test_gms_preprocessing.py 26.8 KB
Newer Older
1
2
3
#!/usr/bin/env python
# -*- coding: utf-8 -*-

4
###################################################################################
5

6
"""
7
test_gms_preprocessing
8
----------------------------------
9

10
The testcases contained in this testscript, are parametrized testcases. They test
11
12
the level-processing steps defined in the 'gms_preprocessing' module in the
"gms_preprocessing"-project with the help of the test datasets:
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
- Landsat-5, Pre-Collection Data,
- Landsat-5, Collection Data,
- Landsat-7, SLC on, Pre-Collection Data,
- Landsat-7, SLC off, Pre-Collection Data,
- Landsat-7, SLC off, Collection Data,
- Landsat-8, Pre-Collection Data,
- Landsat-8, Collection Data,
- Sentinel-2A, Pre-Collection Data and
- Sentinel-2A, Collection Data.
The test datasets can be found in the directory "tests/data/archive_data/...". The
respective SRTM-datasets needed in the data-processing can be found in the directory
"tests/data/archive_data/Endeavor".

The tests, defined in a base-testcase (not executed), are triggered by creating
jobs (based on given job-IDs) in individual testcases that inherit the tests
from the base-testcase. The exception: The job-ID used in the last testclass
contains 3 different test datasets of the above listed datasets.

Note that the testresults are outputted in the console as well as a log-textfile
that can be found in the directory "tests/logs".

Program edited in July 2017.
"""

37
# Import python standard libraries.
38
39
40
41
42
43
import itertools
import logging
import os
import pandas
import sys
import time
44
45
import unittest

46
47
# Imports regarding the 'gms_preprocessing' module.
from gms_preprocessing import process_controller, __file__
48
from gms_preprocessing.model.gms_object import GMS_object
49
50
51
52
53
from gms_preprocessing.algorithms.L1A_P import L1A_object
from gms_preprocessing.algorithms.L1B_P import L1B_object
from gms_preprocessing.algorithms.L1C_P import L1C_object
from gms_preprocessing.algorithms.L2A_P import L2A_object
from gms_preprocessing.algorithms.L2B_P import L2B_object
54
# from gms_preprocessing.algorithms.L2C_P import L2C_object
55
from gms_preprocessing.misc.database_tools import get_info_from_postgreSQLdb
56
from gms_preprocessing.model.gms_object import GMS_object_2_dataset_dict
57

58
from . import db_host, index_host
59

60
__author__ = 'Daniel Scheffler'  # edited by Jessica Palka.
61

62
# Rootpath of the gms_preprocessing-repository.
63
64
65
66
gmsRepo_rootpath = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))

# Defining the configurations needed to start a job containing the different dataset scenes.
# TODO Change the job-configurations for selected datasets.
67
68
job_config_kwargs = dict(parallelization_level='scenes', db_host=db_host, spatial_index_server_host=index_host,
                         delete_old_output=True, is_test=True)
69

Daniel Scheffler's avatar
Daniel Scheffler committed
70
##########################
71
# Test case: BaseTestCases
Daniel Scheffler's avatar
Daniel Scheffler committed
72
73
##########################

74
75
76
77

class BaseTestCases:
    """
    General testclass. The tests defined in this testclass test the processing steps Level-1A, Level-1B, Level-1C,
78
    Level-2A, Level-2B and Level-2C defined in the "gms_preprocessing"-repository.
79
80
81
82
    Note that the tests in this testclass are not executed directly. They are re-used in the other classes defined
    in this test-script.
    """
    class TestAll(unittest.TestCase):
83
        PC = None  # default
84
85
86

        @classmethod
        def tearDownClass(cls):
87
            cls.PC.config.DB_job_record.delete_procdata_of_entire_job(force=True)
88
89
90

        @classmethod
        def validate_db_entry(cls, filename):
91
92
            sceneID_res = get_info_from_postgreSQLdb(cls.PC.config.conn_database, 'scenes', ['id'],
                                                     {'filename': filename})
93
94
95
96
            assert sceneID_res and isinstance(sceneID_res[0][0], int), 'Invalid database entry.'

