L1B_P.py 39.5 KB
Newer Older
Daniel Scheffler's avatar
Daniel Scheffler committed
1
# -*- coding: utf-8 -*-
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

# gms_preprocessing, spatial and spectral homogenization of satellite remote sensing data
#
# Copyright (C) 2019  Daniel Scheffler (GFZ Potsdam, daniel.scheffler@gfz-potsdam.de)
#
# This software was developed within the context of the GeoMultiSens project funded
# by the German Federal Ministry of Education and Research
# (project grant code: 01 IS 14 010 A-C).
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with this program.  If not, see <http://www.gnu.org/licenses/>.

24
25
26
27
28
29
"""
Level 1B Processor:

Detection of global/local geometric displacements.
"""

Daniel Scheffler's avatar
Daniel Scheffler committed
30

31
import collections
32
import os
33
import time
34
import warnings
35
from datetime import datetime, timedelta
36
37

import numpy as np
38
from geopandas import GeoDataFrame
39
from shapely.geometry import box
40
import pytz
41
import traceback
42
from typing import Union, TYPE_CHECKING  # noqa F401  # flake8 issue
Daniel Scheffler's avatar
Daniel Scheffler committed
43

44
from arosics import COREG, DESHIFTER
45
from geoarray import GeoArray
46
47
48
49
50
51
from py_tools_ds.geo.coord_grid import is_coord_grid_equal
from py_tools_ds.geo.coord_calc import corner_coord_to_minmax
from py_tools_ds.geo.coord_trafo import reproject_shapelyGeometry, transform_any_prj
from py_tools_ds.geo.projection import prj_equal, EPSG2WKT, WKT2EPSG
from py_tools_ds.geo.vector.topology import get_overlap_polygon

52
from ..options.config import GMS_config as CFG
53
from ..model.gms_object import GMS_object
54
55
56
57
from .L1A_P import L1A_object
from ..misc import database_tools as DB_T
from ..misc import helper_functions as HLP_F
from ..misc import path_generator as PG
58
from ..misc.logging import GMS_logger, close_logger
59
from ..misc.spatial_index_mediator import SpatialIndexMediator
60
from ..misc.definition_dicts import get_GMS_sensorcode, get_outFillZeroSaturated
61

62
if TYPE_CHECKING:
Daniel Scheffler's avatar
Daniel Scheffler committed
63
64
    from shapely.geometry import Polygon  # noqa F401  # flake8 issue
    from logging import Logger  # noqa F401  # flake8 issue
65

66
__author__ = 'Daniel Scheffler'
67
68


69
class Scene_finder(object):
70
71
    """Scene_finder class to query the postgreSQL database to find a suitable reference scene for co-registration."""

72
    def __init__(self, src_boundsLonLat, src_AcqDate, src_prj, src_footprint_poly, sceneID_excluded=None,
73
                 min_overlap=20, min_cloudcov=0, max_cloudcov=20, plusminus_days=30, plusminus_years=10, logger=None):
74
        # type: (list, datetime, str, Polygon, int, int, int, int, int, int, Logger) -> None
75
76
77
78
79
80
81
82
83
84
85
86
87
        """Initialize Scene_finder.

        :param src_boundsLonLat:
        :param src_AcqDate:
        :param src_prj:
        :param src_footprint_poly:
        :param sceneID_excluded:
        :param min_overlap:         minimum overlap of reference scene in percent
        :param min_cloudcov:        minimum cloud cover of reference scene in percent
        :param max_cloudcov:        maximum cloud cover of reference scene in percent
        :param plusminus_days:      maximum time interval between target and reference scene in days
        :param plusminus_years:     maximum time interval between target and reference scene in years
        """
88
89
90
        self.boundsLonLat = src_boundsLonLat
        self.src_AcqDate = src_AcqDate
        self.src_prj = src_prj
91
        self.src_footprint_poly = src_footprint_poly
92
        self.sceneID_excluded = sceneID_excluded
93
94
95
96
97
        self.min_overlap = min_overlap
        self.min_cloudcov = min_cloudcov
        self.max_cloudcov = max_cloudcov
        self.plusminus_days = plusminus_days
        self.plusminus_years = plusminus_years
98
        self.logger = logger or GMS_logger('ReferenceSceneFinder')
99

100
        # get temporal constraints
101
        def add_years(dt, years): return dt.replace(dt.year + years) \
102
103
104
            if not (dt.month == 2 and dt.day == 29) else dt.replace(dt.year + years, 3, 1)
        self.timeStart = add_years(self.src_AcqDate, -plusminus_years)
        timeEnd = add_years(self.src_AcqDate, +plusminus_years)
105
106
        timeNow = datetime.utcnow().replace(tzinfo=pytz.UTC)
        self.timeEnd = timeEnd if timeEnd <= timeNow else timeNow
107

108
109
110
        self.possib_ref_scenes = None  # set by self.spatial_query()
        self.GDF_ref_scenes = GeoDataFrame()  # set by self.spatial_query()
        self.ref_scene = None
111

112
113
114
115
116
117
118
119
120
121
122
    def __getstate__(self):
        """Defines how the attributes of Scene_finder instances are pickled."""
        close_logger(self.logger)
        self.logger = None

        return self.__dict__

    def __del__(self):
        close_logger(self.logger)
        self.logger = None

123
    def spatial_query(self, timeout=5):
124
125
126
127
        """Query the postgreSQL database to find possible reference scenes matching the specified criteria.

