process_controller.py 38.3 KB
Newer Older
1
2
# -*- coding: utf-8 -*-

3
from __future__ import (division, print_function, unicode_literals, absolute_import)
4
5
6

import numpy as np
from pandas import DataFrame
7
8
9
10
import datetime
import os
import time
from itertools import chain
11
import signal
12
import re
13
from typing import TYPE_CHECKING
14

15
16
from ..io import output_writer as OUT_W
from ..io import input_reader as INP_R
17
18
19
20
21
from ..misc import database_tools as DB_T
from ..misc import helper_functions as HLP_F
from ..misc.path_generator import path_generator
from ..misc.logging import GMS_logger, shutdown_loggers
from ..algorithms import L1A_P, L1B_P, L1C_P, L2A_P, L2B_P, L2C_P
22
from ..model.metadata import get_LayerBandsAssignment
23
from ..model.gms_object import failed_GMS_object, GMS_object
24
from .pipeline import (L1A_map, L1A_map_1, L1A_map_2, L1A_map_3, L1B_map, L1C_map,
25
                       L2A_map, L2B_map, L2C_map)
26
from ..options.config import set_config
27
from .multiproc import MAP, imap_unordered
28
from ..misc.definition_dicts import proc_chain, db_jobs_statistics_def
29

30
31
from py_tools_ds.numeric.array import get_array_tilebounds

32
if TYPE_CHECKING:
Daniel Scheffler's avatar
Daniel Scheffler committed
33
    from collections import OrderedDict  # noqa F401  # flake8 issue
34
35
    from typing import List  # noqa F401  # flake8 issue
    from ..options.config import GMS_config  # noqa F401  # flake8 issue
36
37
38
39


__author__ = 'Daniel Scheffler'

40
41

class process_controller(object):
42
    def __init__(self, job_ID, **config_kwargs):
43
        """gms_preprocessing process controller
44

45
46
        :param job_ID:          job ID belonging to a valid database record within table 'jobs'
        :param config_kwargs:   keyword arguments to be passed to gms_preprocessing.set_config()
47
48
49
        """

        # assertions
50
51
        if not isinstance(job_ID, int):
            raise ValueError("'job_ID' must be an integer value. Got %s." % type(job_ID))
52

53
54
        # set GMS configuration
        config_kwargs.update(dict(reset_status=True))
55
        self.config = set_config(job_ID, **config_kwargs)  # type: GMS_config
56
57

        # defaults
58
        self._logger = None
59
        self._DB_job_record = None
60
        self.profiler = None
61
62
63
64
65

        self.failed_objects = []
        self.L1A_newObjects = []
        self.L1B_newObjects = []
        self.L1C_newObjects = []
66
        self.L2A_newObjects = []
67
        self.L2A_tiles = []
68
69
70
71
        self.L2B_newObjects = []
        self.L2C_newObjects = []

        self.summary_detailed = None
72
        self.summary_quick = None
73

74
75
        # check if process_controller is executed by debugger
        # isdebugging = 1 if True in [frame[1].endswith("pydevd.py") for frame in inspect.stack()] else False
76
        # if isdebugging:  # override the existing settings in order to get write access everywhere
77
78
        #    pass

79
        # called_from_iPyNb = 1 if 'ipykernel/__main__.py' in sys.argv[0] else 0
80

81
        self.logger.info('Process Controller initialized for job ID %s (comment: %s).'
82
                         % (self.config.ID, self.DB_job_record.comment))
83

84
        if self.config.delete_old_output:
85
86
            self.logger.info('Deleting previously processed data...')
            self.DB_job_record.delete_procdata_of_entire_job(force=True)
87

88
89
90
91
92
    @property
    def logger(self):
        if self._logger and self._logger.handlers[:]:
            return self._logger
        else:
93
94
95
            self._logger = GMS_logger('log__%s' % self.config.ID,
                                      path_logfile=os.path.join(self.config.path_job_logs, '%s.log' % self.config.ID),
                                      log_level=self.config.log_level, append=False)
96
97
98
99
100
101
102
103
104
105
106
107
108
            return self._logger

