L1C_P.py 49 KB
Newer Older
Daniel Scheffler's avatar
Daniel Scheffler committed
1
# -*- coding: utf-8 -*-
Daniel Scheffler's avatar
Daniel Scheffler committed
2
"""Level 1C Processor:   Atmospheric correction of TOA-reflectance data."""
Daniel Scheffler's avatar
Daniel Scheffler committed
3

4
import warnings
5
6
import re
import logging
7
import dill
8
import traceback
Daniel Scheffler's avatar
Daniel Scheffler committed
9
from typing import List  # noqa F401  # flake8 issue
10
11
from time import time
import os
12
import timeout_decorator
13

14
import numpy as np
15
16
from ecmwfapi.api import APIKeyFetchError
from ecmwfapi.api import APIException as ECMWFAPIException
Daniel Scheffler's avatar
Daniel Scheffler committed
17

18
from geoarray import GeoArray
19
from py_tools_ds.geo.map_info import mapinfo2geotransform
20

21
from ..options.config import GMS_config as CFG
22
from . import geoprocessing as GEOP
Daniel Scheffler's avatar
Daniel Scheffler committed
23
from .L1B_P import L1B_object
24
from ..model.metadata import get_LayerBandsAssignment
25
from ..misc.definition_dicts import get_outFillZeroSaturated, proc_chain, get_mask_classdefinition
26
from ..misc.locks import MultiSlotLock
27
from ..io.input_reader import SRF
28
# from .cloud_masking import Cloud_Mask_Creator  # circular dependencies
29

30
from sicor.sicor_ac import ac_gms
31
from sicor.sensors import RSImage
32
from sicor.Mask import S2Mask
33
from sicor.ECMWF import download_variables
34

Daniel Scheffler's avatar
Daniel Scheffler committed
35
36
__author__ = 'Daniel Scheffler'

Daniel Scheffler's avatar
Daniel Scheffler committed
37

38
class L1C_object(L1B_object):
39
    def __init__(self, L1B_obj=None):
40
        super(L1C_object, self).__init__()
41
42
43

        if L1B_obj:
            # populate attributes
Daniel Scheffler's avatar
Daniel Scheffler committed
44
            [setattr(self, key, value) for key, value in L1B_obj.__dict__.items()]
45

46
47
48
49
50
51
52
53
        # private attributes
        self._VZA_arr = None
        self._VAA_arr = None
        self._SZA_arr = None
        self._SAA_arr = None
        self._RAA_arr = None
        self._lonlat_arr = None

54
        self.proc_level = 'L1C'
55
        self.proc_status = 'initialized'
56

57
58
59
    @property
    def lonlat_arr(self):
        """Calculates pixelwise 2D-array with longitude and latitude coordinates.
60

61
62
63
64
65
66
67
68
        :return:
        """
        if self._lonlat_arr is None:
            self.logger.info('Calculating LonLat array...')
            self._lonlat_arr = \
                GEOP.get_lonlat_coord_array(self.shape_fullArr, self.arr_pos,
                                            mapinfo2geotransform(self.meta_odict['map info']),
                                            self.meta_odict['coordinate system string'],
Daniel Scheffler's avatar
Daniel Scheffler committed
69
70
                                            meshwidth=10,  # for faster processing
                                            nodata_mask=None,  # dont overwrite areas outside the image with nodata
71
72
                                            outFill=get_outFillZeroSaturated(np.float32)[0])[0]
        return self._lonlat_arr
73

74
75
76
    @lonlat_arr.setter
    def lonlat_arr(self, lonlat_arr):
        self._lonlat_arr = lonlat_arr
77

78
79
80
81
    @lonlat_arr.deleter
    def lonlat_arr(self):
        self._lonlat_arr = None

82
83
84
85
86
87
88
89
90
91
92
93
    @property
    def VZA_arr(self):
        """Get viewing zenith angle.

        :return:
        """
        if self._VZA_arr is None:
            self.logger.info('Calculating viewing zenith array...')
            if 'ViewingAngle_arrProv' in self.meta_odict and self.meta_odict['ViewingAngle_arrProv']:
                # Sentinel-2
                self._VZA_arr = GEOP.adjust_acquisArrProv_to_shapeFullArr(self.meta_odict['ViewingAngle_arrProv'],
                                                                          self.shape_fullArr,
Daniel Scheffler's avatar
Daniel Scheffler committed
94
                                                                          meshwidth=10,  # for faster processing
95
96
97
98
                                                                          subset=None,
                                                                          bandwise=0)
            else:
                self._VZA_arr = GEOP.calc_VZA_array(self.shape_fullArr, self.arr_pos, self.fullSceneCornerPos,
99
100
101
                                                    float(self.meta_odict['ViewingAngle']),
                                                    float(self.meta_odict['FieldOfView']),
                                                    self.logger,
Daniel Scheffler's avatar
Daniel Scheffler committed
102
                                                    nodata_mask=None,  # dont overwrite areas outside image with nodata
103
                                                    outFill=get_outFillZeroSaturated(np.float32)[0],
Daniel Scheffler's avatar
Daniel Scheffler committed
104
                                                    meshwidth=10)  # for faster processing
105
106
107
108
109
        return self._VZA_arr

    @VZA_arr.setter
    def VZA_arr(self, VZA_arr):
        self._VZA_arr = VZA_arr
110

111
112
113
114
    @VZA_arr.deleter
    def VZA_arr(self):
        self._VZA_arr = None

115
116
117
    @property
    def VAA_arr(self):
        """Get viewing azimuth angle.
118

119
120
121
122
123
124
125
126
        :return:
        """
        if self._VAA_arr is None:
            self.logger.info('Calculating viewing azimuth array...')
            if 'IncidenceAngle_arrProv' in self.meta_odict and self.meta_odict['IncidenceAngle_arrProv']:
                # Sentinel-2
                self._VAA_arr = GEOP.adjust_acquisArrProv_to_shapeFullArr(self.meta_odict['IncidenceAngle_arrProv'],
                                                                          self.shape_fullArr,
Daniel Scheffler's avatar
Daniel Scheffler committed
127
                                                                          meshwidth=10,  # for faster processing
128
129
130
131
132
                                                                          subset=None,
                                                                          bandwise=0)
            else:
                # only a mean VAA is available
                if self.VAA_mean is None:
133
134
                    self.VAA_mean = \
                        GEOP.calc_VAA_using_fullSceneCornerLonLat(self.fullSceneCornerLonLat, self.MetaObj.orbitParams)
135
136
                    assert isinstance(self.VAA_mean, float)

137
                self._VAA_arr = np.full(self.VZA_arr.shape, self.VAA_mean, np.float32)
138
139
140
141
142
        return self._VAA_arr

    @VAA_arr.setter
    def VAA_arr(self, VAA_arr):
        self._VAA_arr = VAA_arr
143

144
145
146
147
    @VAA_arr.deleter
    def VAA_arr(self):
        self._VAA_arr = None

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    @property
    def SZA_arr(self):
        """Get solar zenith angle.