        :param timeout:     maximum query duration allowed (seconds)
        """
128
129
130
131
132
133
134
135
136
137
        SpIM = SpatialIndexMediator(host=CFG.spatial_index_server_host, port=CFG.spatial_index_server_port,
                                    timeout=timeout, retries=10)
        self.possib_ref_scenes = SpIM.getFullSceneDataForDataset(envelope=self.boundsLonLat,
                                                                 timeStart=self.timeStart,
                                                                 timeEnd=self.timeEnd,
                                                                 minCloudCover=self.min_cloudcov,
                                                                 maxCloudCover=self.max_cloudcov,
                                                                 datasetid=CFG.datasetid_spatial_ref,
                                                                 refDate=self.src_AcqDate,
                                                                 maxDaysDelta=self.plusminus_days)
138

139
140
141
        if self.possib_ref_scenes:
            # fill GeoDataFrame with possible ref scene parameters
            GDF = GeoDataFrame(self.possib_ref_scenes, columns=['object'])
142
143
144
145
            GDF['sceneid'] = list(GDF['object'].map(lambda scene: scene.sceneid))
            GDF['acquisitiondate'] = list(GDF['object'].map(lambda scene: scene.acquisitiondate))
            GDF['cloudcover'] = list(GDF['object'].map(lambda scene: scene.cloudcover))
            GDF['polyLonLat'] = list(GDF['object'].map(lambda scene: scene.polyLonLat))
146

147
148
            def LonLat2UTM(polyLL):
                return reproject_shapelyGeometry(polyLL, 4326, self.src_prj)
149

150
151
            GDF['polyUTM'] = list(GDF['polyLonLat'].map(LonLat2UTM))
            self.GDF_ref_scenes = GDF
152

153
154
155
    def _collect_refscene_metadata(self):
        """Collect some reference scene metadata needed for later filtering."""
        GDF = self.GDF_ref_scenes
156

157
158
159
160
161
162
163
164
165
166
167
        # get overlap parameter
        def get_OL_prms(poly): return get_overlap_polygon(poly, self.src_footprint_poly)

        GDF['overlapParams'] = list(GDF['polyLonLat'].map(get_OL_prms))
        GDF['overlap area'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap area']))
        GDF['overlap percentage'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap percentage']))
        GDF['overlap poly'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap poly']))
        del GDF['overlapParams']

        # get processing level of reference scenes
        procL = GeoDataFrame(
168
            DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes_proc', ['sceneid', 'proc_level'],
169
170
171
172
173
174
175
176
177
178
179
180
                                            {'sceneid': list(GDF.sceneid)}), columns=['sceneid', 'proc_level'])
        GDF = GDF.merge(procL, on='sceneid', how='left')
        GDF = GDF.where(GDF.notnull(), None)  # replace NaN values with None

        # get path of binary file
        def get_path_binary(GDF_row):
            return PG.path_generator(scene_ID=GDF_row['sceneid'], proc_level=GDF_row['proc_level']) \
                .get_path_imagedata() if GDF_row['proc_level'] else None
        GDF['path_ref'] = GDF.apply(lambda GDF_row: get_path_binary(GDF_row), axis=1)
        GDF['refDs_exists'] = list(GDF['path_ref'].map(lambda p: os.path.exists(p) if p else False))

        # check if a proper entity ID can be gathered from database
181
        eID = GeoDataFrame(DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes', ['id', 'entityid'],
182
183
184
185
186
187
188
189
                                                           {'id': list(GDF.sceneid)}), columns=['sceneid', 'entityid'])
        GDF = GDF.merge(eID, on='sceneid', how='left')
        self.GDF_ref_scenes = GDF.where(GDF.notnull(), None)

    def _filter_excluded_sceneID(self):
        """Filter reference scene with the same scene ID like the target scene."""
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
Daniel Scheffler's avatar
Daniel Scheffler committed
190
            self.logger.info('Same ID filter:  Excluding scene with the same ID like the target scene.')
191
            self.GDF_ref_scenes = GDF.loc[GDF['sceneid'] != self.sceneID_excluded]
192
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
193

194
    def _filter_by_overlap(self):
195
        """Filter all scenes with less spatial overlap than self.min_overlap."""
196
197
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
Daniel Scheffler's avatar
Daniel Scheffler committed
198
199
            self.logger.info('Overlap filter:  Excluding all scenes with less than %s percent spatial overlap.'
                             % self.min_overlap)
200
            self.GDF_ref_scenes = GDF.loc[GDF['overlap percentage'] >= self.min_overlap]
201
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
202