        @classmethod
        def create_job(cls, jobID, config):
97
            cls.PC = process_controller(jobID, **config)
98
99

            cls.PC.logger.info('Execution of entire GeoMultiSens pre-processing chain started for job ID %s...'
100
                               % cls.PC.config.ID)
101
102

            # update attributes of DB_job_record and related DB entry
103
            cls.PC.config.DB_job_record.reset_job_progress()
104
            GMS_object.proc_status_all_GMSobjs.clear()  # reset
105

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
106
            cls.PC.config.data_list = cls.PC.add_local_availability(cls.PC.config.data_list)
107

108
            [cls.validate_db_entry(ds['filename']) for ds in cls.PC.config.data_list]
109

110
111
112
113
        def check_availability(self, GMS_objs, tgt_procL):
            dss = self.PC.add_local_availability([GMS_object_2_dataset_dict(obj) for obj in GMS_objs])
            for ds in dss:
                self.assertEqual(ds['proc_level'], tgt_procL,
Daniel Scheffler's avatar
Daniel Scheffler committed
114
115
                                 msg='Written %s dataset cannot be found by PC.add_local_availability().'
                                     % (' '.join([ds['satellite'], ds['sensor'], ds['subsystem'], tgt_procL])))
116

117
118
119
        def test_L1A_processing(self):
            self.L1A_newObjects = self.PC.L1A_processing()
            self.assertIsInstance(self.L1A_newObjects, list)
120
            self.assertNotEqual(len(self.L1A_newObjects), 0, msg='L1A_processing did not output an L1A object.')
121
122
            self.assertIsInstance(self.L1A_newObjects[0], L1A_object)

123
124
125
            # check if PC.add_local_availability finds the written dataset
            self.check_availability(self.L1A_newObjects, 'L1A')

126
127
128
        def test_L1B_processing(self):
            self.L1B_newObjects = self.PC.L1B_processing()
            self.assertIsInstance(self.L1B_newObjects, list)
129
            self.assertNotEqual(len(self.L1B_newObjects), 0, msg='L1B_processing did not output an L1B object.')
130
131
            self.assertIsInstance(self.L1B_newObjects[0], L1B_object)

132
133
134
            # check if PC.add_local_availability finds the written dataset
            self.check_availability(self.L1B_newObjects, 'L1B')

135
136
137
        def test_L1C_processing(self):
            self.L1C_newObjects = self.PC.L1C_processing()
            self.assertIsInstance(self.L1C_newObjects, list)
138
            self.assertNotEqual(len(self.L1C_newObjects), 0, msg='L1C_processing did not output an L1C object.')
139
140
            self.assertIsInstance(self.L1C_newObjects[0], L1C_object)

141
            # check if PC.add_local_availability finds the written dataset
142
143

            # self.check_availability(self.L1C_newObjects, 'L1C')
144

145
146
147
        def test_L2A_processing(self):
            self.L2A_newObjects = self.PC.L2A_processing()
            self.assertIsInstance(self.L2A_newObjects, list)
148
            self.assertNotEqual(len(self.L2A_newObjects), 0, msg='L2A_processing did not output an L2A object.')
149
150
            self.assertIsInstance(self.L2A_newObjects[0], L2A_object)

151
            # check if PC.add_local_availability finds the written dataset
152
153
            # FIXME this will fail because AC outputs TOA-Ref if ECMWF data are missing
            # self.check_availability(self.L2A_newObjects, 'L2A')
154

155
156
157
        def test_L2B_processing(self):
            self.L2B_newObjects = self.PC.L2B_processing()
            self.assertIsInstance(self.L2B_newObjects, list)
158
            self.assertNotEqual(len(self.L2B_newObjects), 0, msg='L2B_processing did not output an L2B object.')
159
160
            self.assertIsInstance(self.L2B_newObjects[0], L2B_object)

