test_gms_preprocessing.py 34.1 KB
Newer Older
1
2
3
#!/usr/bin/env python
# -*- coding: utf-8 -*-

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# gms_preprocessing, spatial and spectral homogenization of satellite remote sensing data
#
# Copyright (C) 2019  Daniel Scheffler (GFZ Potsdam, daniel.scheffler@gfz-potsdam.de)
#
# This software was developed within the context of the GeoMultiSens project funded
# by the German Federal Ministry of Education and Research
# (project grant code: 01 IS 14 010 A-C).
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with this program.  If not, see <http://www.gnu.org/licenses/>.
24

25
"""
26
test_gms_preprocessing
27
----------------------------------
28

29
The testcases contained in this testscript, are parametrized testcases. They test
30
31
the level-processing steps defined in the 'gms_preprocessing' module in the
"gms_preprocessing"-project with the help of the test datasets:
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
- Landsat-5, Pre-Collection Data,
- Landsat-5, Collection Data,
- Landsat-7, SLC on, Pre-Collection Data,
- Landsat-7, SLC off, Pre-Collection Data,
- Landsat-7, SLC off, Collection Data,
- Landsat-8, Pre-Collection Data,
- Landsat-8, Collection Data,
- Sentinel-2A, Pre-Collection Data and
- Sentinel-2A, Collection Data.
The test datasets can be found in the directory "tests/data/archive_data/...". The
respective SRTM-datasets needed in the data-processing can be found in the directory
"tests/data/archive_data/Endeavor".

The tests, defined in a base-testcase (not executed), are triggered by creating
jobs (based on given job-IDs) in individual testcases that inherit the tests
from the base-testcase. The exception: The job-ID used in the last testclass
contains 3 different test datasets of the above listed datasets.

Note that the testresults are outputted in the console as well as a log-textfile
that can be found in the directory "tests/logs".

Program edited in July 2017.
"""

56
# Import python standard libraries.
57
58
59
60
61
62
import itertools
import logging
import os
import pandas
import sys
import time
63
64
import unittest

65
# Imports regarding the 'gms_preprocessing' module.
66
from gms_preprocessing import ProcessController, __file__
67
from gms_preprocessing.model.gms_object import GMS_object
68
69
70
71
72
from gms_preprocessing.algorithms.L1A_P import L1A_object
from gms_preprocessing.algorithms.L1B_P import L1B_object
from gms_preprocessing.algorithms.L1C_P import L1C_object
from gms_preprocessing.algorithms.L2A_P import L2A_object
from gms_preprocessing.algorithms.L2B_P import L2B_object
73
# from gms_preprocessing.algorithms.L2C_P import L2C_object
74
from gms_preprocessing.misc.database_tools import get_info_from_postgreSQLdb
75
from gms_preprocessing.model.gms_object import GMS_object_2_dataset_dict
76

77
from . import db_host, index_host
78

79
__author__ = 'Daniel Scheffler'  # edited by Jessica Palka.
80

81
# Rootpath of the gms_preprocessing-repository.
82
83
84
85
gmsRepo_rootpath = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))

# Defining the configurations needed to start a job containing the different dataset scenes.
# TODO Change the job-configurations for selected datasets.
86
job_config_kwargs = dict(parallelization_level='scenes', db_host=db_host, spatial_index_server_host=index_host,
87
                         delete_old_output=True, is_test=True, reset_status=True,
88
89
                         inmem_serialization=False,
                         exec_L1AP=[True, True, True], exec_L1BP=[True, True, True], exec_L1CP=[True, True, True],
90
                         exec_L2AP=[True, True, True], exec_L2BP=[True, True, False], exec_L2CP=[True, True, False])
91

Daniel Scheffler's avatar
Daniel Scheffler committed
92
##########################
93
# Test case: BaseTestCases
Daniel Scheffler's avatar
Daniel Scheffler committed
94
95
##########################

96
97
98
99

class BaseTestCases:
    """
    General testclass. The tests defined in this testclass test the processing steps Level-1A, Level-1B, Level-1C,
100
    Level-2A, Level-2B and Level-2C defined in the "gms_preprocessing"-repository.
101
102
103
104
    Note that the tests in this testclass are not executed directly. They are re-used in the other classes defined
    in this test-script.
    """
    class TestAll(unittest.TestCase):
105
        PC = None  # default
106
107
108

        @classmethod
        def tearDownClass(cls):
109
            cls.PC.config.DB_job_record.delete_procdata_of_entire_job(force=True)
110
111
112

        @classmethod
        def validate_db_entry(cls, filename):
113
114
            sceneID_res = get_info_from_postgreSQLdb(cls.PC.config.conn_database, 'scenes', ['id'],
                                                     {'filename': filename})
115
116
117
118
            assert sceneID_res and isinstance(sceneID_res[0][0], int), 'Invalid database entry.'