203
    def _filter_by_proc_status(self):
204
        """Filter all scenes that have not been processed before according to proc. status (at least L1A is needed)."""
205
206
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
Daniel Scheffler's avatar
Daniel Scheffler committed
207
208
            self.logger.info('Processing level filter:  Exclude all scenes that have not been processed before '
                             'according to processing status (at least L1A is needed).')
209
            self.GDF_ref_scenes = GDF[GDF['proc_level'].notnull()]
210
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
211

Daniel Scheffler's avatar
Daniel Scheffler committed
212
    def _filter_by_dataset_existence(self):
213
        """Filter all scenes where no processed data can be found on fileserver."""
214
215
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
Daniel Scheffler's avatar
Daniel Scheffler committed
216
            self.logger.info('Existence filter:  Excluding all scenes where no processed data have been found.')
217
            self.GDF_ref_scenes = GDF[GDF['refDs_exists']]
218
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
219

220
    def _filter_by_entity_ID_availability(self):
221
        """Filter all scenes where no proper entity ID can be found in the database (database errors)."""
222
223
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
Daniel Scheffler's avatar
Daniel Scheffler committed
224
225
            self.logger.info('DB validity filter:  Exclude all scenes where no proper entity ID can be found in the '
                             'database (database errors).')
226
            self.GDF_ref_scenes = GDF[GDF['entityid'].notnull()]
227
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
228

229
    def _filter_by_projection(self):
230
        """Filter all scenes that have a different projection than the target image."""
231
        GDF = self.GDF_ref_scenes[self.GDF_ref_scenes.refDs_exists]
232
233
        if not GDF.empty:
            # compare projections of target and reference image
234
235
            GDF['prj_equal'] = \
                list(GDF['path_ref'].map(lambda path_ref: prj_equal(self.src_prj, GeoArray(path_ref).prj)))
236

Daniel Scheffler's avatar
Daniel Scheffler committed
237
238
            self.logger.info('Projection filter:  Exclude all scenes that have a different projection than the target '
                             'image.')
239
            self.GDF_ref_scenes = GDF[GDF['prj_equal']]
240
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
241

242
243
    def choose_ref_scene(self):
        """Choose reference scene with minimum cloud cover and maximum overlap."""
244
245
246
        if self.possib_ref_scenes:
            # First, collect some relavant reference scene metadata
            self._collect_refscene_metadata()
247

248
249
250
251
            # Filter possible scenes by running all filter functions
            self._filter_excluded_sceneID()
            self._filter_by_overlap()
            self._filter_by_proc_status()
Daniel Scheffler's avatar
Daniel Scheffler committed
252
            self._filter_by_dataset_existence()
253
254
            self._filter_by_entity_ID_availability()
            self._filter_by_projection()
255

256
257
258
259
260
        # Choose the reference scene out of the filtered DataFrame
        if not self.GDF_ref_scenes.empty:
            GDF = self.GDF_ref_scenes
            GDF = GDF[GDF['cloudcover'] == GDF['cloudcover'].min()]
            GDF = GDF[GDF['overlap percentage'] == GDF['overlap percentage'].max()]
261

262
263
264
265
266
            if not GDF.empty:
                GDF_res = GDF.iloc[0]
                return ref_Scene(GDF_res)
        else:
            return None
267

268

269
270
class ref_Scene:
    def __init__(self, GDF_record):
271
272
273
        self.scene_ID = int(GDF_record['sceneid'])
        self.entity_ID = GDF_record['entityid']
        self.AcqDate = GDF_record['acquisitiondate']
274
275
        self.cloudcover = GDF_record['cloudcover']
        self.polyLonLat = GDF_record['polyLonLat']
276
        self.polyUTM = GDF_record['polyUTM']
277
        self.proc_level = GDF_record['proc_level']
278
        self.filePath = GDF_record['path_ref']
279
280
281
282
283


class L1B_object(L1A_object):
    def __init__(self, L1A_obj=None):

284
        super(L1B_object, self).__init__()
285
286
287

        # set defaults
        self._spatRef_available = None
288
289
        self.spatRef_scene = None  # set by self.get_spatial_reference_scene()
        self.deshift_results = collections.OrderedDict()
290
291
292
293
294
295

        if L1A_obj:
            # populate attributes
            [setattr(self, key, value) for key, value in L1A_obj.__dict__.items()]

        self.proc_level = 'L1B'
296
        self.proc_status = 'initialized'
297
298
299

    @property
    def spatRef_available(self):
300
        if self._spatRef_available is not None:
301
302
303
304
305
306
307
308
309
310
            return self._spatRef_available
        else:
            self.get_spatial_reference_scene()
            return self._spatRef_available

    @spatRef_available.setter
    def spatRef_available(self, spatRef_available):
        self._spatRef_available = spatRef_available

    def get_spatial_reference_scene(self):
311
        boundsLonLat = corner_coord_to_minmax(self.trueDataCornerLonLat)
312
        footprint_poly = HLP_F.CornerLonLat_to_shapelyPoly(self.trueDataCornerLonLat)
313
        RSF = Scene_finder(boundsLonLat, self.acq_datetime, self.MetaObj.projection,
314
315
316
317
318
                           footprint_poly, self.scene_ID,
                           min_overlap=CFG.spatial_ref_min_overlap,
                           min_cloudcov=CFG.spatial_ref_min_cloudcov,
                           max_cloudcov=CFG.spatial_ref_max_cloudcov,
                           plusminus_days=CFG.spatial_ref_plusminus_days,
319
320
                           plusminus_years=CFG.spatial_ref_plusminus_years,
                           logger=self.logger)
321
322
323
324
325
326
327