        :return:
        """
        if self._SZA_arr is None:
            self.logger.info('Calculating solar zenith and azimuth arrays...')
            self._SZA_arr, self._SAA_arr = \
                GEOP.calc_SZA_SAA_array(
                    self.shape_fullArr, self.arr_pos,
                    self.meta_odict['AcqDate'],
                    self.meta_odict['AcqTime'],
                    self.fullSceneCornerPos,
                    self.fullSceneCornerLonLat,
                    self.meta_odict['overpass duraction sec'],
                    self.logger,
                    meshwidth=10,
                    nodata_mask=None,  # dont overwrite areas outside the image with nodata
                    outFill=get_outFillZeroSaturated(np.float32)[0],
168
169
                    accurracy=CFG.SZA_SAA_calculation_accurracy,
                    lonlat_arr=self.lonlat_arr if CFG.SZA_SAA_calculation_accurracy == 'fine' else None)
170
171
172
173
174
175
        return self._SZA_arr

    @SZA_arr.setter
    def SZA_arr(self, SZA_arr):
        self._SZA_arr = SZA_arr

176
177
178
179
    @SZA_arr.deleter
    def SZA_arr(self):
        self._SZA_arr = None

180
181
182
183
184
185
186
    @property
    def SAA_arr(self):
        """Get solar azimuth angle.

        :return:
        """
        if self._SAA_arr is None:
187
188
            # noinspection PyStatementEffect
            self.SZA_arr  # getter also sets self._SAA_arr
189
190
191
192
193
194
        return self._SAA_arr

    @SAA_arr.setter
    def SAA_arr(self, SAA_arr):
        self._SAA_arr = SAA_arr

195
196
197
198
    @SAA_arr.deleter
    def SAA_arr(self):
        self._SAA_arr = None

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    @property
    def RAA_arr(self):
        """Get relative azimuth angle.

        :return:
        """
        if self._RAA_arr is None:
            self.logger.info('Calculating relative azimuth array...')
            self._RAA_arr = GEOP.calc_RAA_array(self.SAA_arr, self.VAA_mean,
                                                nodata_mask=None, outFill=get_outFillZeroSaturated(np.float32)[0])
        return self._RAA_arr

    @RAA_arr.setter
    def RAA_arr(self, RAA_arr):
        self._RAA_arr = RAA_arr
214

215
216
217
218
    @RAA_arr.deleter
    def RAA_arr(self):
        self._RAA_arr = None

219
    def delete_ac_input_arrays(self):
220
221
222
223
224
225
226
        """Delete AC input arrays if they are not needed anymore."""
        self.logger.info('Deleting input arrays for atmospheric correction...')
        del self.VZA_arr
        del self.SZA_arr
        del self.SAA_arr
        del self.RAA_arr
        del self.lonlat_arr
Daniel Scheffler's avatar
Daniel Scheffler committed
227
228
229
230
231

        # use self.dem deleter
        # would have to be resampled when writing MGRS tiles
        # -> better to directly warp it to the output dims and projection
        del self.dem
232
233
234


class AtmCorr(object):
235
    def __init__(self, *L1C_objs, reporting=False):
236
        """Wrapper around atmospheric correction by Andre Hollstein, GFZ Potsdam
237
238
239
240
241
242

        Creates the input arguments for atmospheric correction from one or multiple L1C_object instance(s) belonging to
        the same scene ID, performs the atmospheric correction and returns the atmospherically corrected L1C object(s).

        :param L1C_objs: one or more instances of L1C_object belonging to the same scene ID
        """
243
        # FIXME not yet usable for data < 2012 due to missing ECMWF archive
244
245
246
        L1C_objs = L1C_objs if isinstance(L1C_objs, tuple) else (L1C_objs,)

        # hidden attributes
Daniel Scheffler's avatar
Daniel Scheffler committed
247
248
249
        self._logger = None
        self._GSDs = []
        self._data = {}
250
        self._metadata = {}
Daniel Scheffler's avatar
Daniel Scheffler committed
251
        self._nodata = {}
252
        self._band_spatial_sampling = {}
Daniel Scheffler's avatar
Daniel Scheffler committed
253
        self._options = {}
254
255
256

        # assertions
        scene_IDs = [obj.scene_ID for obj in L1C_objs]
Daniel Scheffler's avatar
Daniel Scheffler committed
257
        assert len(list(set(scene_IDs))) == 1, \
Daniel Scheffler's avatar
Daniel Scheffler committed
258
            "Input GMS objects for 'AtmCorr' must all belong to the same scene ID!. Received %s." % scene_IDs
259

Daniel Scheffler's avatar
Daniel Scheffler committed
260
        self.inObjs = L1C_objs  # type: List[L1C_object]
261
        self.reporting = reporting
Daniel Scheffler's avatar
Daniel Scheffler committed
262
263
        self.ac_input = {}  # set by self.run_atmospheric_correction()
        self.results = None  # direct output of external atmCorr module (set by run_atmospheric_correction)
264
        self.proc_info = {}
Daniel Scheffler's avatar
Daniel Scheffler committed
265
        self.outObjs = []  # atmospherically corrected L1C objects
266
267

        # append AtmCorr object to input L1C objects
Daniel Scheffler's avatar
Daniel Scheffler committed
268
        # [setattr(L1C_obj, 'AtmCorr', self) for L1C_obj in self.inObjs] # too big for serialization
269