161
            # check if PC.add_local_availability finds the written dataset
162
163
            # FIXME this will fail because AC outputs TOA-Ref if ECMWF data are missing
            # self.check_availability(self.L2B_newObjects, 'L2B')
164

165
166
167
        def test_L2C_processing(self):
            self.L2C_newObjects = self.PC.L2C_processing()
            self.assertIsInstance(self.L2C_newObjects, list)
168
            self.assertNotEqual(len(self.L2C_newObjects), 0, msg='L2C_processing did not output an L2C object.')
169
            # self.assertIsInstance(self.L2C_newObjects[0], L2C_object)
170
171

            # check if PC.add_local_availability finds the written dataset
172
            # FIXME this will fail because AC outputs TOA-Ref if ECMWF data are missing
173
174
            # self.check_availability(self.L2C_newObjects, 'L2C')  # FIXME fails (not yet working)

Daniel Scheffler's avatar
Daniel Scheffler committed
175
            # Setting the config.status manually.
176
            # if self.L2C_newObjects:
177
            #     self.PC.config.status = "finished"
178
179
            # FIXME after updating the job.status-attribute for the level-processes, delete the code that is commented
            # FIXME out.
180

Daniel Scheffler's avatar
Daniel Scheffler committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
    class TestCompletePipeline(unittest.TestCase):
        PC = None  # default

        @classmethod
        def tearDownClass(cls):
            cls.PC.config.DB_job_record.delete_procdata_of_entire_job(force=True)

        @classmethod
        def validate_db_entry(cls, filename):
            sceneID_res = get_info_from_postgreSQLdb(cls.PC.config.conn_database, 'scenes', ['id'],
                                                     {'filename': filename})
            assert sceneID_res and isinstance(sceneID_res[0][0], int), 'Invalid database entry.'

        @classmethod
        def create_job(cls, jobID, config):
            cls.PC = process_controller(jobID, **config)

            cls.PC.logger.info('Execution of entire GeoMultiSens pre-processing chain started for job ID %s...'
                               % cls.PC.config.ID)

            [cls.validate_db_entry(ds['filename']) for ds in cls.PC.config.data_list]

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
203
204
        def test_run_all_processors(self):
            self.PC.run_all_processors()
Daniel Scheffler's avatar
Daniel Scheffler committed
205
            self.assertIsInstance(self.PC.L2C_newObjects, list)
206
207
208
209
            self.assertIsInstance(self.PC.summary_detailed, pandas.DataFrame)
            self.assertFalse(self.PC.summary_detailed.empty)
            self.assertIsInstance(self.PC.summary_quick, pandas.DataFrame)
            self.assertFalse(self.PC.summary_quick.empty)
210
211
212
213
214
215
216
217
218
219

###################################################################################
# Test cases 1-9: Test_<Satelite-Dataset>_<PreCollection or Collection>Data
# Test case 10: Test_MultipleDatasetsInOneJob


# TESTDATA-CLASSES.
class Test_Landsat5_PreCollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-5 TM scene (pre-collection data).
220
    More information on the dataset will be output after the tests-classes are executed.
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186263, job_config_kwargs)

# class Test_Landsat5_CollectionData(BaseTestCases.TestAll):
#     """
#     Parametrized testclass. Tests the level-processes on a Landsat-5 TM scene (collection data).
#     More information on the dataset will be outputted after the tests-classes are executed.
#     """
#     @classmethod
#     def setUpClass(cls):
#         cls.create_job(26186263, job_config_kwargs) # FIXME job_ID!

Daniel Scheffler's avatar
Daniel Scheffler committed
235

236
237
238
class Test_Landsat7_SLC_on_PreCollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-7 ETM+_SLC_ON scene (pre-collection data).
239
    More information on the dataset will be output after after the tests-classes are executed.
240
241
242
243
244
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186262, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
245

246
247
248
class Test_Landsat7_SLC_off_PreCollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-7 ETM+_SLC_OFF scene (pre-collection data).
249
    More information on the dataset will be output after the tests-classes are executed.
250
251
252
253
254
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186267, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
255

256
257
258
259
260
261
262
263
264
# class Test_Landsat7_SLC_off_CollectionData(BaseTestCases.TestAll):
#     """
#     Parametrized testclass. Tests the level-processes on a Landsat-7 ETM+_SLC_OFF scene (collection data).
#     More information on the dataset will be outputted after the tests-classes are executed.
#     """
#     @classmethod
#     def setUpClass(cls):
#         cls.create_job(26186267, job_config_kwargs) # FIXME job_ID!