        # run spatial query
        self.logger.info('Querying database in order to find a suitable reference scene for co-registration.')
        RSF.spatial_query(timeout=5)
        if RSF.possib_ref_scenes:
            self.logger.info('Query result: %s reference scenes with matching metadata.' % len(RSF.possib_ref_scenes))

328
329
330
331
332
333
334
335
336
337
338
            # try to get a spatial reference scene by applying some filter criteria
            self.spatRef_scene = RSF.choose_ref_scene()  # type: Union[ref_Scene, None]
            if self.spatRef_scene:
                self.spatRef_available = True
                self.logger.info('Found a suitable reference image for coregistration: scene ID %s (entity ID %s).'
                                 % (self.spatRef_scene.scene_ID, self.spatRef_scene.entity_ID))
            else:
                self.spatRef_available = False
                self.logger.warning('No scene fulfills all requirements to serve as spatial reference for scene %s '
                                    '(entity ID %s). Coregistration impossible.' % (self.scene_ID, self.entity_ID))

339
        else:
340
            self.logger.warning('Spatial query returned no matches. Coregistration impossible.')
341
            self.spatRef_available = False
342
343

    def _get_reference_image_params_pgSQL(self):
344
        # TODO implement earlier version of this function as a backup for SpatialIndexMediator
345
346
        """postgreSQL query: get IDs of overlapping scenes and select most suitable scene_ID
            (with respect to DGM, cloud cover"""
347
348
        warnings.warn('_get_reference_image_params_pgSQL is deprecated an will not work anymore.', DeprecationWarning)

349
350
        # vorab-check anhand wolkenmaske, welche region von im2shift überhaupt für shift-corr tauglich ist
        # -> diese region als argument in postgresql abfrage
351
        # scene_ID            = 14536400 # LE71510322000093SGS00 im2shift
352

353
        # set query conditions
354
355
        min_overlap = 20  # %
        max_cloudcov = 20  # %
356
        plusminus_days = 30
357
358
        AcqDate = self.im2shift_objDict['acquisition_date']
        date_minmax = [AcqDate - timedelta(days=plusminus_days), AcqDate + timedelta(days=plusminus_days)]
359
        dataset_cond = 'datasetid=%s' % CFG.datasetid_spatial_ref
360
361
362
363
364
        cloudcov_cond = 'cloudcover < %s' % max_cloudcov
        # FIXME cloudcover noch nicht für alle scenes im proc_level METADATA verfügbar
        dayrange_cond = "(EXTRACT(MONTH FROM scenes.acquisitiondate), EXTRACT(DAY FROM scenes.acquisitiondate)) " \
                        "BETWEEN (%s, %s) AND (%s, %s)" \
                        % (date_minmax[0].month, date_minmax[0].day, date_minmax[1].month, date_minmax[1].day)
365
366
        # TODO weitere Kriterien einbauen!

367
368
        def query_scenes(condlist):
            return DB_T.get_overlapping_scenes_from_postgreSQLdb(
369
                CFG.conn_database,
370
371
372
373
374
                table='scenes',
                tgt_corners_lonlat=self.trueDataCornerLonLat,
                conditions=condlist,
                add_cmds='ORDER BY scenes.cloudcover ASC',
                timeout=30000)
375
376
        conds_descImportance = [dataset_cond, cloudcov_cond, dayrange_cond]

377
        self.logger.info('Querying database in order to find a suitable reference scene for co-registration.')
378

379
        count, filt_overlap_scenes = 0, []
380
        while not filt_overlap_scenes:
381
382
383
384
            if count == 0:
                # search within already processed scenes
                # das ist nur Ergebnis aus scenes_proc
                # -> dort liegt nur eine referenz, wenn die szene schon bei CFG.job-Beginn in Datensatzliste drin war
385
                res = DB_T.get_overlapping_scenes_from_postgreSQLdb(
386
                    CFG.conn_database,
387
                    tgt_corners_lonlat=self.trueDataCornerLonLat,
388
                    conditions=['datasetid=%s' % CFG.datasetid_spatial_ref],
389
390
                    add_cmds='ORDER BY scenes.cloudcover ASC',
                    timeout=25000)
391
                filt_overlap_scenes = self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], 20.)
392

393
            else:
394
395
396
                # search within complete scenes table using less filter criteria with each run
                # TODO: Daniels Index einbauen, sonst  bei wachsender Tabellengröße evtl. irgendwann zu langsam
                res = query_scenes(conds_descImportance)
397
                filt_overlap_scenes = self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], min_overlap)
398

