs[0].acq_datetime
Daniel Scheffler's avatar
Daniel Scheffler committed
445
            # metadata['SENSING_TIME']              = datetime.strptime('2015-08-12 10:40:21 +0000', '%Y-%m-%d %H:%M:%S %z')
446
447
448
449
450
451
452
453
454
455
            metadata['viewing_zenith']            = self._meta_get_viewing_zenith()
            metadata['viewing_azimuth']           = self._meta_get_viewing_azimuth()
            metadata['relative_viewing_azimuth']  = self._meta_get_relative_viewing_azimuth()
            metadata['sun_mean_azimuth']          = self.inObjs[0].meta_odict['SunAzimuth']
            metadata['sun_mean_zenith']           = 90-self.inObjs[0].meta_odict['SunElevation']
            metadata['solar_irradiance']          = self._meta_get_solar_irradiance()
            metadata['aux_data']                  = self._meta_get_aux_data()
            metadata['spatial_samplings']         = self._meta_get_spatial_samplings()

            self._metadata = metadata
456
457
458

        return self._metadata

459
460
461
462
463
464
465
466
    @property
    def options(self):
        """Returns a dictionary containing AC options.
        """
        if self._options:
            return self._options
        else:
            self._options = self.inObjs[0].ac_options
Daniel Scheffler's avatar
Daniel Scheffler committed
467
            self._options["AC"]['bands'] = [b for b in self.data.keys() if b in self._options["AC"]['bands']]
468
            self._options["report"]["reporting"] = self.reporting
469
470
            return self._options

471
    def _meta_get_spatial_samplings(self):
472
473
474
        """

        :return:
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
         {10.0: {'NCOLS': 10980,
           'NROWS': 10980,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 10.0,
           'YDIM': -10.0},
          20.0: {'NCOLS': 5490,
           'NROWS': 5490,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 20.0,
           'YDIM': -20.0},
          60.0: {'NCOLS': 1830,
           'NROWS': 1830,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 60.0,
           'YDIM': -60.0}}
493
        """
494
495
        # set corner coordinates and dims
        spatial_samplings = {}
496
497
498

        for inObj in self.inObjs:

499
500
501
502
503
            # validate GSD
            if inObj.arr.xgsd != inObj.arr.ygsd:
                warnings.warn("X/Y GSD is not equal for entity ID %s" % inObj.entity_ID +
                              (' (%s)' % inObj.subsystem if inObj.subsystem else '') +
                              'Using X-GSD as key for spatial sampling dictionary.')
504

505
506
            # set spatial information
            spatial_samplings[inObj.arr.xgsd] = dict(
507
508
509
510
511
512
                ULX   = inObj.arr.box.boxMapYX[0][1],
                ULY   = inObj.arr.box.boxMapYX[0][0],
                XDIM  = inObj.arr.xgsd,
                YDIM  = -inObj.arr.ygsd,
                NROWS = inObj.arr.rows,
                NCOLS = inObj.arr.cols)
513

514
515
516
        return spatial_samplings

    def _meta_get_solar_irradiance(self):
517
518
519
        """

        :return:
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
        {'B01': 1913.57,
         'B02': 1941.63,
         'B03': 1822.61,
         'B04': 1512.79,
         'B05': 1425.56,
         'B06': 1288.32,
         'B07': 1163.19,
         'B08': 1036.39,
         'B09': 813.04,
         'B10': 367.15,
         'B11': 245.59,
         'B12': 85.25,
         'B8A': 955.19}
        """

        solar_irradiance = {}

        for inObj in self.inObjs:
            for bandN, bandIdx in inObj.arr.bandnames.items():
                if bandN not in solar_irradiance:
                    solar_irradiance[bandN] = inObj.meta_odict['SolIrradiance'][bandIdx]
        return solar_irradiance

    def _meta_get_viewing_zenith(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
        """

        viewing_zenith = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
551
        for inObj in self.inObjs:  # type: L1C_object
552
            for bandN, bandIdx in inObj.arr.bandnames.items():
553
                if bandN not in viewing_zenith:
554
555
                    arr2pass = inObj.VZA_arr[:, :, bandIdx] if inObj.VZA_arr.ndim == 3 else inObj.VZA_arr
                    viewing_zenith[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
556
                    # viewing_zenith[bandN] = inObj.VZA_arr[:, :, bandIdx] if inObj.VZA_arr.ndim==3 else inObj.VZA_arr
557
558
559
560
561
562
563
564
565
566
        return viewing_zenith