        @classmethod
        def create_job(cls, jobID, config):
119
            cls.PC = ProcessController(jobID, **config)
120
121

            # update attributes of DB_job_record and related DB entry
122
            cls.PC.config.DB_job_record.reset_job_progress()
123

124
            GMS_object.proc_status_all_GMSobjs.clear()  # reset
125

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
126
            cls.PC.config.data_list = cls.PC.add_local_availability(cls.PC.config.data_list)
127

128
            [cls.validate_db_entry(ds['filename']) for ds in cls.PC.config.data_list]
129

130
131
132
            cls.PC.config.ac_estimate_accuracy = True
            cls.PC.config.spathomo_estimate_accuracy = True
            cls.PC.config.spechomo_estimate_accuracy = True
133

134
135
136
137
        def check_availability(self, GMS_objs, tgt_procL):
            dss = self.PC.add_local_availability([GMS_object_2_dataset_dict(obj) for obj in GMS_objs])
            for ds in dss:
                self.assertEqual(ds['proc_level'], tgt_procL,
Daniel Scheffler's avatar
Daniel Scheffler committed
138
139
                                 msg='Written %s dataset cannot be found by PC.add_local_availability().'
                                     % (' '.join([ds['satellite'], ds['sensor'], ds['subsystem'], tgt_procL])))
140

141
142
143
        def test_L1A_processing(self):
            self.L1A_newObjects = self.PC.L1A_processing()
            self.assertIsInstance(self.L1A_newObjects, list)
144
            self.assertNotEqual(len(self.L1A_newObjects), 0, msg='L1A_processing did not output an L1A object.')
145
146
            self.assertIsInstance(self.L1A_newObjects[0], L1A_object)

147
            # check if PC.add_local_availability finds the written dataset
Daniel Scheffler's avatar
Daniel Scheffler committed
148
149
            if self.PC.config.exec_L1AP[1]:
                self.check_availability(self.L1A_newObjects, 'L1A')
150

151
152
153
        def test_L1B_processing(self):
            self.L1B_newObjects = self.PC.L1B_processing()
            self.assertIsInstance(self.L1B_newObjects, list)
154
            self.assertNotEqual(len(self.L1B_newObjects), 0, msg='L1B_processing did not output an L1B object.')
155
156
            self.assertIsInstance(self.L1B_newObjects[0], L1B_object)

157
            # check if PC.add_local_availability finds the written dataset
Daniel Scheffler's avatar
Daniel Scheffler committed
158
159
            if self.PC.config.exec_L1BP[1]:
                self.check_availability(self.L1B_newObjects, 'L1B')
160

161
162
163
        def test_L1C_processing(self):
            self.L1C_newObjects = self.PC.L1C_processing()
            self.assertIsInstance(self.L1C_newObjects, list)
164
            self.assertNotEqual(len(self.L1C_newObjects), 0, msg='L1C_processing did not output an L1C object.')
165
166
            self.assertIsInstance(self.L1C_newObjects[0], L1C_object)

167
            # check if PC.add_local_availability finds the written dataset
Daniel Scheffler's avatar
Daniel Scheffler committed
168
169
            # if self.PC.config.exec_L1CP[1]:
            #     self.check_availability(self.L1C_newObjects, 'L1C')
170

171
172
173
        def test_L2A_processing(self):
            self.L2A_newObjects = self.PC.L2A_processing()
            self.assertIsInstance(self.L2A_newObjects, list)
174
            self.assertNotEqual(len(self.L2A_newObjects), 0, msg='L2A_processing did not output an L2A object.')
175
176
            self.assertIsInstance(self.L2A_newObjects[0], L2A_object)

177
            # check if PC.add_local_availability finds the written dataset
178
            # FIXME this will fail because AC outputs TOA-Ref if ECMWF data are missing
Daniel Scheffler's avatar
Daniel Scheffler committed
179
180
            # if self.PC.config.exec_L2AP[1]:
            #     self.check_availability(self.L2A_newObjects, 'L2A')
181

182
183
184
        def test_L2B_processing(self):
            self.L2B_newObjects = self.PC.L2B_processing()
            self.assertIsInstance(self.L2B_newObjects, list)
185
            self.assertNotEqual(len(self.L2B_newObjects), 0, msg='L2B_processing did not output an L2B object.')
186
187
            self.assertIsInstance(self.L2B_newObjects[0], L2B_object)