399
                if len(conds_descImportance) > 1:  # FIXME anderer Referenzsensor?
400
401
402
403
                    del conds_descImportance[-1]
                else:  # reduce min_overlap to 10 percent if there are overlapping scenes
                    if res:
                        min_overlap = 10
404
405
                        filt_overlap_scenes = \
                            self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], min_overlap)
406
407

                    # raise warnings if no match found
408
                    if not filt_overlap_scenes:
409
410
                        if not res:
                            warnings.warn('No reference scene found for %s (scene ID %s). Coregistration of this scene '
411
                                          'failed.' % (self.baseN, self.scene_ID))
412
413
414
                        else:
                            warnings.warn('Reference scenes for %s (scene ID %s) have been found but none has more '
                                          'than %s percent overlap. Coregistration of this scene failed.'
415
                                          % (self.baseN, self.scene_ID, min_overlap))
416
                        break
417
            count += 1
418
419
420
421

        if filt_overlap_scenes:
            ref_available = False
            for count, sc in enumerate(filt_overlap_scenes):
422
                if count == 2:  # FIXME Abbuch schon bei 3. Szene?
423
                    warnings.warn('No reference scene for %s (scene ID %s) available. '
424
                                  'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
425
426
427
                    break

                # start download of scene data not available and start L1A processing
428
                def dl_cmd(scene_ID): print('%s %s %s' % (
429
430
                    CFG.java_commands['keyword'].strip(),  # FIXME CFG.java_commands is deprecated
                    CFG.java_commands["value_download"].strip(), scene_ID))
431

432
                path = PG.path_generator(scene_ID=sc['scene_ID']).get_path_imagedata()
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
433

434
435
436
437
438
439
440
441
                if not os.path.exists(path):
                    # add scene 2 download to scenes_jobs.missing_scenes

                    # print JAVA download command
                    t_dl_start = time.time()
                    dl_cmd(sc['scene_ID'])

                    # check if scene is downloading
442
443
                    download_start_timeout = 5  # seconds
                    # set timout for external processing
444
                    # -> DEPRECATED BECAUSE CREATION OF EXTERNAL CFG WITHIN CFG IS NOT ALLOWED
445
                    processing_timeout = 5  # seconds # FIXME increase timeout if processing is really started
446
447
448
                    proc_level = None
                    while True:
                        proc_level_chk = DB_T.get_info_from_postgreSQLdb(
449
                            CFG.conn_database, 'scenes', ['proc_level'], {'id': sc['scene_ID']})[0][0]
450
                        if proc_level != proc_level_chk:
451
                            print('Reference scene %s, current processing level: %s' % (sc['scene_ID'], proc_level_chk))
452
                        proc_level = proc_level_chk
453
454
                        if proc_level_chk in ['SCHEDULED', 'METADATA'] and \
                           time.time() - t_dl_start >= download_start_timeout:
455
                            warnings.warn('Download of reference scene %s (entity ID %s) timed out. '
456
                                          'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
457
458
                            break
                        if proc_level_chk == 'L1A':
459
460
461
462
                            ref_available = True
                            break
                        elif proc_level_chk == 'DOWNLOADED' and time.time() - t_dl_start >= processing_timeout:
                            # proc_level='DOWNLOADED' but scene has not been processed
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
463
464
465
                            warnings.warn('L1A processing of reference scene %s (entity ID %s) timed out. '
                                          'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
                            break
466
                            # DB_T.set_info_in_postgreSQLdb(CFG.conn_database,'scenes',
467
                            #                             {'proc_level':'METADATA'},{'id':sc['scene_ID']})
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
468

469
470
471
472
473
474
475
                        time.sleep(5)
                else:
                    ref_available = True

                if not ref_available:
                    continue
                else:
476
477
                    self.path_imref = path
                    self.imref_scene_ID = sc['scene_ID']
478
                    self.imref_footprint_poly = sc['scene poly']
479
480
481
482
                    self.overlap_poly = sc['overlap poly']
                    self.overlap_percentage = sc['overlap percentage']
                    self.overlap_area = sc['overlap area']

483
                    query_res = DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes', ['entityid'],
484
485
486
                                                                {'id': self.imref_scene_ID}, records2fetch=1)
                    assert query_res != [], 'No entity-ID found for scene number %s' % self.imref_scene_ID
                    self.imref_entity_ID = query_res[0][0]  # [('LC81510322013152LGN00',)]
487
                    break
488
        self.logger.close()
489

490
    def _sceneIDList_to_filt_overlap_scenes(self, sceneIDList, min_overlap):
491
492
493
        """find reference scenes that cover at least 20% of the scene with the given ID
        ONLY FIRST 50 scenes are considered"""

494
495
496
        # t0 = time.time()
        dict_sceneID_poly = [{'scene_ID': ID, 'scene poly': HLP_F.scene_ID_to_shapelyPolygon(ID)}
                             for ID in sceneIDList]  # always returns LonLot polygons
497
498