    def _meta_get_viewing_azimuth(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
        """

        viewing_azimuth = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
567
        for inObj in self.inObjs:  # type: L1C_object
568
            for bandN, bandIdx in inObj.arr.bandnames.items():
569
                if bandN not in viewing_azimuth:
Daniel Scheffler's avatar
Daniel Scheffler committed
570
                    arr2pass = inObj.VAA_arr[:, :, bandIdx] if inObj.VAA_arr.ndim == 3 else inObj.VAA_arr
571
                    viewing_azimuth[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
572
                    # viewing_azimuth[bandN] = inObj.VAA_arr[:, :, bandIdx] if inObj.VAA_arr.ndim==3 else inObj.VAA_arr
573

574
575
576
577
578
579
        return viewing_azimuth

    def _meta_get_relative_viewing_azimuth(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
580
581
        """

582
583
        relative_viewing_azimuth = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
584
        for inObj in self.inObjs:  # type: L1C_object
585
            for bandN, bandIdx in inObj.arr.bandnames.items():
586
                if bandN not in relative_viewing_azimuth:
587
588
                    arr2pass = inObj.RAA_arr[:, :, bandIdx] if inObj.RAA_arr.ndim == 3 else inObj.RAA_arr
                    relative_viewing_azimuth[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
589
590
                    # relative_viewing_azimuth[bandN] = \
                    #     inObj.RAA_arr[:, :, bandIdx] if inObj.RAA_arr.ndim==3 else inObj.RAA_arr
591

592
        return relative_viewing_azimuth
593

594
595
596
597
598
599
600
601
    def _meta_get_aux_data(self):
        """

        :return:  {lons:ndarray(dtype=float16),,lats:ndarray(dtype=float16)}
        """

        aux_data = dict(
            # set lons and lats (a 2D array for all bands is enough (different band resolutions dont matter))
Daniel Scheffler's avatar
Daniel Scheffler committed
602
603
            lons=self.inObjs[0].lonlat_arr[::10, ::10, 0].astype(np.float16),  # 2D array of lon values: 0° - 360°
            lats=self.inObjs[0].lonlat_arr[::10, ::10, 1].astype(np.float16)  # 2D array of lat values: -90° - 90°
604
            # FIXME correct to reduce resolution here by factor 10?
605
606
607
608
609
610
611
612
613
614
615
616
        )

        return aux_data

    def _get_dem(self):
        """Get a DEM to be used in atmospheric correction.

        :return: <np.ndarray> 2D array (with 20m resolution in case of Sentinel-2)
        """
        # determine which input GMS object is used to generate DEM
        if re.search('Sentinel-2', self.inObjs[0].satellite):
            # in case of Sentinel-2 the 20m DEM must be passed
Daniel Scheffler's avatar
Daniel Scheffler committed
617
            inObj4dem = [obj for obj in self.inObjs if obj.arr.xgsd == 20]
618
619
620
            if not inObj4dem:
                self.logger.warning('Sentinel-2 20m subsystem could not be found. DEM passed to '
                                    'atmospheric correction might have wrong resolution.')
621
622
623
624
            inObj4dem = inObj4dem[0]
        else:
            inObj4dem = self.inObjs[0]

625
626
627
628
        try:
            dem = inObj4dem.dem[:].astype(np.float32)
        except Exception as e:
            dem = None
Daniel Scheffler's avatar
Daniel Scheffler committed
629
            self.logger.warning('A static elevation is assumed during atmospheric correction due to an error during '
630
631
632
                                'creation of the DEM corresponding to scene %s (entity ID: %s). Error message was: '
                                '\n%s\n' % (self.inObjs[0].scene_ID, self.inObjs[0].entity_ID, repr(e)))
            self.logger.info("Print traceback in case you care:")
633
            self.logger.warning(traceback.format_exc())
634
635