188
            # check if PC.add_local_availability finds the written dataset
189
            # FIXME this will fail because AC outputs TOA-Ref if ECMWF data are missing
Daniel Scheffler's avatar
Daniel Scheffler committed
190
191
            # if self.PC.config.exec_L2BP[1]:
            #     self.check_availability(self.L2B_newObjects, 'L2B')
192

193
194
195
        def test_L2C_processing(self):
            self.L2C_newObjects = self.PC.L2C_processing()
            self.assertIsInstance(self.L2C_newObjects, list)
196
            self.assertNotEqual(len(self.L2C_newObjects), 0, msg='L2C_processing did not output an L2C object.')
197
            # self.assertIsInstance(self.L2C_newObjects[0], L2C_object)
198
199

            # check if PC.add_local_availability finds the written dataset
200
            # FIXME this will fail because AC outputs TOA-Ref if ECMWF data are missing
Daniel Scheffler's avatar
Daniel Scheffler committed
201
202
            # if self.PC.config.exec_L2CP[1]:
            #     self.check_availability(self.L2C_newObjects, 'L2C')  # FIXME fails (not yet working)
203

Daniel Scheffler's avatar
Daniel Scheffler committed
204
            # Setting the config.status manually.
205
            # if self.L2C_newObjects:
206
            #     self.PC.config.status = "finished"
207
208
            # FIXME after updating the job.status-attribute for the level-processes, delete the code that is commented
            # FIXME out.
209

Daniel Scheffler's avatar
Daniel Scheffler committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    class TestCompletePipeline(unittest.TestCase):
        PC = None  # default

        @classmethod
        def tearDownClass(cls):
            cls.PC.config.DB_job_record.delete_procdata_of_entire_job(force=True)

        @classmethod
        def validate_db_entry(cls, filename):
            sceneID_res = get_info_from_postgreSQLdb(cls.PC.config.conn_database, 'scenes', ['id'],
                                                     {'filename': filename})
            assert sceneID_res and isinstance(sceneID_res[0][0], int), 'Invalid database entry.'

        @classmethod
        def create_job(cls, jobID, config):
225
            cls.PC = ProcessController(jobID, **config)
Daniel Scheffler's avatar
Daniel Scheffler committed
226
227
228

            [cls.validate_db_entry(ds['filename']) for ds in cls.PC.config.data_list]

229
230
            cls.PC.config.CPUs_all_jobs = 3
            cls.PC.config.max_parallel_reads_writes = 3
231
232
233
            cls.PC.config.spathomo_estimate_accuracy = True
            cls.PC.config.ac_estimate_accuracy = True
            cls.PC.config.spechomo_estimate_accuracy = True
234
235
            # cls.PC.config.exec_L1CP = [1, 1, 0]
            # cls.PC.config.exec_2ACP = [1, 1, 0]
236

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
237
238
        def test_run_all_processors(self):
            self.PC.run_all_processors()
Daniel Scheffler's avatar
Daniel Scheffler committed
239
            self.assertIsInstance(self.PC.L2C_newObjects, list)
240
241
242
243
            self.assertIsInstance(self.PC.summary_detailed, pandas.DataFrame)
            self.assertFalse(self.PC.summary_detailed.empty)
            self.assertIsInstance(self.PC.summary_quick, pandas.DataFrame)
            self.assertFalse(self.PC.summary_quick.empty)
244
245

###################################################################################
246
# Test cases 1-9: Test_<Satellite-Dataset>_<PreCollection or Collection>Data
247
248
249
250
251
252
253
# Test case 10: Test_MultipleDatasetsInOneJob


# TESTDATA-CLASSES.
class Test_Landsat5_PreCollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-5 TM scene (pre-collection data).
254
    More information on the dataset will be output after the tests-classes are executed.
255
256
257
258
259
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186263, job_config_kwargs)

260
261
262
263
264
265
266
267
268
269
270

class Test_Landsat5_PreCollectionData_CompletePipeline(BaseTestCases.TestCompletePipeline):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-5 TM scene (pre-collection data).
    More information on the dataset will be output after the tests-classes are executed.
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186263, job_config_kwargs)


271
272
273
274
275
276
277
278
279
# class Test_Landsat5_CollectionData(BaseTestCases.TestAll):
#     """
#     Parametrized testclass. Tests the level-processes on a Landsat-5 TM scene (collection data).
#     More information on the dataset will be outputted after the tests-classes are executed.
#     """
#     @classmethod
#     def setUpClass(cls):
#         cls.create_job(26186263, job_config_kwargs) # FIXME job_ID!