    @logger.setter
    def logger(self, logger):
        self._logger = logger

    @logger.deleter
    def logger(self):
        if self._logger not in [None, 'not set']:
            self.logger.close()
            self.logger = None

    @property
109
110
111
112
    def DB_job_record(self):
        if self._DB_job_record:
            return self._DB_job_record
        else:
113
114
            self._DB_job_record = DB_T.GMS_JOB(self.config.conn_database)
            self._DB_job_record.from_job_ID(self.config.ID)
115
            return self._DB_job_record
116

117
118
119
    @DB_job_record.setter
    def DB_job_record(self, value):
        self._DB_job_record = value
120

121
122
123
    @property
    def sceneids_failed(self):
        return [obj.scene_ID for obj in self.failed_objects]
124

125
126
    def _add_local_availability_single_dataset(self, dataset):
        # type: (OrderedDict) -> OrderedDict
127
        # TODO revise this function
128
129
        # query the database and get the last written processing level and LayerBandsAssignment
        DB_match = DB_T.get_info_from_postgreSQLdb(
130
            self.config.conn_database, 'scenes_proc', ['proc_level', 'layer_bands_assignment'],
131
            dict(sceneid=dataset['scene_ID']))
Daniel Scheffler's avatar
Daniel Scheffler committed
132

133
        # get the corresponding logfile
134
135
        path_logfile = path_generator(dataset).get_path_logfile(merged_subsystems=False)
        path_logfile_merged_ss = path_generator(dataset).get_path_logfile(merged_subsystems=True)
136
137
138
139

        def get_AllWrittenProcL_dueLog(path_log):  # TODO replace this by database query + os.path.exists
            """Returns all processing level that have been successfully written according to logfile."""

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
140
141
142
143
            if not os.path.exists(path_log):
                if path_log == path_logfile:  # path_logfile_merged_ss has already been searched
                    self.logger.info("No logfile named '%s' found for %s at %s. Dataset has to be reprocessed."
                                     % (os.path.basename(path_log), dataset['entity_ID'], os.path.dirname(path_log)))
144
145
146
147
                AllWrittenProcL_dueLog = []
            else:
                logfile = open(path_log, 'r').read()
                AllWrittenProcL_dueLog = re.findall(":*(\S*\s*) data successfully saved.", logfile, re.I)
148
                if not AllWrittenProcL_dueLog and path_logfile == path_logfile_merged_ss:  # AllWrittenProcL_dueLog = []
149
150
151
152
153
154
155
156
157
158
                    self.logger.info('%s: According to logfile no completely processed data exist at any '
                                     'processing level. Dataset has to be reprocessed.' % dataset['entity_ID'])
                else:
                    AllWrittenProcL_dueLog = HLP_F.sorted_nicely(list(set(AllWrittenProcL_dueLog)))
            return AllWrittenProcL_dueLog

        # check if there are not multiple database records for this dataset
        if len(DB_match) == 1 or DB_match == [] or DB_match == 'database connection fault':

            # get all processing level that have been successfully written
159
160
            # NOTE: first check for merged subsystem datasets because they have hiver processing levels
            AllWrittenProcL = get_AllWrittenProcL_dueLog(path_logfile_merged_ss)
161
            if not AllWrittenProcL:
162
                AllWrittenProcL = get_AllWrittenProcL_dueLog(path_logfile)
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
163
164
165
            else:
                # A L2A+ dataset with merged subsystems has been found. Use that logfile.
                path_logfile = path_logfile_merged_ss
166

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
            dataset['proc_level'] = None  # default (dataset has to be reprocessed)