265
#
266
267
268
class Test_Landsat8_PreCollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-8 OLI_TIRS scene (pre-collection data).
269
    More information on the dataset will be output after the tests-classes are executed.
270
271
272
273
274
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186196, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
275

276
277
278
class Test_Landsat8_CollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-8 OLI_TIRS scene (collection data).
279
    More information on the dataset will be output after the tests-classes are executed.
280
281
282
    """
    @classmethod
    def setUpClass(cls):
283
        cls.create_job(26187391, job_config_kwargs)
284

Daniel Scheffler's avatar
Daniel Scheffler committed
285

286
287
288
289
290
291
292
293
294
295
296
297
class Test_Landsat8_CollectionData_CompletePipeline(BaseTestCases.TestCompletePipeline):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-8 OLI_TIRS scene (collection data).
    More information on the dataset will be output after the tests-classes are executed.
    """
    @classmethod
    def setUpClass(cls):
        cfg = job_config_kwargs
        # cfg.update(dict(inmem_serialization=True))
        cls.create_job(26187391, cfg)


298
class Test_Sentinel2A_SingleGranuleFormat(BaseTestCases.TestAll):
299
    """
300
301
    Parametrized testclass. Tests the level-processes on a Sentinel-2A MSI scene (1 granule in archive: > 2017).
    More information on the dataset will be output after the tests-classes are executed.
302
303
304
305
306
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186268, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
307

Daniel Scheffler's avatar
Daniel Scheffler committed
308
309
310
311
312
313
314
315
316
class Test_Sentinel2A_SingleGranuleFormat_CompletePipeline(BaseTestCases.TestCompletePipeline):
    """
    Parametrized testclass. Tests the level-processes on a Sentinel-2A MSI scene (1 granule in archive: > 2017).
    More information on the dataset will be output after the tests-classes are executed.
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186268, job_config_kwargs)

317
318
319
    # @classmethod
    # def tearDownClass(cls):
    #     super().tearDownClass()
320
321
        # PC = cls.PC

Daniel Scheffler's avatar
Daniel Scheffler committed
322

323
class Test_Sentinel2A_MultiGranuleFormat(BaseTestCases.TestAll):
324
    """
325
326
    Parametrized testclass. Tests the level-processes on a Sentinel-2A MSI scene (multiple granules in archive: < 2017).
    More information on the dataset will be output after the tests-classes are executed.
327
328
329
330
331
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186272, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
332

333
334
335
336
337
338
339
340
341
342
class Test_Sentinel2B_SingleGranuleFormat(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Sentinel-2B MSI scene (1 granule in archive: > 2017).
    More information on the dataset will be output after the tests-classes are executed.
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186937, job_config_kwargs)


343
344
345
346
347
348
349
350
351
352
class Test_MultipleDatasetsInOneJob(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a job containing a Landsat-5 (pre-collection data),
    Landsat-7 SLC_off (pre-collection data) and a Sentinel-2A (collection data) scene.
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186273, job_config_kwargs)


Daniel Scheffler's avatar
Daniel Scheffler committed
353
354
355
356
357
358
359
360
361
class Test_MultipleDatasetsInOneJob_CompletePipeline(BaseTestCases.TestCompletePipeline):
    """
    Parametrized testclass. Tests the level-processes on a job containing a Landsat-5 (pre-collection data),
    Landsat-7 SLC_off (pre-collection data) and a Sentinel-2A (collection data) scene.
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186273, job_config_kwargs)