        return dem
636
637

    def _get_srf(self):
638
        """Returns an instance of SRF in the same structure like sicor.sensors.SRF.SensorSRF
639
        """
640
641
642
        # FIXME calculation of center wavelengths within SRF() used not the GMS algorithm
        # SRF instance must be created for all bands and the previous proc level
        GMS_identifier_fullScene = self.inObjs[0].GMS_identifier
Daniel Scheffler's avatar
Daniel Scheffler committed
643
        GMS_identifier_fullScene['Subsystem'] = ''
644
645
646
        GMS_identifier_fullScene['proc_level'] = proc_chain[proc_chain.index(self.inObjs[0].proc_level) - 1]

        return SRF(GMS_identifier_fullScene, wvl_unit='nanometers', format_bandnames=True)
647

648
649
650
651
652
653
    def _get_mask_clouds(self):
        """Returns an instance of S2Mask in case cloud mask is given by input GMS objects. Otherwise None is returned.

        :return:
        """

654
655
        tgt_res = self.inObjs[0].ac_options['cld_mask']['target_resolution']

656
657
        # check if input GMS objects provide a cloud mask
        avail_cloud_masks = {inObj.GMS_identifier['Subsystem']: inObj.mask_clouds for inObj in self.inObjs}
658
        no_avail_CMs = list(set(avail_cloud_masks.values())) == [None]
659
660

        # compute cloud mask if not already provided
661
662
        if no_avail_CMs:
            algorithm = CFG.job.cloud_masking_algorithm[self.inObjs[0].satellite]
663

664
665
            if algorithm == 'SICOR':
                return None
666

667
668
669
670
671
672
673
674
675
676
677
            else:
                # FMASK or Classical Bayesian
                try:
                    from .cloud_masking import Cloud_Mask_Creator

                    CMC = Cloud_Mask_Creator(self.inObjs[0], algorithm=algorithm)
                    CMC.calc_cloud_mask()
                    cm_geoarray = CMC.cloud_mask_geoarray
                    cm_array = CMC.cloud_mask_array
                    cm_legend = CMC.cloud_mask_legend
                except Exception as err:
678
679
                    self.logger.error('\nAn error occurred during FMASK cloud masking. Error message was: ')
                    self.logger.error(traceback.format_exc())
680
                    return None
681

682
683
        else:
            # check if there is a cloud mask with suitable GSD
Daniel Scheffler's avatar
Daniel Scheffler committed
684
            inObjs2use = [obj for obj in self.inObjs if obj.mask_clouds is not None and obj.mask_clouds.xgsd == tgt_res]
685
686
            if not inObjs2use:
                raise ValueError('Error appending cloud mask to input arguments of atmospheric correction. No input '
Daniel Scheffler's avatar
Daniel Scheffler committed
687
                                 'GMS object provides a cloud mask with spatial resolution of %s.' % tgt_res)
688
689
690
691
692
693
694
695
            inObj2use = inObjs2use[0]

            # get mask (geo)array
            cm_geoarray = inObj2use.mask_clouds
            cm_array = inObj2use.mask_clouds[:]

            # get legend
            cm_legend = get_mask_classdefinition('mask_clouds', inObj2use.satellite)
696
            #    {'Clear': 10, 'Thick Clouds': 20, 'Thin Clouds': 30, 'Snow': 40}  # FIXME hardcoded
697
698
699
700
701
702

            # validate that xGSD equals yGSD
            if cm_geoarray.xgsd != cm_geoarray.ygsd:
                warnings.warn("Cloud mask X/Y GSD is not equal for entity ID %s" % inObj2use.entity_ID +
                              (' (%s)' % inObj2use.subsystem if inObj2use.subsystem else '') +
                              'Using X-GSD as key for cloud mask geocoding.')
703
704
705
706

        # get geocoding
        cm_geocoding = self.metadata["spatial_samplings"][tgt_res]

707
708
        # get nodata value
        self.options['cld_mask']['nodata_value_mask'] = cm_geoarray.nodata
709

710
        # append cloud mask to input object with the same spatial resolution if there was no mask before
711
        for inObj in self.inObjs:
712
            if inObj.arr.xgsd == cm_geoarray.xgsd:
713
714
                inObj.mask_clouds = cm_geoarray
                inObj.build_combined_masks_array()
715
716
                break # appending it to one inObj is enough

717
718
719
        return S2Mask(mask_array=cm_array,
                      mask_legend=cm_legend,
                      geo_coding=cm_geocoding)
720

721
722
    def run_atmospheric_correction(self, dump_ac_input=False):
        # type: (bool) -> list
723
724
725
        """Collects all input data for atmospheric correction, runs the AC and returns the corrected L1C objects
        containing surface reflectance.