        # get overlap polygons and their parameters. result: [{overlap poly, overlap percentage, overlap area}]
499
500
        for dic in dict_sceneID_poly:  # input: dicts {scene_ID, ref_poly}
            dict_overlap_poly_params = get_overlap_polygon(dic['scene poly'], self.arr.footprint_poly)
501
            dic.update(dict_overlap_poly_params)  # adds {overlap poly, overlap percentage, overlap area}
502
        # print('polygon creation time', time.time()-t0)
503
504
505
506
507
508
509
510

        # filter those scene_IDs out where overlap percentage is below 20%
        if min_overlap:
            filt_overlap_scenes = [scene for scene in dict_sceneID_poly if scene['overlap percentage'] >= min_overlap]
        else:
            filt_overlap_scenes = dict_sceneID_poly

        return filt_overlap_scenes
511

512
    def get_opt_bands4matching(self, target_cwlPos_nm=550):
513
514
515
516
        """Automatically determines the optimal bands used für fourier shift theorem matching

        :param target_cwlPos_nm:   the desired wavelength used for matching
        """
517
518
        # get GMS_object for reference scene
        path_gmsFile = PG.path_generator(scene_ID=self.spatRef_scene.scene_ID).get_path_gmsfile()
519
        ref_obj = GMS_object.from_disk((path_gmsFile, ['cube', None]))
520

521
        # get spectral characteristics
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
522
523
524
        ref_cwl = [float(ref_obj.MetaObj.CWL[bN]) for bN in ref_obj.MetaObj.LayerBandsAssignment]
        shift_cwl = [float(self.MetaObj.CWL[bN]) for bN in self.MetaObj.LayerBandsAssignment]
        shift_fwhm = [float(self.MetaObj.FWHM[bN]) for bN in self.MetaObj.LayerBandsAssignment]
525
526

        # exclude cirrus/oxygen band of Landsat-8/Sentinel-2
527
        shift_bbl, ref_bbl = [False] * len(shift_cwl), [False] * len(ref_cwl)  # bad band lists
528
        for GMS_obj, s_r, bbl in zip([self, ref_obj], ['shift', 'ref'], [shift_bbl, ref_bbl]):
529
            GMS_obj.GMS_identifier.logger = None  # set a dummy value in order to avoid Exception
530
531
532
533
534
            sensorcode = get_GMS_sensorcode(GMS_obj.GMS_identifier)
            if sensorcode in ['LDCM', 'S2A', 'S2B'] and '9' in GMS_obj.LayerBandsAssignment:
                bbl[GMS_obj.LayerBandsAssignment.index('9')] = True
            if sensorcode in ['S2A', 'S2B'] and '10' in GMS_obj.LayerBandsAssignment:
                bbl[GMS_obj.LayerBandsAssignment.index('10')] = True
535

536
        # cwl_overlap = (max(min(shift_cwl),min(ref_cwl)),  min(max(shift_cwl),max(ref_cwl))) # -> (min wvl, max wvl)
537
        # find matching band of reference image for each band of image to be shifted
538
539
540
541
        match_dic = collections.OrderedDict()
        for idx, cwl, fwhm in zip(range(len(shift_cwl)), shift_cwl, shift_fwhm):
            if shift_bbl[idx]:
                continue  # skip cwl if it is declared as bad band above
542
543
544

            def is_inside(r_cwl, s_cwl, s_fwhm): return s_cwl - s_fwhm / 2 < r_cwl < s_cwl + s_fwhm / 2

545
546
            matching_r_cwls = [r_cwl for i, r_cwl in enumerate(ref_cwl) if
                               is_inside(r_cwl, cwl, fwhm) and not ref_bbl[i]]
547
548
            if matching_r_cwls:
                match_dic[cwl] = matching_r_cwls[0] if len(matching_r_cwls) else \
549
                    matching_r_cwls[np.abs(np.array(matching_r_cwls) - cwl).argmin()]
550
551
552
553
554

        # set bands4 match based on the above results
        poss_cwls = [cwl for cwl in shift_cwl if cwl in match_dic]
        if poss_cwls:
            if not target_cwlPos_nm:
555
556
557
558
559
560
561
                shift_band4match = shift_cwl.index(poss_cwls[0]) + 1  # first possible shift band
                ref_band4match = ref_cwl.index(match_dic[poss_cwls[0]]) + 1  # matching reference band
            else:  # target_cwlPos is given
                closestWvl_to_target = poss_cwls[np.abs(np.array(poss_cwls) - target_cwlPos_nm).argmin()]
                shift_band4match = shift_cwl.index(closestWvl_to_target) + 1  # the shift band closest to target
                ref_band4match = ref_cwl.index(match_dic[closestWvl_to_target]) + 1  # matching ref
        else:  # all reference bands are outside of shift-cwl +- fwhm/2
562
563
            self.logger.warning('Optimal bands for matching could not be automatically determined. '
                                'Choosing first band of each image.')
564
565
            shift_band4match = 1
            ref_band4match = 1
566

567
        self.logger.info(
568
            'Target band for matching:    %s (%snm)' % (shift_band4match, shift_cwl[shift_band4match - 1]))
569
570
        self.logger.info(
            'Reference band for matching: %s (%snm)' % (ref_band4match, ref_cwl[ref_band4match - 1]))
571
572
573

        return ref_band4match, shift_band4match

574
    def compute_global_shifts(self):
575
576
577
578
579
        spatIdxSrv_status = os.environ['GMS_SPAT_IDX_SRV_STATUS'] if 'GMS_SPAT_IDX_SRV_STATUS' in os.environ else True

        if spatIdxSrv_status == 'unavailable':
            self.logger.warning('Coregistration skipped due to unavailable Spatial Index Mediator Server!"')