270
        if not re.search('Sentinel-2', self.inObjs[0].satellite, re.I):
Daniel Scheffler's avatar
Daniel Scheffler committed
271
272
            self.logger.warning('Calculation of acquisition geometry arrays is currently only validated for '
                                'Sentinel-2!')
273
274
            # validation possible by comparing S2 angles provided by ESA with own angles

275
276
277
278
279
    @property
    def logger(self):
        if self._logger and self._logger.handlers[:]:
            return self._logger
        else:
Daniel Scheffler's avatar
Daniel Scheffler committed
280
            if len(self.inObjs) == 1:
281
282
283
284
285
286
287
288
289
290
                # just use the logger of the inObj
                logger_atmCorr = self.inObjs[0].logger
            else:
                # in case of multiple GMS objects to be processed at once:
                # get the logger of the first inObj
                logger_atmCorr = self.inObjs[0].logger

                # add additional file handlers for the remaining inObj (that belong to the same scene_ID)
                for inObj in self.inObjs[1:]:
                    path_logfile = inObj.pathGen.get_path_logfile()
Daniel Scheffler's avatar
Daniel Scheffler committed
291
                    fileHandler = logging.FileHandler(path_logfile, mode='a')
292
                    fileHandler.setFormatter(logger_atmCorr.formatter_fileH)
293
                    fileHandler.setLevel(CFG.log_level)
294
295
296

                    logger_atmCorr.addHandler(fileHandler)

297
                    inObj.close_loggers()
Daniel Scheffler's avatar
Daniel Scheffler committed
298

299
300
301
302
303
304
            self._logger = logger_atmCorr
            return self._logger

    @logger.setter
    def logger(self, logger):
        assert isinstance(logger, logging.Logger) or logger in ['not set', None], \
Daniel Scheffler's avatar
Daniel Scheffler committed
305
            "AtmCorr.logger can not be set to %s." % logger
306
307
308
309
310
311
312
313
        if logger in ['not set', None]:
            self._logger.close()
            self._logger = logger
        else:
            self._logger = logger

    @logger.deleter
    def logger(self):
314
315
316
        if self._logger not in [None, 'not set']:
            self._logger.close()
            self._logger = None
317

318
        [inObj.close_loggers() for inObj in self.inObjs]
Daniel Scheffler's avatar
Daniel Scheffler committed
319

320
321
322
323
324
325
326
327
    @property
    def GSDs(self):
        """
        Returns a list of spatial samplings within the input GMS objects, e.g. [10,20,60].
        """
        for obj in self.inObjs:
            if obj.arr.xgsd != obj.arr.ygsd:
                warnings.warn("X/Y GSD is not equal for entity ID %s" % obj.entity_ID +
Daniel Scheffler's avatar
Daniel Scheffler committed
328
                              (' (%s)' % obj.subsystem if obj.subsystem else '') +
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
                              'Using X-GSD as key for spatial sampling dictionary.')
                self._GSDs.append(obj.arr.xgsd)

        return self._GSDs

    @property
    def data(self):
        """

        :return:
            ___ attribute: data, type:<class 'dict'>
            ______ key:B05, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 085998540.0803833 ]]
            ______ key:B01, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 131225590.13208008]]
            ______ key:B06, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .14965820.13977051]]
            ______ key:B11, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .11492920.10192871]]
            ______ key:B02, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 104187010.10308838]]
            ______ key:B10, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 013099670.01300049]]
            ______ key:B08, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .16857910.15783691]]
            ______ key:B04, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 065490720.06228638]]
            ______ key:B03, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 082702640.08148193]]
            ______ key:B12, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 068420410.06060791]]
            ______ key:B8A, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 192138670.17553711]]
            ______ key:B09, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .09600830.09887695]]
            ______ key:B07, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 173339840.15600586]]
        """
        if not self._data:
355
356
            data_dict = {}

357
            for inObj in self.inObjs:
358
                for bandN, bandIdx in inObj.arr.bandnames.items():
359
                    if bandN not in data_dict:
Daniel Scheffler's avatar
Daniel Scheffler committed
360
361
362
363
                        # float32! -> conversion to np.float16 will convert -9999 to -10000
                        arr2pass = inObj.arr[:, :, bandIdx].astype(np.float32)
                        arr2pass[arr2pass == inObj.arr.nodata] = np.nan  # set nodata values to np.nan
                        data_dict[bandN] = (arr2pass / inObj.meta_odict['ScaleFactor']).astype(np.float16)
364
                    else:
365
                        inObj.logger.warning("Band '%s' cannot be included into atmospheric correction because it "
Daniel Scheffler's avatar
Daniel Scheffler committed
366
                                             "exists multiple times." % bandN)
367

368
            # validate: data must have all bands needed for AC
Daniel Scheffler's avatar
Daniel Scheffler committed
369
370
            full_LBA = get_LayerBandsAssignment(self.inObjs[0].GMS_identifier, return_fullLBA=True)
            all_bNs_AC = ['B%s' % i if len(i) == 2 else 'B0%s' % i for i in full_LBA]
371
372
            if not all([bN in list(data_dict.keys()) for bN in all_bNs_AC]):
                raise RuntimeError('Atmospheric correction did not receive all the needed bands. \n\tExpected: %s;\n\t'
Daniel Scheffler's avatar
Daniel Scheffler committed
373
                                   'Received: %s' % (str(all_bNs_AC), str(list(sorted(data_dict.keys())))))
374
375
376

            self._data = data_dict

377
378
379
380
381
382
383
384
        return self._data

    @data.setter
    def data(self, data_dict):
        assert isinstance(data_dict, dict), \
            "'data' can only be set to a dictionary with band names as keys and numpy arrays as values."
        self._data = data_dict

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
    @property
    def nodata(self):
        """

        :return:
            ___ attribute: nodata, type:<class 'dict'>
            ______ key:60.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
            ______ key:10.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
            ______ key:20.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
        """

        if not self._nodata:
            for inObj in self.inObjs:
                self._nodata[inObj.arr.xgsd] = ~inObj.arr.mask_nodata[:]

        return self._nodata

    @property
    def tile_name(self):
404
        """Returns S2A tile name.
405
        NOTE: this is only needed if no DEM is passed to ac_gms
406
407
408
409
410