Daniel Scheffler's avatar
Daniel Scheffler committed
280

281
282
283
class Test_Landsat7_SLC_on_PreCollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-7 ETM+_SLC_ON scene (pre-collection data).
284
    More information on the dataset will be output after after the tests-classes are executed.
285
286
287
288
289
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186262, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
290

291
292
293
class Test_Landsat7_SLC_off_PreCollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-7 ETM+_SLC_OFF scene (pre-collection data).
294
    More information on the dataset will be output after the tests-classes are executed.
295
296
297
298
299
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186267, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
300

301
302
303
304
305
306
307
308
309
# class Test_Landsat7_SLC_off_CollectionData(BaseTestCases.TestAll):
#     """
#     Parametrized testclass. Tests the level-processes on a Landsat-7 ETM+_SLC_OFF scene (collection data).
#     More information on the dataset will be outputted after the tests-classes are executed.
#     """
#     @classmethod
#     def setUpClass(cls):
#         cls.create_job(26186267, job_config_kwargs) # FIXME job_ID!

310
#
311
312
313
class Test_Landsat8_PreCollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-8 OLI_TIRS scene (pre-collection data).
314
    More information on the dataset will be output after the tests-classes are executed.
315
316
317
318
319
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186196, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
320

321
322
323
class Test_Landsat8_CollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-8 OLI_TIRS scene (collection data).
324
    More information on the dataset will be output after the tests-classes are executed.
325
326
327
    """
    @classmethod
    def setUpClass(cls):
328
        cls.create_job(26188372, job_config_kwargs)
329

Daniel Scheffler's avatar
Daniel Scheffler committed
330

331
332
333
334
335
336
337
338
339
class Test_Landsat8_CollectionData_CompletePipeline(BaseTestCases.TestCompletePipeline):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-8 OLI_TIRS scene (collection data).
    More information on the dataset will be output after the tests-classes are executed.
    """
    @classmethod
    def setUpClass(cls):
        cfg = job_config_kwargs
        # cfg.update(dict(inmem_serialization=True))
340
        cls.create_job(26188372, cfg)
341
342


343
class Test_Sentinel2A_SingleGranuleFormat(BaseTestCases.TestAll):
344
    """
345
346
    Parametrized testclass. Tests the level-processes on a Sentinel-2A MSI scene (1 granule in archive: > 2017).
    More information on the dataset will be output after the tests-classes are executed.
347
348
349
350
351
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186268, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
352

Daniel Scheffler's avatar
Daniel Scheffler committed
353
354
355
356
357
358
359
360
361
class Test_Sentinel2A_SingleGranuleFormat_CompletePipeline(BaseTestCases.TestCompletePipeline):
    """
    Parametrized testclass. Tests the level-processes on a Sentinel-2A MSI scene (1 granule in archive: > 2017).
    More information on the dataset will be output after the tests-classes are executed.
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186268, job_config_kwargs)

362
363
364
    # @classmethod
    # def tearDownClass(cls):
    #     super().tearDownClass()
365
366
        # PC = cls.PC

Daniel Scheffler's avatar
Daniel Scheffler committed
367

368
class Test_Sentinel2A_MultiGranuleFormat(BaseTestCases.TestAll):
369
    """
370
371
    Parametrized testclass. Tests the level-processes on a Sentinel-2A MSI scene (multiple granules in archive: < 2017).
    More information on the dataset will be output after the tests-classes are executed.
372
373
374
375
376
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186272, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
377

378
379
380
381
382
383
384
385
386
387
class Test_Sentinel2B_SingleGranuleFormat(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Sentinel-2B MSI scene (1 granule in archive: > 2017).
    More information on the dataset will be output after the tests-classes are executed.
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186937, job_config_kwargs)


388
389
390
391
392
393
394
395
396
397
class Test_MultipleDatasetsInOneJob(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a job containing a Landsat-5 (pre-collection data),
    Landsat-7 SLC_off (pre-collection data) and a Sentinel-2A (collection data) scene.
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186273, job_config_kwargs)


Daniel Scheffler's avatar
Daniel Scheffler committed
398
399
400
401
402
403
404
405
406
class Test_MultipleDatasetsInOneJob_CompletePipeline(BaseTestCases.TestCompletePipeline):
    """
    Parametrized testclass. Tests the level-processes on a job containing a Landsat-5 (pre-collection data),
    Landsat-7 SLC_off (pre-collection data) and a Sentinel-2A (collection data) scene.
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186273, job_config_kwargs)

407
408
409
    # @classmethod
    # def tearDownClass(cls):
    #     super().tearDownClass()
410
411
        # PC = cls.PC