580
        elif CFG.skip_coreg:
581
            self.logger.warning('Coregistration skipped according to user configuration.')
582

583
        elif self.coreg_needed and self.spatRef_available:
584
585
586
            self.coreg_info.update({'reference scene ID': self.spatRef_scene.scene_ID})
            self.coreg_info.update({'reference entity ID': self.spatRef_scene.entity_ID})

587
588
            geoArr_ref = GeoArray(self.spatRef_scene.filePath)
            geoArr_shift = GeoArray(self.arr)
589
            r_b4match, s_b4match = self.get_opt_bands4matching(target_cwlPos_nm=CFG.coreg_band_wavelength_for_matching)
590
591
592
593
594
            coreg_kwargs = dict(
                r_b4match=r_b4match,
                s_b4match=s_b4match,
                align_grids=True,  # FIXME not needed here
                match_gsd=True,  # FIXME not needed here
595
                max_shift=CFG.coreg_max_shift_allowed,
Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
596
                ws=CFG.coreg_window_size,
597
                data_corners_ref=[[x, y] for x, y in self.spatRef_scene.polyUTM.convex_hull.exterior.coords],
598
                data_corners_tgt=[transform_any_prj(EPSG2WKT(4326), self.MetaObj.projection, x, y)
599
600
601
602
603
604
605
                                  for x, y in HLP_F.reorder_CornerLonLat(self.trueDataCornerLonLat)],
                nodata=(get_outFillZeroSaturated(geoArr_ref.dtype)[0],
                        get_outFillZeroSaturated(geoArr_shift.dtype)[0]),
                ignore_errors=True,
                v=False,
                q=True
            )
606

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
            # initialize COREG object
            try:
                COREG_obj = COREG(geoArr_ref, geoArr_shift, **coreg_kwargs)
            except Exception as e:
                COREG_obj = None
                self.logger.error('\nAn error occurred during coregistration. BE AWARE THAT THE SCENE %s '
                                  '(ENTITY ID %s) HAS NOT BEEN COREGISTERED! Error message was: \n%s\n'
                                  % (self.scene_ID, self.entity_ID, repr(e)))
                self.logger.error(traceback.format_exc())
                # TODO include that in the job summary

            # calculate_spatial_shifts
            if COREG_obj:
                COREG_obj.calculate_spatial_shifts()

                self.coreg_info.update(
                    COREG_obj.coreg_info)  # no clipping to trueCornerLonLat until here -> only shift correction
                self.coreg_info.update({'shift_reliability': COREG_obj.shift_reliability})

                if COREG_obj.success:
                    self.coreg_info['success'] = True
                    self.logger.info("Calculated map shifts (X,Y): %s / %s"
                                     % (COREG_obj.x_shift_map,
                                        COREG_obj.y_shift_map))  # FIXME direkt in calculate_spatial_shifts loggen
                    self.logger.info("Reliability of calculated shift: %.1f percent" % COREG_obj.shift_reliability)
632

633
634
635
636
                else:
                    # TODO add database entry with error hint
                    [self.logger.error('ERROR during coregistration of scene %s (entity ID %s):\n%s'
                                       % (self.scene_ID, self.entity_ID, err)) for err in COREG_obj.tracked_errors]
637

638
        else:
639
            if self.coreg_needed:
640
641
                self.logger.warning('Coregistration skipped because no suitable reference scene is available or '
                                    'spatial query failed.')
642
643
            else:
                self.logger.info('Coregistration of scene %s (entity ID %s) skipped because target dataset ID equals '
644
645
                                 'reference dataset ID.' % (self.scene_ID, self.entity_ID))

646
647
    def correct_spatial_shifts(self, cliptoextent=True, clipextent=None, clipextent_prj=None, v=False):
        # type: (bool, list, any, bool) -> None
648
        """Corrects the spatial shifts calculated by self.compute_global_shifts().
649
650
651
652
653
654
655
656
657

        :param cliptoextent:    whether to clip the output to the given extent
        :param clipextent:      list of XY-coordinate tuples giving the target extent (if not given and cliptoextent is
                                True, the 'trueDataCornerLonLat' attribute of the GMS object is used
        :param clipextent_prj:  WKT projection string or EPSG code of the projection for the coordinates in clipextent
        :param v:
        :return:
        """

658
659
        # cliptoextent is automatically True if an extent is given
        cliptoextent = cliptoextent if not clipextent else True
660

661
662
        if cliptoextent or self.resamp_needed or (self.coreg_needed and self.coreg_info['success']):