726
727
        :param dump_ac_input:   allows to dump the inputs of AC to the scene's processing folder in case AC fails
        :return:                list of L1C_object instances containing atmospherically corrected data
728
        """
729
730

        # collect input args/kwargs for AC
731
732
        self.logger.info('Calculating input data for atmospheric correction...')

733
734
735
736
737
738
        rs_data = dict(
            data                  = self.data,
            metadata              = self.metadata,
            nodata                = self.nodata,
            band_spatial_sampling = self.band_spatial_sampling,
            tile_name             = self.tile_name,
739
            dem                   = self._get_dem(),
740
            srf                   = self._get_srf(),
Daniel Scheffler's avatar
Daniel Scheffler committed
741
742
            mask_clouds           = self._get_mask_clouds()  # returns an instance of S2Mask or None if cloud mask is not given by input GMS objects
        )  # NOTE: all keys of this dict are later converted to attributes of RSImage
743

Daniel Scheffler's avatar
Daniel Scheffler committed
744
        script = False
745

746
747
748
        # create an instance of RSImage
        rs_image = RSImage(**rs_data)

749
        self.ac_input = dict(
750
751
752
753
            rs_image=rs_image,
            options=self.options,
            logger=repr(self.logger),  # only a string
            script=script
754
        )
755

756
        # run AC
757
        self.logger.info('Atmospheric correction started.')
758
        try:
759
            rs_image.logger = self.logger
760
            self.results = ac_gms(rs_image, self.options, logger=self.logger, script=script)
761

762
        except Exception as e:
763
            # serialialize AC input
764
765
766
767
768
769
            if dump_ac_input:
                path_dump = self.inObjs[0].pathGen.get_path_ac_input_dump()
                with open(path_dump, 'wb') as outF:
                    dill.dump(self.ac_input, outF)

                self.logger.error('An error occurred during atmospheric correction. Inputs have been dumped to %s.'
Daniel Scheffler's avatar
Daniel Scheffler committed
770
                                  % path_dump)
771
772

            # delete AC input arrays
Daniel Scheffler's avatar
Daniel Scheffler committed
773
            for inObj in self.inObjs:  # type: L1C_object
774
775
                inObj.delete_ac_input_arrays()

776
777
            self.logger.error('\nAn error occurred during atmospheric correction. BE AWARE THAT THE SCENE %s '
                              '(ENTITY ID %s) HAS NOT BEEN ATMOSPHERICALLY CORRECTED! Error message was: \n%s\n'
778
                              % (self.inObjs[0].scene_ID, self.inObjs[0].entity_ID, repr(e)))
779
            self.logger.error(traceback.format_exc())
780
            # TODO include that in the job summary
781

782
783
            return list(self.inObjs)

784
        # get processing infos
Daniel Scheffler's avatar
Daniel Scheffler committed
785
        self.proc_info = self.ac_input['options']['processing']  # FIXME this is not appended to GMS objects
786

787
788
        # join results
        self._join_results_to_inObjs() # sets self.outObjs
789

790
791
        # delete input arrays that are not needed anymore
        [inObj.delete_ac_input_arrays() for inObj in self.inObjs]
792

793
794
795
        return self.outObjs

    def _join_results_to_inObjs(self):
796
797
798
        """
        Join results of atmospheric correction to the input GMS objects.
        """
799

800
801
802
803
804
805
806
807
808
809
        self.logger.info('Joining results of atmospheric correction to input GMS objects.')
        del self.logger  # otherwise logging in inObjs would open a second FileHandler to the same file (which is permitted)

        self._join_data_ac()
        self._join_data_errors()
        self._join_mask_clouds()
        self._join_mask_confidence_array()