Daniel Scheffler's avatar
Daniel Scheffler committed
412

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
class Test_ProcessContinuing_CompletePipeline(unittest.TestCase):
    """
    Parametrized testclass. Tests the level-processes on a job containing a Landsat-5 (pre-collection data),
    Landsat-7 SLC_off (pre-collection data) and a Sentinel-2A (collection data) scene.
    """
    PC = None  # default

    @classmethod
    def tearDownClass(cls):
        cls.PC.config.DB_job_record.delete_procdata_of_entire_job(force=True)

    @classmethod
    def validate_db_entry(cls, filename):
        sceneID_res = get_info_from_postgreSQLdb(cls.PC.config.conn_database, 'scenes', ['id'],
                                                 {'filename': filename})
        assert sceneID_res and isinstance(sceneID_res[0][0], int), 'Invalid database entry.'

    @classmethod
    def create_job(cls, jobID, config):
432
        cls.PC = ProcessController(jobID, **config)
433
434
435
436
437
438
439

        cls.PC.logger.info('Execution of entire GeoMultiSens pre-processing chain started for job ID %s...'
                           % cls.PC.config.ID)

        [cls.validate_db_entry(ds['filename']) for ds in cls.PC.config.data_list]

    def setUp(self):
Daniel Scheffler's avatar
Daniel Scheffler committed
440
        self.cfg_kw = job_config_kwargs.copy()  # copy, because job_config_kwargs is modified otherwise
441
442
443
444
445
446
447
448
        self.cfg_kw.update(dict(
            exec_L1BP=[False, False, False],
            exec_L1CP=[False, False, False],
            exec_L2AP=[False, False, False],
            exec_L2BP=[False, False, False],
            exec_L2CP=[False, False, False]
        ))

449
450
451
    def test_continue_from_L1A(self):
        cfg_kw = self.cfg_kw

452
        # produce L1A data and stop processing there
453
        self.create_job(26186263, cfg_kw)  # 1x L5 pre-collection
454
455
456
457
458
459
460
461
        self.PC.run_all_processors()

        # create a new job and try to continue from L1A
        cfg_kw.update(dict(
            exec_L1BP=[True, True, False],
            delete_old_output=False
        ))
        self.create_job(26186263, cfg_kw)  # 1x L5 pre-collection
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
        self.PC.run_all_processors()

    def test_continue_from_L2C(self):
        cfg_kw = self.cfg_kw
        cfg_kw.update(dict(
            exec_L1AP=[True, True, True],
            exec_L1BP=[True, True, True],
            exec_L1CP=[True, True, True],
            exec_L2AP=[True, True, True],
            exec_L2BP=[True, True, False],
            exec_L2CP=[True, True, False],
        ))

        # produce L1A data and stop processing there
        self.create_job(26186263, cfg_kw)  # 1x L5 pre-collection
        self.PC.run_all_processors()

        # create a new job and try to continue from L2C
        cfg_kw.update(dict(
            delete_old_output=False
        ))
        self.create_job(26186263, cfg_kw)  # 1x L5 pre-collection
484
485
486
        self.PC.run_all_processors()


487
488
489
490
491
492
493
494
###################################################################################
# Summarizing the information regarding the test datasets.

# The information: 'country' (3-letter country code, UN), 'characteristic features of the shown scene', 'cloud cover
# present' and 'overlap area present' of each dataset are summarized in the dictionary "testdata_scenes". The
# information are sorted according to the testdata.
# 3-letter code:
# UKR-Ukraine, KGZ-Kyrgyztan, POL-Poland, AUT-Austria, JPN-Japan, BOL-Bolivia, TUR-Turkey, DEU-Germany, CHE-Switzerland.
495
496
497
498
499
500
501
502
503
504
505
testdata_scenes = \
    {'Landsat5_PreCollectionData': list(['UKR', 'City region, forest', 'Sparsely', 'Zone 34/35']),
     # 'Landsat5_CollectionData': list(['KGZ', 'Snowy Mountains', 'Yes', 'None']),
     'Landsat7_SLC_on_PreCollectionData': list(['POL', 'City region, lakes', 'Yes', 'None']),
     'Landsat7_SLC_off_PreCollectionData': list(['AUT', 'Stripes (partly), Mountains', 'None', 'None']),
     # 'Landsat7_SLC_off_CollectionData': list(['JPN', 'Stripes (completly), Mountains', 'Yes', 'Zone 53/54']),
     'Landsat8_PreCollectionData': list(['BOL', 'Forest', 'Yes', 'None']),
     'Landsat8_CollectionData': list(['TUR', 'Snowy Mountains', 'Yes', 'None']),
     'Sentinel2A_PreCollectionData': list(['DEU', 'Potsdam', 'Sparsely', 'None']),
     'Sentinel2A_CollectionData': list(['CHE', 'City region, on the Rhine', 'Yes', 'None'])
     }
506
507
508
509
510
511
512
513