663
            # get target bounds # TODO implement boxObj call instead here
664
            if not clipextent:
665
666
                trueDataCornerUTM = [transform_any_prj(EPSG2WKT(4326), self.MetaObj.projection, x, y)
                                     for x, y in self.trueDataCornerLonLat]
667
                xmin, xmax, ymin, ymax = corner_coord_to_minmax(trueDataCornerUTM)
668
                mapBounds = box(xmin, ymin, xmax, ymax).bounds
669
670
671
672
673
674
675
676
            else:
                assert clipextent_prj, \
                    "'clipextent_prj' must be given together with 'clipextent'. Received only 'clipextent'."
                clipextent_UTM = clipextent if prj_equal(self.MetaObj.projection, clipextent_prj) else \
                    [transform_any_prj(clipextent_prj, self.MetaObj.projection, x, y) for x, y in clipextent]
                xmin, xmax, ymin, ymax = corner_coord_to_minmax(clipextent_UTM)
                mapBounds = box(xmin, ymin, xmax, ymax).bounds

677
            # correct shifts and clip to extent
678
679
            # ensure self.masks exists (does not exist in case of inmem_serialization mode because
            # then self.fill_from_disk() is skipped)
680
681
682
            if not hasattr(self, 'masks') or self.masks is None:
                self.build_combined_masks_array()  # creates self.masks and self.masks_meta

683
684
685
            # exclude self.mask_nodata, self.mask_clouds from warping
            del self.mask_nodata, self.mask_clouds

686
687
688
            attributes2deshift = [attrname for attrname in
                                  ['arr', 'masks', 'dem', 'ac_errors', 'mask_clouds_confidence']
                                  if getattr(self, '_%s' % attrname) is not None]
689
            for attrname in attributes2deshift:
690
                geoArr = getattr(self, attrname)
691
692

                # do some logging
693
694
                if self.coreg_needed:
                    if self.coreg_info['success']:
695
696
                        self.logger.info("Correcting spatial shifts for attribute '%s'..." % attrname)
                    elif cliptoextent and is_coord_grid_equal(
697
                         geoArr.gt, CFG.spatial_ref_gridx, CFG.spatial_ref_gridy):
698
                        self.logger.info("Attribute '%s' has only been clipped to it's extent because no valid "
699
700
                                         "shifts have been detected and the pixel grid equals the target grid."
                                         % attrname)
701
702
                    elif self.resamp_needed:
                        self.logger.info("Resampling attribute '%s' to target grid..." % attrname)
703
704
705
706
                elif self.resamp_needed:
                    self.logger.info("Resampling attribute '%s' to target grid..." % attrname)

                # correct shifts
707
                DS = DESHIFTER(geoArr, self.coreg_info,
708
                               target_xyGrid=[CFG.spatial_ref_gridx, CFG.spatial_ref_gridy],
709
710
711
                               cliptoextent=cliptoextent,
                               clipextent=mapBounds,
                               align_grids=True,
712
                               resamp_alg='nearest' if attrname == 'masks' else CFG.spatial_resamp_alg,
713
                               CPUs=None if CFG.allow_subMultiprocessing else 1,
714
715
716
                               progress=True if v else False,
                               q=True,
                               v=v)
717
718
719
                DS.correct_shifts()

                # update coreg_info
720
721
                if attrname == 'arr':
                    self.coreg_info['is shifted'] = DS.is_shifted
722
                    self.coreg_info['is resampled'] = DS.is_resampled
723

724
                # update geoinformations and array shape related attributes
725
726
                self.logger.info("Updating geoinformations of '%s' attribute..." % attrname)
                if attrname == 'arr':
727
728
                    self.MetaObj.map_info = DS.updated_map_info
                    self.MetaObj.projection = EPSG2WKT(WKT2EPSG(DS.updated_projection))
729
                    self.shape_fullArr = DS.arr_shifted.shape
730
                    self.MetaObj.rows, self.MetaObj.cols = DS.arr_shifted.shape[:2]
731
                else:
732
733
                    self.masks_meta['map info'] = DS.updated_map_info
                    self.masks_meta['coordinate system string'] = EPSG2WKT(WKT2EPSG(DS.updated_projection))
734
735
                    self.masks_meta['lines'], self.masks_meta['samples'] = DS.arr_shifted.shape[:2]

736
737
                    # NOTE: mask_nodata and mask_clouds are updated later by L2A_map mapper function (module pipeline)

738
                # update the GeoArray instance without loosing its inherent metadata (nodata, ...)
739
740
741
                geoArr.arr, geoArr.gt, geoArr.prj = \
                    DS.GeoArray_shifted.arr, DS.GeoArray_shifted.gt, DS.GeoArray_shifted.prj
                # setattr(self,attrname, DS.GeoArray_shifted) # NOTE: don't set array earlier because setter will also
742
                #                                             # update arr.gt/.prj/.nodata from MetaObj
743

744
            self.resamp_needed = False
745
            self.coreg_needed = False
746

747
748
            # recreate self.masks_nodata and self.mask_clouds from self.masks
            self.mask_nodata = self.mask_nodata
749
750
            self.mask_clouds = self.mask_clouds
            # FIXME move functionality of self.masks only to output writer and remove self.masks completely