        :return: e.g.
            '32UMA'
        """

Daniel Scheffler's avatar
Daniel Scheffler committed
411
        return ''  # FIXME
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

    @property
    def band_spatial_sampling(self):
        """

        :return: e.g.
            {'B01': 60.0,
             'B02': 10.0,
             'B03': 10.0,
             'B04': 10.0,
             'B05': 20.0,
             'B06': 20.0,
             'B07': 20.0,
             'B08': 10.0,
             'B09': 60.0,
             'B10': 60.0,
             'B11': 20.0,
             'B12': 20.0,
             'B8A': 20.0}
        """

        if not self._band_spatial_sampling:
            for inObj in self.inObjs:
                for bandN in inObj.arr.bandnames:
                    if bandN not in self._band_spatial_sampling:
                        self._band_spatial_sampling[bandN] = inObj.arr.xgsd
        return self._band_spatial_sampling

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    @property
    def metadata(self):
        """

        :return:
            ___ attribute: metadata, type:<class 'dict'>
            ______ key:spatial_samplings
            _________ key:60.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 1830
            ____________ key:XDIM, value_type:<class 'int'>, repr: 60
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 1830
            ____________ key:YDIM, value_type:<class 'int'>, repr: -60
            _________ key:10.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 10980
            ____________ key:XDIM, value_type:<class 'int'>, repr: 10
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 10980
            ____________ key:YDIM, value_type:<class 'int'>, repr: -10
            _________ key:20.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 5490
            ____________ key:XDIM, value_type:<class 'int'>, repr: 20
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 5490
            ____________ key:YDIM, value_type:<class 'int'>, repr: -20
            ______ key:SENSING_TIME, value_type:<class 'datetime.datetime'>, repr: 2016-03-26 10:34:06.538000+00:00
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
470

471
        if not self._metadata:
Daniel Scheffler's avatar
Daniel Scheffler committed
472
            del self.logger  # otherwise each input object would have multiple fileHandlers
473

Daniel Scheffler's avatar
Daniel Scheffler committed
474
475
476
477
478
479
480
481
482
483
484
485
486
            metadata = dict(
                U=self.inObjs[0].meta_odict['EarthSunDist'],
                SENSING_TIME=self.inObjs[0].acq_datetime,
                # SENSING_TIME=datetime.strptime('2015-08-12 10:40:21 +0000', '%Y-%m-%d %H:%M:%S %z'),
                viewing_zenith=self._meta_get_viewing_zenith(),
                viewing_azimuth=self._meta_get_viewing_azimuth(),
                relative_viewing_azimuth=self._meta_get_relative_viewing_azimuth(),
                sun_mean_azimuth=self.inObjs[0].meta_odict['SunAzimuth'],
                sun_mean_zenith=90 - self.inObjs[0].meta_odict['SunElevation'],
                solar_irradiance=self._meta_get_solar_irradiance(),
                aux_data=self._meta_get_aux_data(),
                spatial_samplings=self._meta_get_spatial_samplings()
            )
487
488

            self._metadata = metadata
489
490
491

        return self._metadata

492
493
    @property
    def options(self):
494
        # type: () -> dict
495
496
497
498
499
500
        """Returns a dictionary containing AC options.
        """
        if self._options:
            return self._options
        else:
            self._options = self.inObjs[0].ac_options
Daniel Scheffler's avatar
Daniel Scheffler committed
501
            self._options["AC"]['bands'] = [b for b in self.data.keys() if b in self._options["AC"]['bands']]
502
            self._options["report"]["reporting"] = self.reporting
503
504
            return self._options

505
    def _meta_get_spatial_samplings(self):
506
507
508
        """

        :return:
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
         {10.0: {'NCOLS': 10980,
           'NROWS': 10980,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 10.0,
           'YDIM': -10.0},
          20.0: {'NCOLS': 5490,
           'NROWS': 5490,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 20.0,
           'YDIM': -20.0},
          60.0: {'NCOLS': 1830,
           'NROWS': 1830,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 60.0,
           'YDIM': -60.0}}
527
        """
528
529
        # set corner coordinates and dims
        spatial_samplings = {}
530
531
532

        for inObj in self.inObjs:

533
534
535
536
537
            # validate GSD
            if inObj.arr.xgsd != inObj.arr.ygsd:
                warnings.warn("X/Y GSD is not equal for entity ID %s" % inObj.entity_ID +
                              (' (%s)' % inObj.subsystem if inObj.subsystem else '') +
                              'Using X-GSD as key for spatial sampling dictionary.')
538

539
540
            # set spatial information
            spatial_samplings[inObj.arr.xgsd] = dict(
Daniel Scheffler's avatar
Daniel Scheffler committed
541
542
543
544
545
546
                ULX=inObj.arr.box.boxMapYX[0][1],
                ULY=inObj.arr.box.boxMapYX[0][0],
                XDIM=inObj.arr.xgsd,
                YDIM=-inObj.arr.ygsd,
                NROWS=inObj.arr.rows,
                NCOLS=inObj.arr.cols)
547

548
549
550
        return spatial_samplings

    def _meta_get_solar_irradiance(self):
551
552
553
        """

        :return:
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        {'B01': 1913.57,
         'B02': 1941.63,
         'B03': 1822.61,
         'B04': 1512.79,
         'B05': 1425.56,
         'B06': 1288.32,
         'B07': 1163.19,
         'B08': 1036.39,
         'B09': 813.04,
         'B10': 367.15,
         'B11': 245.59,
         'B12': 85.25,
         'B8A': 955.19}
        """

        solar_irradiance = {}

        for inObj in self.inObjs:
572
573
            for bandN in inObj.arr.bandnames:
                lba_key = bandN[2:] if bandN.startswith('B0') else bandN[1:]
574
                if bandN not in solar_irradiance:
575
576
                    solar_irradiance[bandN] = inObj.MetaObj.SolIrradiance[lba_key]