            # loop through all the found proc. levels and find the one that fulfills all requirements
            for ProcL in reversed(AllWrittenProcL):
                if dataset['proc_level']:
                    break  # proc_level found; no further searching for lower proc_levels
                assumed_path_GMS_file = '%s_%s.gms' % (os.path.splitext(path_logfile)[0], ProcL)

                # check if there is also a corresponding GMS_file on disk
                if os.path.isfile(assumed_path_GMS_file):
                    GMS_file_dict = INP_R.GMSfile2dict(assumed_path_GMS_file)
                    target_LayerBandsAssignment = \
                        get_LayerBandsAssignment(dict(
                            image_type=dataset['image_type'],
                            Satellite=dataset['satellite'],
                            Sensor=dataset['sensor'],
                            Subsystem=dataset['subsystem'],
                            proc_level=ProcL,  # must be respected because LBA changes after atm. Corr.
                            dataset_ID=dataset['dataset_ID'],
                            logger=None), nBands=(1 if dataset['sensormode'] == 'P' else None))

                    # check if the LayerBandsAssignment of the written dataset on disk equals the
                    # desired LayerBandsAssignment
                    if target_LayerBandsAssignment == GMS_file_dict['LayerBandsAssignment']:

                        # update the database record if the dataset could not be found in database
                        if DB_match == [] or DB_match == 'database connection fault':
                            self.logger.info('The dataset %s is not included in the database of processed data but'
                                             ' according to logfile %s has been written successfully. Recreating '
                                             'missing database entry.' % (dataset['entity_ID'], ProcL))
                            DB_T.data_DB_updater(GMS_file_dict)

                            dataset['proc_level'] = ProcL

                        # if the dataset could be found in database
                        elif len(DB_match) == 1:
                            try:
                                self.logger.info('Found a matching %s dataset for %s. Processing skipped until %s.'
                                                 % (ProcL, dataset['entity_ID'],
                                                    proc_chain[proc_chain.index(ProcL) + 1]))
                            except IndexError:
                                self.logger.info('Found a matching %s dataset for %s. Processing already done.'
                                                 % (ProcL, dataset['entity_ID']))

                            if DB_match[0][0] == ProcL:
                                dataset['proc_level'] = DB_match[0][0]
                            else:
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
214
                                dataset['proc_level'] = ProcL
215

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
216
                    else:
Daniel Scheffler's avatar
Daniel Scheffler committed
217
                        self.logger.info('Found a matching %s dataset for %s but with a different '
Daniel Scheffler's avatar
Daniel Scheffler committed
218
219
220
                                         'LayerBandsAssignment (desired: %s; found %s). Dataset has to be reprocessed.'
                                         % (target_LayerBandsAssignment, GMS_file_dict['LayerBandsAssignment'],
                                            ProcL, dataset['entity_ID']))
221
222
223
224
225
                else:
                    self.logger.info('%s for dataset %s has been written due to logfile but no corresponding '
                                     'dataset has been found.' % (ProcL, dataset['entity_ID']) +
                                     ' Searching for lower processing level...'
                                     if AllWrittenProcL.index(ProcL) != 0 else '')
226

227
228
229
230
        elif len(DB_match) > 1:
            self.logger.info('According to database there are multiple matches for the dataset %s. Dataset has to '
                             'be reprocessed.' % dataset['entity_ID'])
            dataset['proc_level'] = None
231

232
233
        else:
            dataset['proc_level'] = None
234

235
        return dataset
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
236

237
238
239
    def add_local_availability(self, datasets):
        # type: (List[OrderedDict]) -> List[OrderedDict]
        """Check availability of all subsets per scene and processing level.
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
240

241
242
243
244
245
246
        NOTE: The processing level of those scenes, where not all subsystems are available in the same processing level
              is reset.