362
363
364
    # @classmethod
    # def tearDownClass(cls):
    #     super().tearDownClass()
365
366
        # PC = cls.PC

Daniel Scheffler's avatar
Daniel Scheffler committed
367

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
class Test_ProcessContinuing_CompletePipeline(unittest.TestCase):
    """
    Parametrized testclass. Tests the level-processes on a job containing a Landsat-5 (pre-collection data),
    Landsat-7 SLC_off (pre-collection data) and a Sentinel-2A (collection data) scene.
    """
    PC = None  # default

    @classmethod
    def tearDownClass(cls):
        cls.PC.config.DB_job_record.delete_procdata_of_entire_job(force=True)

    @classmethod
    def validate_db_entry(cls, filename):
        sceneID_res = get_info_from_postgreSQLdb(cls.PC.config.conn_database, 'scenes', ['id'],
                                                 {'filename': filename})
        assert sceneID_res and isinstance(sceneID_res[0][0], int), 'Invalid database entry.'

    @classmethod
    def create_job(cls, jobID, config):
        cls.PC = process_controller(jobID, **config)

        cls.PC.logger.info('Execution of entire GeoMultiSens pre-processing chain started for job ID %s...'
                           % cls.PC.config.ID)

        [cls.validate_db_entry(ds['filename']) for ds in cls.PC.config.data_list]

    def setUp(self):
Daniel Scheffler's avatar
Daniel Scheffler committed
395
        self.cfg_kw = job_config_kwargs.copy()  # copy, because job_config_kwargs is modified otherwise
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
        self.cfg_kw.update(dict(
            reset_status=True,
            exec_L1BP=[False, False, False],
            exec_L1CP=[False, False, False],
            exec_L2AP=[False, False, False],
            exec_L2BP=[False, False, False],
            exec_L2CP=[False, False, False]
        ))

        # produce L1A data and stop processing there
        self.create_job(26186263, self.cfg_kw)  # 1x L5 pre-collection
        self.PC.run_all_processors()

    def test_continue_from_L1A(self):
        # create a new job and try to continue from L1A
        cfg_kw = self.cfg_kw
        cfg_kw.update(dict(
            exec_L1BP=[True, True, False],
            delete_old_output=False
        ))
        self.create_job(26186263, cfg_kw)  # 1x L5 pre-collection
        self.PC.run_all_processors()


420
421
422
423
424
425
426
427
###################################################################################
# Summarizing the information regarding the test datasets.

# The information: 'country' (3-letter country code, UN), 'characteristic features of the shown scene', 'cloud cover
# present' and 'overlap area present' of each dataset are summarized in the dictionary "testdata_scenes". The
# information are sorted according to the testdata.
# 3-letter code:
# UKR-Ukraine, KGZ-Kyrgyztan, POL-Poland, AUT-Austria, JPN-Japan, BOL-Bolivia, TUR-Turkey, DEU-Germany, CHE-Switzerland.
428
429
430
431
432
433
434
435
436
437
438
testdata_scenes = \
    {'Landsat5_PreCollectionData': list(['UKR', 'City region, forest', 'Sparsely', 'Zone 34/35']),
     # 'Landsat5_CollectionData': list(['KGZ', 'Snowy Mountains', 'Yes', 'None']),
     'Landsat7_SLC_on_PreCollectionData': list(['POL', 'City region, lakes', 'Yes', 'None']),
     'Landsat7_SLC_off_PreCollectionData': list(['AUT', 'Stripes (partly), Mountains', 'None', 'None']),
     # 'Landsat7_SLC_off_CollectionData': list(['JPN', 'Stripes (completly), Mountains', 'Yes', 'Zone 53/54']),
     'Landsat8_PreCollectionData': list(['BOL', 'Forest', 'Yes', 'None']),
     'Landsat8_CollectionData': list(['TUR', 'Snowy Mountains', 'Yes', 'None']),
     'Sentinel2A_PreCollectionData': list(['DEU', 'Potsdam', 'Sparsely', 'None']),
     'Sentinel2A_CollectionData': list(['CHE', 'City region, on the Rhine', 'Yes', 'None'])
     }
439
440
441
442
443
444
445
446