577
578
579
580
581
582
583
584
585
586
        return solar_irradiance

    def _meta_get_viewing_zenith(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
        """

        viewing_zenith = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
587
        for inObj in self.inObjs:  # type: L1C_object
588
            for bandN, bandIdx in inObj.arr.bandnames.items():
589
                if bandN not in viewing_zenith:
590
591
                    arr2pass = inObj.VZA_arr[:, :, bandIdx] if inObj.VZA_arr.ndim == 3 else inObj.VZA_arr
                    viewing_zenith[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
592
                    # viewing_zenith[bandN] = inObj.VZA_arr[:, :, bandIdx] if inObj.VZA_arr.ndim==3 else inObj.VZA_arr
593
594
595
596
597
598
599
600
601
602
        return viewing_zenith

    def _meta_get_viewing_azimuth(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
        """

        viewing_azimuth = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
603
        for inObj in self.inObjs:  # type: L1C_object
604
            for bandN, bandIdx in inObj.arr.bandnames.items():
605
                if bandN not in viewing_azimuth:
Daniel Scheffler's avatar
Daniel Scheffler committed
606
                    arr2pass = inObj.VAA_arr[:, :, bandIdx] if inObj.VAA_arr.ndim == 3 else inObj.VAA_arr
607
                    viewing_azimuth[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
608
                    # viewing_azimuth[bandN] = inObj.VAA_arr[:, :, bandIdx] if inObj.VAA_arr.ndim==3 else inObj.VAA_arr
609

610
611
612
613
614
615
        return viewing_azimuth

    def _meta_get_relative_viewing_azimuth(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
616
617
        """

618
619
        relative_viewing_azimuth = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
620
        for inObj in self.inObjs:  # type: L1C_object
621
            for bandN, bandIdx in inObj.arr.bandnames.items():
622
                if bandN not in relative_viewing_azimuth:
623
624
                    arr2pass = inObj.RAA_arr[:, :, bandIdx] if inObj.RAA_arr.ndim == 3 else inObj.RAA_arr
                    relative_viewing_azimuth[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
625
626
                    # relative_viewing_azimuth[bandN] = \
                    #     inObj.RAA_arr[:, :, bandIdx] if inObj.RAA_arr.ndim==3 else inObj.RAA_arr
627

628
        return relative_viewing_azimuth
629

630
631
632
633
634
635
636
637
    def _meta_get_aux_data(self):
        """

        :return:  {lons:ndarray(dtype=float16),,lats:ndarray(dtype=float16)}
        """

        aux_data = dict(
            # set lons and lats (a 2D array for all bands is enough (different band resolutions dont matter))
Daniel Scheffler's avatar
Daniel Scheffler committed
638
639
            lons=self.inObjs[0].lonlat_arr[::10, ::10, 0].astype(np.float16),  # 2D array of lon values: 0° - 360°
            lats=self.inObjs[0].lonlat_arr[::10, ::10, 1].astype(np.float16)  # 2D array of lat values: -90° - 90°
640
            # FIXME correct to reduce resolution here by factor 10?
641
642
643
644
645
646
647
648
649
650
651
652
        )

        return aux_data

    def _get_dem(self):
        """Get a DEM to be used in atmospheric correction.

        :return: <np.ndarray> 2D array (with 20m resolution in case of Sentinel-2)
        """
        # determine which input GMS object is used to generate DEM
        if re.search('Sentinel-2', self.inObjs[0].satellite):
            # in case of Sentinel-2 the 20m DEM must be passed
Daniel Scheffler's avatar
Daniel Scheffler committed
653
            inObj4dem = [obj for obj in self.inObjs if obj.arr.xgsd == 20]
654
655
656
            if not inObj4dem:
                self.logger.warning('Sentinel-2 20m subsystem could not be found. DEM passed to '
                                    'atmospheric correction might have wrong resolution.')
657
658
659
660
            inObj4dem = inObj4dem[0]
        else:
            inObj4dem = self.inObjs[0]

661
662
663
664
        try:
            dem = inObj4dem.dem[:].astype(np.float32)
        except Exception as e:
            dem = None
Daniel Scheffler's avatar
Daniel Scheffler committed
665
            self.logger.warning('A static elevation is assumed during atmospheric correction due to an error during '
666
667
668
                                'creation of the DEM corresponding to scene %s (entity ID: %s). Error message was: '
                                '\n%s\n' % (self.inObjs[0].scene_ID, self.inObjs[0].entity_ID, repr(e)))
            self.logger.info("Print traceback in case you care:")
669
            self.logger.warning(traceback.format_exc())
670
671

        return dem
672
673

    def _get_srf(self):
674
        """Returns an instance of SRF in the same structure like sicor.sensors.SRF.SensorSRF
675
        """
676
677
678
        # FIXME calculation of center wavelengths within SRF() used not the GMS algorithm
        # SRF instance must be created for all bands and the previous proc level
        GMS_identifier_fullScene = self.inObjs[0].GMS_identifier
Mathias Peters's avatar
Mathias Peters committed
679
680
        GMS_identifier_fullScene.subsystem = ''
        GMS_identifier_fullScene.proc_level = proc_chain[proc_chain.index(self.inObjs[0].proc_level) - 1]
681
682

        return SRF(GMS_identifier_fullScene, wvl_unit='nanometers', format_bandnames=True)
683

684
685
686
687
688
689
    def _get_mask_clouds(self):
        """Returns an instance of S2Mask in case cloud mask is given by input GMS objects. Otherwise None is returned.

        :return:
        """

690
691
        tgt_res = self.inObjs[0].ac_options['cld_mask']['target_resolution']

692
        # check if input GMS objects provide a cloud mask
693
        avail_cloud_masks = {inObj.GMS_identifier.subsystem: inObj.mask_clouds for inObj in self.inObjs}
694
        no_avail_CMs = list(set(avail_cloud_masks.values())) == [None]
695
696

        # compute cloud mask if not already provided
697
        if no_avail_CMs:
698
            algorithm = CFG.cloud_masking_algorithm[self.inObjs[0].satellite]
699

700
701
            if algorithm == 'SICOR':
                return None
702

703
704
705
706
707
            else:
                # FMASK or Classical Bayesian
                try:
                    from .cloud_masking import Cloud_Mask_Creator