        # update masks (always do that because masks can also only contain one layer)
        [inObj.build_combined_masks_array() for inObj in self.inObjs]
810

811
812
813
814
815
816
        self.outObjs = self.inObjs

    def _join_data_ac(self):
        """
        Join ATMOSPHERICALLY CORRECTED ARRAY as 3D int8 or int16 BOA reflectance array, scaled to scale factor from config.
        """
817

818
        if self.results.data_ac is not None:
819
            for inObj in self.inObjs:
820
                assert isinstance(inObj, L1B_object)
821
                nodata = self.results.nodata[inObj.arr.xgsd]  # 2D mask with True outside of image coverage
Daniel Scheffler's avatar
Daniel Scheffler committed
822
                ac_bandNs = [bandN for bandN in inObj.arr.bandnames if bandN in self.results.data_ac.keys()]
823
                out_LBA = [bN.split('B0')[1] if bN.startswith('B0') else bN.split('B')[1] for bN in ac_bandNs]
824

825
826
827
828
829
830
                # update metadata
                inObj.arr_desc = 'BOA_Ref'
                inObj.MetaObj.bands = len(self.results.data_ac)
                inObj.MetaObj.PhysUnit = 'BOA_Reflectance in [0-%d]' % CFG.usecase.scale_factor_BOARef
                inObj.MetaObj.LayerBandsAssignment = out_LBA
                inObj.MetaObj.filter_layerdependent_metadata()
831
                inObj.meta_odict = inObj.MetaObj.to_odict()  # actually auto-updated by getter
832

833
                # join SURFACE REFLECTANCE as 3D int16 array, scaled to scale factor from config
834
835
                # FIXME AC output nodata values = 0 -> new nodata areas but mask not updated
                oF_refl, oZ_refl, oS_refl = get_outFillZeroSaturated(inObj.arr.dtype)
836
                surf_refl = np.dstack((self.results.data_ac[bandN] for bandN in ac_bandNs))
837
838
839
840
841
                surf_refl *= CFG.usecase.scale_factor_BOARef  # scale using scale factor (output is float16)
                # FIXME really set AC nodata values to GMS outZero?
                surf_refl[nodata] = oZ_refl  # overwrite AC nodata values with GMS outZero
                surf_refl[np.array(inObj.mask_nodata) == False] = oF_refl  # apply the original nodata mask (indicating background values)

Daniel Scheffler's avatar
Daniel Scheffler committed
842
                if self.results.bad_data_value is np.nan:
843
                    surf_refl[np.isnan(surf_refl)] = oF_refl
Daniel Scheffler's avatar
Daniel Scheffler committed
844
                else:
Daniel Scheffler's avatar
Daniel Scheffler committed
845
                    surf_refl[surf_refl == self.results.bad_data_value] = oF_refl  # FIXME meaningful to set AC nans to -9999?
846
847
848

                # overwrite LayerBandsAssignment and use inObj.arr setter to generate a GeoArray
                inObj.LayerBandsAssignment = out_LBA
849
                inObj.arr = surf_refl.astype(inObj.arr.dtype)  # -> int16 (also converts NaNs to 0 if needed
850

851
852
853
        else:
            self.logger.warning('Atmospheric correction did not return a result for the input array. '
                                'Thus the output keeps NOT atmospherically corrected.')
854

855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
    def _join_data_errors(self):
        """
        Join ERRORS ARRAY as 3D int8 or int16 BOA reflectance array, scaled to scale factor from config.
        """

        if self.results.data_errors is not None:
            for inObj in self.inObjs:
                nodata = self.results.nodata[inObj.arr.xgsd]  # 2D mask with True outside of image coverage
                ac_bandNs = [bandN for bandN in inObj.arr.bandnames if bandN in self.results.data_ac.keys()]

                ac_errors = np.dstack((self.results.data_errors[bandN] for bandN in ac_bandNs))
                ac_errors *= CFG.usecase.scale_factor_errors_ac  # scale using scale factor (output is float16)
                out_dtype = np.int8 if CFG.usecase.scale_factor_errors_ac <= 255 else np.int16
                ac_errors[nodata] = get_outFillZeroSaturated(out_dtype)[0]
                ac_errors = ac_errors.astype(out_dtype)
                inObj.ac_errors = ac_errors  # setter generates a GeoArray with the same bandnames like inObj.arr
                # TODO how to handle nans?
        else:
            self.logger.warning("Atmospheric correction did not provide a 'data_errors' array. Maybe due to "
                                "missing SNR model? GMS_object.ac_errors kept None.")

