definition_dicts.py 9.26 KB
Newer Older
1
2
# -*- coding: utf-8 -*-

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# gms_preprocessing, spatial and spectral homogenization of satellite remote sensing data
#
# Copyright (C) 2019  Daniel Scheffler (GFZ Potsdam, daniel.scheffler@gfz-potsdam.de)
#
# This software was developed within the context of the GeoMultiSens project funded
# by the German Federal Ministry of Education and Research
# (project grant code: 01 IS 14 010 A-C).
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with this program.  If not, see <http://www.gnu.org/licenses/>.


25
26
27
28
import collections
import re

import numpy as np
29
from typing import TYPE_CHECKING  # noqa F401  # flake8 issue
30

31
from ..options.config import GMS_config as CFG
32

33
34
35
if TYPE_CHECKING:
    from ..model.gms_object import GMS_identifier  # noqa F401  # flake8 issue

36
37
38
39
40
41
42
43
44
45
__author__ = 'Daniel Scheffler'

dtype_lib_Python_IDL = {'bool_': 0, 'uint8': 1, 'int8': 1, 'int_': 1, 'int16': 2, 'uint16': 12, 'int32': 3,
                        'uint32': 13, 'int64': 14, 'uint64': 15, 'float32': 4, 'float64': 5, 'complex_': 6,
                        'complex64': 9}
dtype_lib_IDL_Python = {0: np.bool_, 1: np.uint8, 2: np.int16, 3: np.int32, 4: np.float32, 5: np.float64,
                        6: np.complex64, 9: np.complex128, 12: np.uint16, 13: np.uint32, 14: np.int64, 15: np.uint64}
dtype_lib_GDAL_Python = {"uint8": 1, "int8": 1, "uint16": 2, "int16": 3, "uint32": 4, "int32": 5, "float32": 6,
                         "float64": 7, "complex64": 10, "complex128": 11}
proc_chain = ['L1A', 'L1B', 'L1C', 'L2A', 'L2B', 'L2C']
46
db_jobs_statistics_def = {'pending': 1, 'started': 2, None: 2, 'L1A': 3, 'L1B': 4, 'L1C': 5, 'L2A': 6, 'L2B': 7,
47
                          'L2C': 8, 'FAILED': 9}  # NOTE: OrderedDicts passed to L1A_map have proc_level=None
48
bandslist_all_errors = ['ac_errors', 'mask_clouds_confidence', 'spat_homo_errors', 'spec_homo_errors']
49
50