# The key of the dictionary is the key-value to parametrize the testclasses so that each testclass is executed
# automatically.
testdata = list(testdata_scenes.keys())
testdata.append('MultipleDatasetsInOneJob')


###################################################################################
514
# Parameterizing the test cases and creating a summary of the test results.
515
516
517

summary_testResults, summary_errors, summary_failures, summary_skipped, jobstatus = [[] for _ in range(5)]

518

519
@unittest.SkipTest
520
521
class Test_in_normal_mode(unittest.TestCase):
    def setUp(self):
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
        # self.job_id = 26184107
        # self.job_id = 26185175   # 1x TM5
        # self.job_id = 26185176   # 1x Landsat
        # self.job_id = 26185177  # 1. Sentinel-2-Testszene
        # self.job_id = 26185189   # direkt benachbarte Granules von 1. Sentinel-2-Testszene
        # self.job_id = 26185237  # 4 x Landsat-8 -> Job per database tools erstellt
        # self.job_id = 26185239  # 50 x Landsat-8 -> Job per database tools erstellt - 1. L8 Beta-Testjob
        # self.job_id = 26185242  # 1 x Landsat-8 - Bug files_in_archive=None
        # self.job_id = 26185250  # Beta-Job - 219 x L8, 172 x L7, 111 x S2, spatref S2
        # self.job_id = 26185251  # 1x L8, Zielsensor L8
        # self.job_id = 26185252  # 1x L8, Zielsensor L8, spat.ref L8
        # self.job_id = 26185253  # 25x L8, Zielsensor L8, spat.ref L8
        # self.job_id = 26185254  # 10x L8, Zielsensor L8, spat.ref L8
        # Grund=Schreibfehler L1A im tiled Python-mode bei mehr als 1 Szene im Job:
        # self.job_id = 26185255  # 1x L8 Bug 5 corners found
        # self.job_id = 26185256  # 1x L7 SLC off, Zielsensor L8, spat.ref L8
        # self.job_id = 26185257  # Beta-Job - 219 x L8, 172 x L7, 111 x S2, spatref L8
        # self.job_id = 26185258  # Beta-Job - 219 x L8, spatref L8
        # self.job_id = 26185259  # Beta-Job - 172 x L7, spatref L8
        # self.job_id = 26185260  # Beta-Job - 111 x S2, spatref L8
        # self.job_id = 26185268  # 25x L7 SLC off, Zielsensor L8, spat.ref L8
        # self.job_id = 26185269  # 1x L7 SLC off, Bug SpatialIndexMediator
        # self.job_id = 26185270  # 5x L7 SLC off, Bug SpatialIndexMediator
        # self.job_id = 26185275  # 1x L8, spat. Ref. L8 Bug L1B_mask not found
        # self.job_id = 26185264  # 1x L8, Bug L1B_masks not found
        # self.job_id = 26185265  # 1x L8, Bug L2B_masks not found
        # self.job_id = 26185268  # "2x L8, Bug L2B_masks not found, incl. 1x bad archive"
        # self.job_id = 26185269 # "10x L8, Bug L2B_masks not found"
        # self.job_id = 26185272 # "1x S2A Sips"
        # self.job_id = 26185273  # "1x L7, target L8, spat.ref L8"
        # self.job_id = 26185275 # "1x L7, target L8, spat.ref L8 L1B Matching failed"
        # self.job_id = 26185276 # "1x L7, target L8, spat.ref L8 L1B Matching window became too small."
        # self.job_id = 26185279 # "GEOMS: 25x L7, target L8, spat.ref L8"
        # "GEOMS: 1x L7, target L8, spat.ref L8, debugging NoneType object is not subscriptable within
        # mapinfo2geotransform":
        # self.job_id = 26185280
        # self.job_id = 26185281 # "GEOMS: 4x L7, target L8, spat.ref L8, freeze of pool.map"
        # self.job_id = 26185283 # "GEOMS: 10x L7, target L8, spat.ref L8, freeze of pool.map"
        # self.job_id = 26185284 # "GEOMS: 11x L7, target L8, spat.ref L8, freeze of pool.map"
        # self.job_id = 26185321 # "GEOMS: 1x L7, target L8, spat.ref L8, debugging L1B_P"
        # "GEOMS: 1x L7, target L8, spat.ref L8, Bug calc_shifted_cross_power_spectrum: NoneType object not iterable":
        # self.job_id = 26185322
        # self.job_id = 26185277 # "GMS41: 10x L7, target L8, spat.ref L8, Permission errors during logging"
        # self.job_id = 26185278 # "Beta-Job - 172 x L7, spatref L8"
        # self.job_id = 26185284 # "GMS41: "all beta-L8 with cloud cover <30% (74 scenes)"
        # self.job_id = 26185285 # "GMS41: "all beta-L7 with cloud cover <30% (49 scenes)"
        # self.job_id = 26185396 # "GEOMS: 1x S2A multi GSD testing"
        # self.job_id = 26185398  # "GEOMS: 1x S2A granule multi GSD testing"