# The key of the dictionary is the key-value to parametrize the testclasses so that each testclass is executed
# automatically.
testdata = list(testdata_scenes.keys())
testdata.append('MultipleDatasetsInOneJob')


###################################################################################
447
# Parameterizing the test cases and creating a summary of the test results.
448
449
450

summary_testResults, summary_errors, summary_failures, summary_skipped, jobstatus = [[] for _ in range(5)]

451
452
453
454

@unittest.SkipTest
class Test_in_normal_mode(unittest.TestCase):
    def setUp(self):
455
        # self.job_id = 26186740  # Testjob Landsat-8
456
        # self.job_id = 26186906  # Bug Input Validator
457
        # self.job_id = 26186925  # 1 Sentinel-2A, Bug NoneType' object has no attribute 'find'
458
459
460
        # self.job_id = 26187051  # GMS41: 1 Landsat, FileNotFoundError
        # self.job_id = 26187052  # GMS41: 1 Landsat, DB query returns no DEM
        self.job_id = 26187053  # GMS41: AC: The input 'list_GMS_objs' contains duplicates: ['', '']
461

462
        self.PC = process_controller(self.job_id, **dict(is_test=False, parallelization_level='scenes', db_host=db_host,
463
                                                         delete_old_output=True, disable_exception_handler=True))
464
465
466
467
468

    def test(self):
        self.PC.run_all_processors()


469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
if __name__ == '__main__':
    # Part 1: Creating and running a testsuite for each dataset-testcase, and querying the job.status of the job.
    for items in testdata:
        suite = unittest.TestLoader().loadTestsFromTestCase(eval("Test_"+items))
        alltests = unittest.TestSuite(suite)

        # Part 2: Saving the results of each testsuite and the query for the job.status in individual variables.
        testResult = unittest.TextTestRunner(verbosity=2).run(alltests)

        summary_testResults.append([testResult.testsRun, testResult.wasSuccessful(),
                                    len(testResult.errors), len(testResult.failures),
                                    len(testResult.skipped)])
        summary_errors.append(testResult.errors)
        summary_failures.append(testResult.failures)
        summary_skipped.append(testResult.skipped)

485
        # FIXME: If the job.status-issue is fixed, the commented out section can be nullified.
486
        # jobstatus.append(eval("Test_"+items).PC.status)
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

    # Part 3: Summarizing the testresults of each testsuite and outputting the results in an orderly fashion on the
    # console and in a textfile.
    # Note that the testresults are outputted as usual after each test is executed. Since the output of each
    # level-process is rather long, the output of the testresults become lost. Therefore, the purpose to output the
    # testresults again is simply to summarize the testresults in one place and to give an overview over the results.

    # Output: a) Information on the test datasets (table), b) testresults summarized in a table, c)if existing,
    # a list of errors, failures and skips in the testcases and d) the job.status that is not set to "finished".

    time.sleep(0.5)

    # Path of the textfile the results will be logged to.
    test_log_path = os.path.join(gmsRepo_rootpath, 'tests', 'data', 'logs', time.strftime('%Y%m%d_%H%M%S_log.txt'))

    # Creating a logging system for the testresults.
503
504
    # Source: The "GMS_logger"-function in the "gms_preprocessing" --> "misc" --> "logging.py"-script was used and
    # slightly altered to meet the needs of the current problem.
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
    logger = logging.getLogger("log_Test")
    logger.setLevel(logging.INFO)

    # Defining the format of the console and the file-output.
    formatter_fileH = logging.Formatter('')
    formatter_ConsoleH = logging.Formatter('')

    # Creating a handler for the file for the logging level "INFO".
    fileHandler = logging.FileHandler(test_log_path)
    fileHandler.setFormatter(formatter_fileH)
    fileHandler.setLevel(logging.INFO)