708
                    CMC = Cloud_Mask_Creator(self.inObjs[0], algorithm=algorithm, tempdir_root=CFG.path_tempdir)
709
710
711
712
                    CMC.calc_cloud_mask()
                    cm_geoarray = CMC.cloud_mask_geoarray
                    cm_array = CMC.cloud_mask_array
                    cm_legend = CMC.cloud_mask_legend
Daniel Scheffler's avatar
Daniel Scheffler committed
713
                except Exception:
714
715
                    self.logger.error('\nAn error occurred during FMASK cloud masking. Error message was: ')
                    self.logger.error(traceback.format_exc())
716
                    return None
717

718
719
        else:
            # check if there is a cloud mask with suitable GSD
Daniel Scheffler's avatar
Daniel Scheffler committed
720
            inObjs2use = [obj for obj in self.inObjs if obj.mask_clouds is not None and obj.mask_clouds.xgsd == tgt_res]
721
722
            if not inObjs2use:
                raise ValueError('Error appending cloud mask to input arguments of atmospheric correction. No input '
Daniel Scheffler's avatar
Daniel Scheffler committed
723
                                 'GMS object provides a cloud mask with spatial resolution of %s.' % tgt_res)
724
725
726
727
728
729
730
731
            inObj2use = inObjs2use[0]

            # get mask (geo)array
            cm_geoarray = inObj2use.mask_clouds
            cm_array = inObj2use.mask_clouds[:]

            # get legend
            cm_legend = get_mask_classdefinition('mask_clouds', inObj2use.satellite)
732
            #    {'Clear': 10, 'Thick Clouds': 20, 'Thin Clouds': 30, 'Snow': 40}  # FIXME hardcoded
733
734
735
736
737
738

            # validate that xGSD equals yGSD
            if cm_geoarray.xgsd != cm_geoarray.ygsd:
                warnings.warn("Cloud mask X/Y GSD is not equal for entity ID %s" % inObj2use.entity_ID +
                              (' (%s)' % inObj2use.subsystem if inObj2use.subsystem else '') +
                              'Using X-GSD as key for cloud mask geocoding.')
739
740
741
742

        # get geocoding
        cm_geocoding = self.metadata["spatial_samplings"][tgt_res]

743
744
        # get nodata value
        self.options['cld_mask']['nodata_value_mask'] = cm_geoarray.nodata
745

746
        # append cloud mask to input object with the same spatial resolution if there was no mask before
747
        for inObj in self.inObjs:
748
            if inObj.arr.xgsd == cm_geoarray.xgsd:
749
750
                inObj.mask_clouds = cm_geoarray
                inObj.build_combined_masks_array()
Daniel Scheffler's avatar
Daniel Scheffler committed
751
                break  # appending it to one inObj is enough
752

753
754
755
        return S2Mask(mask_array=cm_array,
                      mask_legend=cm_legend,
                      geo_coding=cm_geocoding)
756

757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
    def _check_or_download_ECMWF_data(self):
        """Check if ECMWF files are already downloaded. If not, start the downloader."""
        self.logger.info('Checking if ECMWF data are available... (if not, run download!)')

        default_products = [
            "fc_T2M",
            "fc_O3",
            "fc_SLP",
            "fc_TCWV",
            "fc_GMES_ozone",
            "fc_total_AOT_550nm",
            "fc_sulphate_AOT_550nm",
            "fc_black_carbon_AOT_550nm",
            "fc_dust_AOT_550nm",
            "fc_organic_matter_AOT_550nm",
            "fc_sea_salt_AOT_550nm"]

774
775
        # NOTE: use_signals must be set to True while executed as multiprocessing worker (e.g., in multiprocessing.Pool)
        @timeout_decorator.timeout(seconds=60*5, timeout_exception=TimeoutError)
776
777
        def run_request():
            try:
778
779
780
781
782
783
784
785
786
787
788
789
790
791
                with MultiSlotLock('ECMWF download lock', allowed_slots=1, logger=self.logger):
                    t0 = time()
                    # NOTE: download_variables does not accept a logger -> so the output may be invisible in WebApp
                    results = download_variables(date_from=self.inObjs[0].acq_datetime,
                                                 date_to=self.inObjs[0].acq_datetime,
                                                 db_path=CFG.path_ECMWF_db,
                                                 max_step=120,  # default
                                                 ecmwf_variables=default_products,
                                                 processes=0,  # singleprocessing
                                                 force=False)  # dont force download if files already exist
                    t1 = time()
                    self.logger.info("Runtime: %.2f" % (t1 - t0))
                    for result in results:
                        self.logger.info(result)
792
793
794
795
796
797
798
799
800

            except APIKeyFetchError:
                self.logger.error("ECMWF data download failed due to missing API credentials.")

            except (ECMWFAPIException, Exception):
                self.logger.error("ECMWF data download failed for scene %s (entity ID: %s). Traceback: "
                                  % (self.inObjs[0].scene_ID, self.inObjs[0].entity_ID))
                self.logger.error(traceback.format_exc())

801
        try:
802
803
804
            run_request()
        except TimeoutError:
            self.logger.error("ECMWF data download failed due to API request timeout after waiting 5 minutes.")
805
806
807
808

    def _validate_snr_source(self):
        """Check if the given file path for the SNR model exists - if not, use a constant SNR of 500."""
        if not os.path.isfile(self.options["uncertainties"]["snr_model"]):
809
810
            self.logger.warning('No valid SNR model found for %s %s. Using constant SNR to compute uncertainties of '
                                'atmospheric correction.' % (self.inObjs[0].satellite, self.inObjs[0].sensor))
811
812
813
            # self.options["uncertainties"]["snr_model"] = np.nan  # causes the computed uncertainties to be np.nan
            self.options["uncertainties"]["snr_model"] = 500  # use a constant SNR of 500 to compute uncertainties

814
815
    def run_atmospheric_correction(self, dump_ac_input=False):
        # type: (bool) -> list
816
817
818
        """Collects all input data for atmospheric correction, runs the AC and returns the corrected L1C objects
        containing surface reflectance.

819
820
        :param dump_ac_input:   allows to dump the inputs of AC to the scene's processing folder in case AC fails
        :return:                list of L1C_object instances containing atmospherically corrected data
821
        """
822
823

        # collect input args/kwargs for AC
824
825
        self.logger.info('Calculating input data for atmospheric correction...')