    def _join_mask_clouds(self):
        """
        Join CLOUD MASK as 2D uint8 array.
        NOTE: mask_clouds has also methods 'export_mask_rgb()', 'export_confidence_to_jpeg2000()', ...
        """

        if self.results.mask_clouds.mask_array is not None:
            mask_clouds_ac = self.results.mask_clouds.mask_array  # uint8 2D array
884

885
886
            joined = False
            for inObj in self.inObjs:
887
888
                # delete all previous cloud masks
                del inObj.mask_clouds
889
890
891
892

                # append mask_clouds only to the input GMS object with the same dimensions
                if inObj.arr.shape[:2] == mask_clouds_ac.shape:
                    inObj.mask_clouds = mask_clouds_ac
893
894
                    inObj.mask_clouds.legend = self.results.mask_clouds.mask_legend  # dict(value=string, string=value))
                    # FIXME legend is not used later
895
896

                    # set cloud mask nodata value
897
                    tgt_nodata = get_outFillZeroSaturated(mask_clouds_ac.dtype)[0]
898
899
                    ac_out_nodata = self.ac_input['options']['cld_mask']['nodata_value_mask']
                    if tgt_nodata not in self.results.mask_clouds.mask_legend.keys():
900
                        inObj.mask_clouds[inObj.mask_clouds[:] == ac_out_nodata] = tgt_nodata
901
902
903
904
                        mask_clouds_nodata = tgt_nodata
                    else:
                        warnings.warn('The cloud mask from AC output already uses the desired nodata value %s for the '
                                      'class %s. Using AC output nodata value %s.'
905
                                      % (tgt_nodata, self.results.mask_clouds.mask_legend[tgt_nodata], ac_out_nodata))
906
907
908
909
                        mask_clouds_nodata = ac_out_nodata

                    inObj.mask_clouds.nodata = mask_clouds_nodata

910
                    joined = True
911

912
913
914
915
            if not joined:
                self.logger.warning('Cloud mask has not been appended to one of the AC inputs because there was no'
                                    'input GMS object with the same dimensions.')

916
        else:
917
918
            self.logger.warning("Atmospheric correction did not provide a 'mask_clouds.mask_array' array. "
                                "GMS_object.mask_clouds kept None.")
919

920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
    def _join_mask_confidence_array(self):
        """
        Join confidence array for mask_clouds.
        """

        if self.results.mask_clouds.mask_confidence_array is not None:
            cfd_arr = self.results.mask_clouds.mask_confidence_array  # float32 2D array, scaled [0-1, nodata 255]
            cfd_arr[cfd_arr == self.ac_input['options']['cld_mask']['nodata_value_mask']] = -1
            cfd_arr = (cfd_arr * CFG.usecase.scale_factor_BOARef).astype(np.int16)
            cfd_arr[cfd_arr == -CFG.usecase.scale_factor_BOARef] = get_outFillZeroSaturated(cfd_arr.dtype)[0]

            joined = False
            for inObj in self.inObjs:

                # append mask_clouds only to the input GMS object with the same dimensions
                if inObj.arr.shape[:2] == cfd_arr.shape:
                    # set cloud mask confidence array
                    inObj.mask_clouds_confidence = GeoArray(cfd_arr, inObj.arr.gt, inObj.arr.prj,
                                                            nodata=get_outFillZeroSaturated(cfd_arr.dtype)[0])
                    joined = True
940

941
942
943
            if not joined:
                self.logger.warning('Cloud mask confidence array has not been appended to one of the AC inputs because '
                                    'there was no input GMS object with the same dimensions.')
944

945
946
        else:
            self.logger.warning("Atmospheric correction did not provide a 'mask_confidence_array' array for "
947
                                "attribute 'mask_clouds. GMS_object.mask_clouds_confidence kept None.")