    # Creating a handler for the console for the logging level "INFO". "sys.stdout" is used for the logging output.
    consoleHandler_out = logging.StreamHandler(stream=sys.stdout)
    consoleHandler_out.setFormatter(formatter_ConsoleH)
    consoleHandler_out.set_name('console handler stdout')
    consoleHandler_out.setLevel(logging.INFO)

    # Adding the defined handlers to the instantiated logger.
    logger.addHandler(fileHandler)
    logger.addHandler(consoleHandler_out)

    # OUPUT, START.
    # Header of the file.
529
    logger.info("\ntest_gms_preprocessing.py"
530
531
532
533
534
535
                "\nREVIEW OF ALL TEST RESULTS, SUMMARY:"
                "\n***************************************************************************************"
                "\n--> SPECIFIC FEATURES OF DATA:")

    # Adding a table displaying the characteristic features of each dataset.
    logger.info(pandas.DataFrame.from_items(testdata_scenes.items(),
536
537
                                            orient='index',
                                            columns=['Country', 'Characteristic', 'Clouds', 'Overlap_area']))
538
539
540
541
542
543
544
545
546
547
    logger.info("\nThe jobID used in Test_" + testdata[-1] + " contains the datasets: "
                "\n-Landsat5_PreCollectionData,\n-Landsat7_SLC_off_PreCollectionData and "
                "\n-Sentinel2A_CollectionData.")

    # Adding a table displaying the testresults.
    logger.info("\n***************************************************************************************"
                "\n--> TESTRESULTS:")

    results = ["Run", "Success", "Errors", "Failures", "Skips"]
    testdata_index = ["Test_" + item for item in testdata]
548
    logger.info(pandas.DataFrame(summary_testResults, columns=results, index=testdata_index))
549
550
551
552
553

    # If errors, failures or skips (there is yet nothing to skip in the code) occurres, the respective message will
    # be printed.
    logger.info("\n***************************************************************************************")
    if list(itertools.chain(*summary_errors)) or list(itertools.chain(*summary_failures)) or \
554
       list(itertools.chain(*summary_skipped)):
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
        logger.info("--> ERRORS/FAILURES/SKIPS:")
        logger.info("\n---------------------------------------------------------------------------------------")

        for index, test in enumerate(testdata):
            logger.info("Test_" + test + ", ERRORS:")
            if summary_errors[index]:
                logger.info(summary_errors[index][0][1])
            else:
                logger.info("None. \n")

            logger.info("Test_" + test + ", FAILURES:")
            if summary_failures[index]:
                logger.info(summary_failures[index][0][1])
            else:
                logger.info("None. \n")
570

571
572
573
574
575
            logger.info("Test_" + test + ", SKIPS:")
            if summary_skipped[index]:
                logger.info(summary_skipped[index][0][1])
            else:
                logger.info("None.")
576

577
578
            if not index == (len(testdata) - 1):
                logger.info("\n---------------------------------------------------------------------------------------")
579

580
        logger.info("\n***************************************************************************************")
581

582
583
    else:
        pass
584

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
    # Checking, if the job.status of each job is set to "finished". Is it not set to "finished", a dataframe is created
    # containing the test-name with and the different job.status itself.
    # FIXME: If the job.status-issue is fixed, the commented out section can be nullified.
    # jobstatus_table, index_table = [[] for _ in range(2)]
    # for index, test in enumerate(testdata):
    #     if jobstatus[index] != "finished":
    #         jobstatus_table.append(jobstatus[index])
    #         index_table.append("Test_" + test)
    #
    # if jobstatus_table:
    #     logger.info("--> WARNING!!! JOBSTATUS of the following testcase(s) is not set to 'finished': \n")
    #     logger.info(pandas.DataFrame(jobstatus_table, columns=["jobstatus"], index=index_table))
    #     logger.info("\n***************************************************************************************")
    # else:
    #     pass
600

601
    logger.info("END.")  # OUTPUT, END.
602

603
604
605
    # Delete the handlers added to the "log_Test"-logger to ensure that no message is outputted twice in a row, when
    # the logger is used again.
    logger.handlers = []