826
        rs_data = dict(
Daniel Scheffler's avatar
Daniel Scheffler committed
827
828
829
830
831
832
833
834
835
            data=self.data,
            metadata=self.metadata,
            nodata=self.nodata,
            band_spatial_sampling=self.band_spatial_sampling,
            tile_name=self.tile_name,
            dem=self._get_dem(),
            srf=self._get_srf(),
            mask_clouds=self._get_mask_clouds()
            # returns an instance of S2Mask or None if cloud mask is not given by input GMS objects
Daniel Scheffler's avatar
Daniel Scheffler committed
836
        )  # NOTE: all keys of this dict are later converted to attributes of RSImage
837

838
839
840
841
        # remove empty values from RSImage kwargs because SICOR treats any kind of RSImage attributes as given
        # => 'None'-attributes may cause issues
        rs_data = {k: v for k, v in rs_data.items() if v is not None}

Daniel Scheffler's avatar
Daniel Scheffler committed
842
        script = False
843

844
        # check if ECMWF data are available - if not, start the download
845
        if CFG.auto_download_ecmwf:
846
            self._check_or_download_ECMWF_data()
847
848

        # validate SNR
849
850
        if CFG.ac_estimate_accuracy:
            self._validate_snr_source()
851

852
853
854
        # create an instance of RSImage
        rs_image = RSImage(**rs_data)

855
        self.ac_input = dict(
856
            rs_image=rs_image,
Daniel Scheffler's avatar
Daniel Scheffler committed
857
            options=self.options,  # type: dict
858
859
            logger=repr(self.logger),  # only a string
            script=script
860
        )
861

862
863
864
865
        # path_dump = self.inObjs[0].pathGen.get_path_ac_input_dump()
        # with open(path_dump, 'wb') as outF:
        #     dill.dump(self.ac_input, outF)

866
        # run AC
867
        self.logger.info('Atmospheric correction started.')
868
        try:
869
            rs_image.logger = self.logger
870
            self.results = ac_gms(rs_image, self.options, logger=self.logger, script=script)
871

872
        except Exception as e:
873
874
875
876
877
878
            self.logger.error('\nAn error occurred during atmospheric correction. BE AWARE THAT THE SCENE %s '
                              '(ENTITY ID %s) HAS NOT BEEN ATMOSPHERICALLY CORRECTED! Error message was: \n%s\n'
                              % (self.inObjs[0].scene_ID, self.inObjs[0].entity_ID, repr(e)))
            self.logger.error(traceback.format_exc())
            # TODO include that in the job summary

879
            # serialialize AC input
880
881
882
883
884
885
            if dump_ac_input:
                path_dump = self.inObjs[0].pathGen.get_path_ac_input_dump()
                with open(path_dump, 'wb') as outF:
                    dill.dump(self.ac_input, outF)

                self.logger.error('An error occurred during atmospheric correction. Inputs have been dumped to %s.'
Daniel Scheffler's avatar
Daniel Scheffler committed
886
                                  % path_dump)
887
888

            # delete AC input arrays
Daniel Scheffler's avatar
Daniel Scheffler committed
889
            for inObj in self.inObjs:  # type: L1C_object
890
891
                inObj.delete_ac_input_arrays()

892
893
            return list(self.inObjs)

894
        # get processing infos
895
        self.proc_info = self.ac_input['options']['processing']
896

897
        # join results
Daniel Scheffler's avatar
Daniel Scheffler committed
898
        self._join_results_to_inObjs()  # sets self.outObjs
899

900
901
        # delete input arrays that are not needed anymore
        [inObj.delete_ac_input_arrays() for inObj in self.inObjs]
902

903
904
905
        return self.outObjs

    def _join_results_to_inObjs(self):
906
907
908
        """
        Join results of atmospheric correction to the input GMS objects.
        """
909

910
        self.logger.info('Joining results of atmospheric correction to input GMS objects.')
Daniel Scheffler's avatar
Daniel Scheffler committed
911
912
913
        # delete logger
        # -> otherwise logging in inObjs would open a second FileHandler to the same file (which is permitted)
        del self.logger
914
915

        self._join_data_ac()
916
        self._join_data_errors(bandwise=CFG.ac_bandwise_accuracy)
917
918
919
920
921
        self._join_mask_clouds()
        self._join_mask_confidence_array()

        # update masks (always do that because masks can also only contain one layer)
        [inObj.build_combined_masks_array() for inObj in self.inObjs]
922

923
924
925
        # update AC processing info
        [inObj.ac_options['processing'].update(self.proc_info) for inObj in self.inObjs]

926
927
928
929
        self.outObjs = self.inObjs

    def _join_data_ac(self):
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
930
931
        Join ATMOSPHERICALLY CORRECTED ARRAY as 3D int8 or int16 BOA reflectance array, scaled to scale factor from
        config.
932
        """
933

934
        if self.results.data_ac is not None:
935
            for inObj in self.inObjs:
Daniel Scheffler's avatar
Daniel Scheffler committed
936
937
                self.logger.info('Joining image data to %s.' % (inObj.entity_ID if not inObj.subsystem else
                                                                '%s %s' % (inObj.entity_ID, inObj.subsystem)))
938

939
                assert isinstance(inObj, L1B_object)
940
                nodata = self.results.nodata[inObj.arr.xgsd]  # 2D mask with True outside of image coverage
Daniel Scheffler's avatar
Daniel Scheffler committed
941
                ac_bandNs = [bandN for bandN in inObj.arr.bandnames if bandN in self.results.data_ac.keys()]
942
                out_LBA = [bN.split('B0')[1] if bN.startswith('B0') else bN.split('B')[1] for bN in ac_bandNs]
943

944
945
946
                # update metadata #
                ###################

947
948
                inObj.arr_desc = 'BOA_Ref'
                inObj.MetaObj.bands = len(self.results.data_ac)
949
                inObj.MetaObj.PhysUnit = 'BOA_Reflectance in [0-%d]' % CFG.scale_factor_BOARef
950
                inObj.MetaObj.LayerBandsAssignment = out_LBA
951
                inObj.LayerBandsAssignment = out_LBA
952
                inObj.MetaObj.filter_layerdependent_metadata()
953
                inObj.meta_odict = inObj.MetaObj.to_odict()  # actually auto-updated by getter
954