51
52
def get_GMS_sensorcode(GMS_id):
    # type: (GMS_identifier) -> str
53

54
    Satellite, Sensor, Subsystem = (GMS_id.satellite, GMS_id.sensor, GMS_id.subsystem)
55
    Sensor = Sensor[:-1] if re.match(r'SPOT', Satellite, re.I) and Sensor[-1] not in ['1', '2'] else Sensor
56
    meta_sensorcode = Satellite + '_' + Sensor + ('_' + Subsystem if Subsystem not in ["", None] else "")
57
    sensorcode_dic = {
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        'ALOS_AVNIR-2': 'AVNIR-2',
        'Landsat-4_TM': 'TM4',  # call from layerstacker
        'Landsat-4_TM_SAM': 'TM4',  # call from metadata object
        'Landsat-5_TM': 'TM5',
        'Landsat-5_TM_SAM': 'TM5',
        'Landsat-7_ETM+': 'TM7',
        'Landsat-7_ETM+_SAM': 'TM7',
        'Landsat-8_OLI': 'LDCM',
        'Landsat-8_OLI_TIRS': 'LDCM',
        'Landsat-8_LDCM': 'LDCM',
        'SPOT-1_HRV1': 'SPOT1a',  # MS
        'SPOT-1_HRV2': 'SPOT1b',
        'SPOT-2_HRV1': 'SPOT2a',
        'SPOT-2_HRV2': 'SPOT2b',
        'SPOT-3_HRV1': 'SPOT3a',
        'SPOT-3_HRV2': 'SPOT3b',
        'SPOT-4_HRVIR1': 'SPOT4a',
        'SPOT-4_HRVIR2': 'SPOT4b',
        'SPOT-5_HRG1': 'SPOT5a',  # PAN HRG2A
        'SPOT-5_HRG2': 'SPOT5b',  # MS HRG2J
        'RapidEye-1_MSI': 'RE1',
        'RapidEye-2_MSI': 'RE2',
        'RapidEye-3_MSI': 'RE3',
        'RapidEye-4_MSI': 'RE4',
        'RapidEye-5_MSI': 'RE5',
        'SRTM_SRTM2': 'SRTM2',
        'Terra_ASTER': 'AST_full',
        'Terra_ASTER_VNIR1': 'AST_V1',
        'Terra_ASTER_VNIR2': 'AST_V2',
        'Terra_ASTER_SWIR': 'AST_S',
        'Terra_ASTER_TIR': 'AST_T',
        'Sentinel-2A_MSI': 'S2A_full',
        'Sentinel-2B_MSI': 'S2B_full',
        'Sentinel-2A_MSI_S2A10': 'S2A10',
        'Sentinel-2A_MSI_S2A20': 'S2A20',
        'Sentinel-2A_MSI_S2A60': 'S2A60',
        'Sentinel-2B_MSI_S2B10': 'S2B10',
        'Sentinel-2B_MSI_S2B20': 'S2B20',
        'Sentinel-2B_MSI_S2B60': 'S2B60'
97
98
99
100
101
    }
    try:
        return sensorcode_dic[meta_sensorcode]
    except KeyError:
        raise KeyError('Sensor %s is not included in sensorcode dictionary and can not be converted into GMS '
102
                       'sensorcode.' % meta_sensorcode)
103
104


105
def get_mask_classdefinition(maskname, satellite):
106
    if maskname == 'mask_nodata':
107
        return {'No data': 0,
108
                'Data': 1}
109
    elif maskname == 'mask_clouds':
110
        legends = {
111
            'FMASK': {
112
                'No Data': 0,
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
                'Clear': 1,
                'Cloud': 2,
                'Shadow': 3,
                'Snow': 4,
                'Water': 5},
            # seems to be outdated:
            # {'Clear Land': 0, 'Clear Water': 1, 'Cloud Shadow': 2, 'Snow': 3, 'Cloud': 4, 'No data': 255}
            'Classical Bayesian': {
                'Clear': 10,
                'Thick Clouds': 20,
                'Thin Clouds': 30,
                'Snow': 40},  # Classical Bayesian py_tools_ah
            'SICOR': {
                'Clear': 10,
                'Water': 20,
128
129
                'Shadow': 30,
                'Cirrus': 40,
130
131
132
                'Cloud': 50,
                'Snow': 60}  # SICOR
        }
133

134
        return legends[CFG.cloud_masking_algorithm[satellite]]
135
    else:
136
        raise ValueError("'%s' is not a supported mask name." % maskname)
137
138


Daniel Scheffler's avatar
Bugfix    
Daniel Scheffler committed
139
140
def get_mask_colormap(maskname):
    if maskname == 'mask_clouds':
141
142
143
        # return collections.OrderedDict(zip(['No data','Clear','Thick Clouds','Thin Clouds','Snow','Unknown Class'],
        #                                     [[0,0,0] ,[0,255,0],[80,80,80], [175,175,175],[255,255,255],[255,0,0]]))
        return collections.OrderedDict((
144
145
146
147
148
149
150
151
152
153
            ('No data', [0, 0, 0]),
            ('Clear', [0, 255, 0]),
            ('Water', [0, 0, 255]),
            ('Shadow', [50, 50, 50]),
            ('Cirrus', [175, 175, 175]),
            ('Cloud', [80, 80, 80]),
            ('Snow', [255, 255, 255]),
            ('Unknown Class', [255, 0, 0]),))
    else:
        return None
Daniel Scheffler's avatar
Bugfix    
Daniel Scheffler committed
154
155