571
        # self.job_id = 26186740  # Testjob Landsat-8
572
        # self.job_id = 26186906  # Bug Input Validator
573
        # self.job_id = 26186925  # 1 Sentinel-2A, Bug NoneType' object has no attribute 'find'
574
575
        # self.job_id = 26187051  # GMS41: 1 Landsat, FileNotFoundError
        # self.job_id = 26187052  # GMS41: 1 Landsat, DB query returns no DEM
576
        # self.job_id = 26187053  # GMS41: AC: The input 'list_GMS_objs' contains duplicates: ['', '']
577
        # self.job_id = 26187750  # GEOMS: [AC]: RuntimeWarning: All-NaN slice encountered
578
        # self.job_id = 26187760  # GEOMS: [L2C]: ValueError: 'axis' entry is out of bounds
579
        # self.job_id = 26187804  # GEOMS: Spatial homogenization leaves resampling artifacs at the image edges.
580
        # self.job_id = 26187922  # GEOMS: AssertionError (self.job_id = 26187922  # GEOMS: AssertionError)
Daniel Scheffler's avatar
Daniel Scheffler committed
581
582
        # self.job_id = 26188163  # GEOMS: pandas.errors.ParserError: Expected 2 fields in line 31, saw 3
        self.job_id = 26189301  # GEOMS: process continuation
583

584
585
        self.PC = ProcessController(self.job_id, **dict(is_test=False, parallelization_level='scenes', db_host=db_host,
                                                        delete_old_output=True, disable_exception_handler=True))
586
587
588
        # self.PC.config.spathomo_estimate_accuracy = True
        # self.PC.config.ac_estimate_accuracy = True
        # self.PC.config.spechomo_estimate_accuracy = True
589
590
591
        # self.PC.config.exec_L1CP = [1, 1, 0]
        # self.PC.config.exec_2ACP = [1, 1, 0]
        # self.PC.config.path_procdata_scenes = '/storage/gms/processed_scenes/20180227_MGRS33UUU_S2_L8_L7/'
592
593
594
595
596

    def test(self):
        self.PC.run_all_processors()


597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
if __name__ == '__main__':
    # Part 1: Creating and running a testsuite for each dataset-testcase, and querying the job.status of the job.
    for items in testdata:
        suite = unittest.TestLoader().loadTestsFromTestCase(eval("Test_"+items))
        alltests = unittest.TestSuite(suite)

        # Part 2: Saving the results of each testsuite and the query for the job.status in individual variables.
        testResult = unittest.TextTestRunner(verbosity=2).run(alltests)

        summary_testResults.append([testResult.testsRun, testResult.wasSuccessful(),
                                    len(testResult.errors), len(testResult.failures),
                                    len(testResult.skipped)])
        summary_errors.append(testResult.errors)
        summary_failures.append(testResult.failures)
        summary_skipped.append(testResult.skipped)

613
        # FIXME: If the job.status-issue is fixed, the commented out section can be nullified.
614
        # jobstatus.append(eval("Test_"+items).PC.status)
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

    # Part 3: Summarizing the testresults of each testsuite and outputting the results in an orderly fashion on the
    # console and in a textfile.
    # Note that the testresults are outputted as usual after each test is executed. Since the output of each
    # level-process is rather long, the output of the testresults become lost. Therefore, the purpose to output the
    # testresults again is simply to summarize the testresults in one place and to give an overview over the results.