955
956
957
958
                ##################################################################################
                # join SURFACE REFLECTANCE as 3D int16 array, scaled to scale factor from config #
                ##################################################################################

959
                oF_refl, oZ_refl, oS_refl = get_outFillZeroSaturated(inObj.arr.dtype)
960
                surf_refl = np.dstack((self.results.data_ac[bandN] for bandN in ac_bandNs))
961
                surf_refl *= CFG.scale_factor_BOARef  # scale using scale factor (output is float16)
962
963
964
965
966
967
968
969
970

                # set AC nodata values to GMS outFill
                # NOTE: AC nodata contains a pixel mask where at least one band is no data
                #       => Setting these pixels to outZero would also reduce pixel values of surrounding pixels in
                #          spatial homogenization (because resampling only ignores -9999).
                #       It would be possible to generate a zero-data mask here for each subsystem and apply it after
                #       spatial homogenization. Alternatively zero-data pixels could be interpolated spectrally or
                #       spatially within L1A processor (also see issue #74).
                surf_refl[nodata] = oF_refl  # overwrite AC nodata values with GMS outFill
971

Daniel Scheffler's avatar
Daniel Scheffler committed
972
                # apply the original nodata mask (indicating background values)
973
                surf_refl[np.array(inObj.mask_nodata).astype(np.int8) == 0] = oF_refl
974

975
976
                # set AC NaNs to GMS outFill
                # NOTE: SICOR result has NaNs at no data positions AND non-clear positions
Daniel Scheffler's avatar
Daniel Scheffler committed
977
                if self.results.bad_data_value is np.nan:
978
                    surf_refl[np.isnan(surf_refl)] = oF_refl
Daniel Scheffler's avatar
Daniel Scheffler committed
979
                else:
980
                    surf_refl[surf_refl == self.results.bad_data_value] = oF_refl
981

982
                # use inObj.arr setter to generate a GeoArray
983
                inObj.arr = surf_refl.astype(inObj.arr.dtype)  # -> int16 (also converts NaNs to 0 if needed
984

985
986
987
        else:
            self.logger.warning('Atmospheric correction did not return a result for the input array. '
                                'Thus the output keeps NOT atmospherically corrected.')
988

989
990
    def _join_data_errors(self, bandwise=False):
        """Join ERRORS ARRAY as 3D or 2D int8 or int16 BOA reflectance array, scaled to scale factor from config.
991

992
993
994
        :param bandwise:    if True, a 3D array with bandwise information for each pixel is generated
        :return:
        """
995
996
        # TODO ac_error values are very close to 0 -> a scale factor of 255 yields int8 values below 10
        # TODO => better to stretch the whole array to values between 0 and 100 and save original min/max?
997
        if self.results.data_errors is not None:
998

999
            for inObj in self.inObjs:
Daniel Scheffler's avatar
Daniel Scheffler committed
1000
1001
                inObj.logger.info('Joining AC errors to %s.' % (inObj.entity_ID if not inObj.subsystem else
                                                                '%s %s' % (inObj.entity_ID, inObj.subsystem)))
1002

1003
1004
                nodata = self.results.nodata[inObj.arr.xgsd]  # 2D mask with True outside of image coverage
                ac_bandNs = [bandN for bandN in inObj.arr.bandnames if bandN in self.results.data_ac.keys()]
1005
1006
                out_dtype = np.int8 if CFG.ac_scale_factor_errors <= 255 else np.int16
                out_nodata_val = get_outFillZeroSaturated(out_dtype)[0]
1007

1008
                # generate raw ac_errors array
1009
                ac_errors = np.dstack((self.results.data_errors[bandN] for bandN in ac_bandNs))
1010

1011
1012
1013
1014
1015
1016
1017
                # apply scale factor from config to data pixels and overwrite nodata area with nodata value
                ac_errors *= CFG.ac_scale_factor_errors  # scale using scale factor (output is float16)
                ac_errors[np.isnan(ac_errors)] = out_nodata_val  # replace NaNs with outnodata
                ac_errors[nodata] = out_nodata_val  # set all positions where SICOR nodata mask is 1 to outnodata
                ac_errors = np.around(ac_errors).astype(out_dtype)  # round floats to next even int8/int16 value

                # average array over bands if no bandwise information is requested
1018
                if not bandwise:
1019
1020
                    # in case of only one subsystem: directly compute median errors here
                    if len(self.inObjs) == 1:
1021
                        ac_errors = np.median(ac_errors, axis=2).astype(ac_errors.dtype)
1022
1023
1024
1025
1026

                    # in case of multiple subsystems: dont compute median here but first apply geometric homogenization
                    # -> median could only be computed for each subsystem separately
                    else:
                        pass
1027
1028

                # set inObj.ac_errors
1029
                inObj.ac_errors = ac_errors  # setter generates a GeoArray with the same bandnames like inObj.arr
1030

1031
        elif not CFG.ac_estimate_accuracy:
1032
1033
            self.logger.info("Atmospheric correction did not provide a 'data_errors' array because "
                             "'ac_estimate_accuracy' was set to False in the job configuration.")
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
        else:
            self.logger.warning("Atmospheric correction did not provide a 'data_errors' array. Maybe due to "
                                "missing SNR model? GMS_object.ac_errors kept None.")

    def _join_mask_clouds(self):
        """
        Join CLOUD MASK as 2D uint8 array.
        NOTE: mask_clouds has also methods 'export_mask_rgb()', 'export_confidence_to_jpeg2000()', ...
        """

        if self.results.mask_clouds.mask_array is not None:
            mask_clouds_ac = self.results.mask_clouds.mask_array  # uint8 2D array
1046

1047
1048
            joined = False
            for inObj in self.inObjs:
1049

1050
                # delete all previous cloud masks
1051
                del inObj.mask_clouds  # FIXME validate if FMask product is within AC results
1052
1053
1054

                # append mask_clouds only to the input GMS object with the same dimensions
                if inObj.arr.shape[:2] == mask_clouds_ac.shape:
1055
                    inObj.logger.info('Joining mask_clouds to %s.' % (inObj.entity_ID if not inObj.subsystem else
Daniel Scheffler's avatar
Daniel Scheffler committed
1056
                                                                      '%s %s' % (inObj.entity_ID, inObj.subsystem)))