156
157
158
def get_outFillZeroSaturated(dtype):
    """Returns the values for 'fill-', 'zero-' and 'saturated' pixels of an image
    to be written with regard to the target data type.
159

160
    :param dtype: data type of the image to be written"""
161

162
    dtype = str(np.dtype(dtype))
163
164
165
166
167
    assert dtype in ['bool', 'int8', 'uint8', 'int16', 'uint16', 'float32'], \
        "get_outFillZeroSaturated: Unknown dType: '%s'." % dtype
    dict_outFill = {'bool': None, 'int8': -128, 'uint8': 0, 'int16': -9999, 'uint16': 9999, 'float32': -9999.}
    dict_outZero = {'bool': None, 'int8': 0, 'uint8': 1, 'int16': 0, 'uint16': 0, 'float32': 0.}
    dict_outSaturated = {'bool': None, 'int8': 127, 'uint8': 256, 'int16': 32767, 'uint16': 65535, 'float32': 65535.}
168
169
170
    return dict_outFill[dtype], dict_outZero[dtype], dict_outSaturated[dtype]


171
172
def is_dataset_provided_as_fullScene(GMS_id):
    # type: (GMS_identifier) -> bool
173
174
175
    """Returns True if the dataset belonging to the given GMS_identifier is provided as full scene and returns False if
     it is provided as multiple tiles.

176
    :param GMS_id:
177
178
179
    :return:
    """

180
    sensorcode = get_GMS_sensorcode(GMS_id)
181
    dict_fullScene_or_tiles = {
182
        'AVNIR-2': True,
183
        'AST_full': True,
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        'AST_V1': True,
        'AST_V2': True,
        'AST_S': True,
        'AST_T': True,
        'TM4': True,
        'TM5': True,
        'TM7': True,
        'LDCM': True,
        'SPOT1a': True,
        'SPOT2a': True,
        'SPOT3a': True,
        'SPOT4a': True,
        'SPOT5a': True,
        'SPOT1b': True,
        'SPOT2b': True,
        'SPOT3b': True,
        'SPOT4b': True,
        'SPOT5b': True,
        'RE5': False,
203
        'S2A_full': False,
204
205
206
        'S2A10': False,
        'S2A20': False,
        'S2A60': False,
207
        'S2B_full': False,
208
209
210
        'S2B10': False,
        'S2B20': False,
        'S2B60': False, }
211
    return dict_fullScene_or_tiles[sensorcode]
212
213


214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
def datasetid_to_sat_sen(dsid):
    # type: (int) -> tuple
    conv_dict = {
        8: ('Terra', 'ASTER'),  # ASTER L1B
        104: ('Landsat-8', 'OLI_TIRS'),  # pre-collection-ID
        108: ('Landsat-5', 'TM'),  # pre-collection-ID
        112: ('Landsat-7', 'ETM+'),  # pre-collection-ID SLC-off
        113: ('Landsat-7', 'ETM+'),  # pre-collection-ID SLC-on
        189: ('Terra', 'ASTER'),  # ASTER L1T
        249: ('Sentinel-2A', 'MSI'),  # actually only Sentinel-2
        250: ('Landsat-8', 'OLI_TIRS'),
        251: ('Landsat-7', 'ETM+'),
        252: ('Landsat-5', 'TM'),  # also includes Landsat-4
        }
    try:
        return conv_dict[dsid]
    except KeyError:
        raise ValueError('No satellite / sensor tuple available for dataset ID %s.' % dsid)


def sat_sen_to_datasetid(satellite, sensor):
    # type: (str, str) -> int
    conv_dict = {
        ('Landsat-5', 'TM'): 252,
        ('Landsat-7', 'ETM+'): 251,
        ('Landsat-8', 'OLI_TIRS'): 250,
        ('Sentinel-2A', 'MSI'): 249,
        ('Sentinel-2B', 'MSI'): 249,
        ('Terra', 'ASTER'): 189  # ASTER L1T
    }
    try:
        return conv_dict[(satellite, sensor)]
    except KeyError:
        raise ValueError('No dataset ID available for %s %s.' % (satellite, sensor))