    # Output: a) Information on the test datasets (table), b) testresults summarized in a table, c)if existing,
    # a list of errors, failures and skips in the testcases and d) the job.status that is not set to "finished".

    time.sleep(0.5)

    # Path of the textfile the results will be logged to.
    test_log_path = os.path.join(gmsRepo_rootpath, 'tests', 'data', 'logs', time.strftime('%Y%m%d_%H%M%S_log.txt'))

    # Creating a logging system for the testresults.
631
632
    # Source: The "GMS_logger"-function in the "gms_preprocessing" --> "misc" --> "logging.py"-script was used and
    # slightly altered to meet the needs of the current problem.
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    logger = logging.getLogger("log_Test")
    logger.setLevel(logging.INFO)

    # Defining the format of the console and the file-output.
    formatter_fileH = logging.Formatter('')
    formatter_ConsoleH = logging.Formatter('')

    # Creating a handler for the file for the logging level "INFO".
    fileHandler = logging.FileHandler(test_log_path)
    fileHandler.setFormatter(formatter_fileH)
    fileHandler.setLevel(logging.INFO)

    # Creating a handler for the console for the logging level "INFO". "sys.stdout" is used for the logging output.
    consoleHandler_out = logging.StreamHandler(stream=sys.stdout)
    consoleHandler_out.setFormatter(formatter_ConsoleH)
    consoleHandler_out.set_name('console handler stdout')
    consoleHandler_out.setLevel(logging.INFO)

    # Adding the defined handlers to the instantiated logger.
    logger.addHandler(fileHandler)
    logger.addHandler(consoleHandler_out)

    # OUPUT, START.
    # Header of the file.
657
    logger.info("\ntest_gms_preprocessing.py"
658
659
660
661
662
663
                "\nREVIEW OF ALL TEST RESULTS, SUMMARY:"
                "\n***************************************************************************************"
                "\n--> SPECIFIC FEATURES OF DATA:")

    # Adding a table displaying the characteristic features of each dataset.
    logger.info(pandas.DataFrame.from_items(testdata_scenes.items(),
664
665
                                            orient='index',
                                            columns=['Country', 'Characteristic', 'Clouds', 'Overlap_area']))
666
667
668
669
670
671
672
673
674
675
    logger.info("\nThe jobID used in Test_" + testdata[-1] + " contains the datasets: "
                "\n-Landsat5_PreCollectionData,\n-Landsat7_SLC_off_PreCollectionData and "
                "\n-Sentinel2A_CollectionData.")

    # Adding a table displaying the testresults.
    logger.info("\n***************************************************************************************"
                "\n--> TESTRESULTS:")

    results = ["Run", "Success", "Errors", "Failures", "Skips"]
    testdata_index = ["Test_" + item for item in testdata]
676
    logger.info(pandas.DataFrame(summary_testResults, columns=results, index=testdata_index))
677
678
679
680
681

    # If errors, failures or skips (there is yet nothing to skip in the code) occurres, the respective message will
    # be printed.
    logger.info("\n***************************************************************************************")
    if list(itertools.chain(*summary_errors)) or list(itertools.chain(*summary_failures)) or \
682
       list(itertools.chain(*summary_skipped)):
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
        logger.info("--> ERRORS/FAILURES/SKIPS:")
        logger.info("\n---------------------------------------------------------------------------------------")

        for index, test in enumerate(testdata):
            logger.info("Test_" + test + ", ERRORS:")
            if summary_errors[index]:
                logger.info(summary_errors[index][0][1])
            else:
                logger.info("None. \n")

            logger.info("Test_" + test + ", FAILURES:")
            if summary_failures[index]:
                logger.info(summary_failures[index][0][1])
            else:
                logger.info("None. \n")
698

699
700
701
702
703
            logger.info("Test_" + test + ", SKIPS:")
            if summary_skipped[index]:
                logger.info(summary_skipped[index][0][1])
            else:
                logger.info("None.")
704

705
706
            if not index == (len(testdata) - 1):
                logger.info("\n---------------------------------------------------------------------------------------")
707

708
        logger.info("\n***************************************************************************************")
709

710
711
    else:
        pass
712

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
    # Checking, if the job.status of each job is set to "finished". Is it not set to "finished", a dataframe is created
    # containing the test-name with and the different job.status itself.
    # FIXME: If the job.status-issue is fixed, the commented out section can be nullified.
    # jobstatus_table, index_table = [[] for _ in range(2)]
    # for index, test in enumerate(testdata):
    #     if jobstatus[index] != "finished":
    #         jobstatus_table.append(jobstatus[index])
    #         index_table.append("Test_" + test)
    #
    # if jobstatus_table:
    #     logger.info("--> WARNING!!! JOBSTATUS of the following testcase(s) is not set to 'finished': \n")
    #     logger.info(pandas.DataFrame(jobstatus_table, columns=["jobstatus"], index=index_table))
    #     logger.info("\n***************************************************************************************")
    # else:
    #     pass
728

729
    logger.info("END.")  # OUTPUT, END.
730

731
    # Delete the handlers added to the "log_Test"-logger to ensure that no message is output twice in a row, when
732
733
    # the logger is used again.
    logger.handlers = []