        :param datasets:    List of one OrderedDict per subsystem as generated by CFG.data_list
        """
        datasets = [self._add_local_availability_single_dataset(ds) for ds in datasets]
247

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
248
249
        datasets_validated = []
        datasets_grouped = HLP_F.group_dicts_by_key(datasets, key='scene_ID')
250

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
251
252
        for ds_group in datasets_grouped:
            proc_lvls = [ds['proc_level'] for ds in ds_group]
253

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
254
255
            if not len(list(set(proc_lvls))) == 1:
                # reset processing level of those scenes where not all subsystems are available
256
                self.logger.info('%s: Found already processed subsystems at different processing levels %s. '
257
                                 'Dataset has to be reprocessed to avoid errors.'
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
258
                                 % (ds_group[0]['entity_ID'], proc_lvls))
259

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
260
261
                for ds in ds_group:
                    ds['proc_level'] = None
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
262
                    datasets_validated.append(ds)
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
263
264
            else:
                datasets_validated.extend(ds_group)
265

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
266
        return datasets_validated
267

268
269
    @staticmethod
    def _is_inMEM(GMS_objects, dataset):
Daniel Scheffler's avatar
Daniel Scheffler committed
270
        # type: (list, OrderedDict) -> bool
271
272
273
274
        """Checks whether a dataset within a dataset list has been processed in the previous processing level.
        :param GMS_objects: <list> a list of GMS objects that has been recently processed
        :param dataset:     <collections.OrderedDict> as generated by L0A_P.get_data_list_of_current_jobID()
        """
275
        # check if the scene ID of the given dataset is in the scene IDs of the previously processed datasets
276
277
278
        return dataset['scene_ID'] in [obj.scene_ID for obj in GMS_objects]

    def _get_processor_data_list(self, procLvl, prevLvl_objects=None):
279
        """Returns a list of datasets that have to be read from disk and then processed by a specific processor.
280
281
282
283
284

        :param procLvl:
        :param prevLvl_objects:
        :return:
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
285
286
        def is_procL_lower(dataset):
            return HLP_F.is_proc_level_lower(dataset['proc_level'], target_lvl=procLvl)
287
288

        if prevLvl_objects is None:
Daniel Scheffler's avatar
Daniel Scheffler committed
289
            return [dataset for dataset in self.config.data_list if is_procL_lower(dataset)]  # TODO generator?
290
        else:
Daniel Scheffler's avatar
Daniel Scheffler committed
291
            return [dataset for dataset in self.config.data_list if is_procL_lower(dataset) and
292
                    not self._is_inMEM(prevLvl_objects + self.failed_objects, dataset)]
293
294
295
296
297
298
299
300
301
302
303
304
305

    def get_DB_objects(self, procLvl, prevLvl_objects=None, parallLev=None, blocksize=None):
        """
        Returns a list of GMS objects for datasets available on disk that have to be processed by the current processor.

        :param procLvl:         <str> processing level oof the current processor
        :param prevLvl_objects: <list> of in-mem GMS objects produced by the previous processor
        :param parallLev:       <str> parallelization level ('scenes' or 'tiles')
                                -> defines if full cubes or blocks are to be returned
        :param blocksize:       <tuple> block size in case blocks are to be returned, e.g. (2000,2000)
        :return:
        """
        # TODO get prevLvl_objects automatically from self
306
        if procLvl == 'L1A':
307
308
309
            return []
        else:
            # handle input parameters
Daniel Scheffler's avatar
Daniel Scheffler committed
310
311
            parallLev = parallLev or self.config.parallelization_level
            blocksize = blocksize or self.config.tiling_block_size_XY
312
            prevLvl = proc_chain[proc_chain.index(procLvl) - 1]  # TODO replace by enum
313
314

            # get GMSfile list
315
            dataset_dicts = self._get_processor_data_list(procLvl, prevLvl_objects)
316
317
318
319
320
            GMSfile_list_prevLvl_inDB = INP_R.get_list_GMSfiles(dataset_dicts, prevLvl)

            # create GMS objects from disk with respect to parallelization level and block size
            if parallLev == 'scenes':
                # get input parameters for creating GMS objects as full cubes
321
                work = [[GMS, ['cube', None]] for GMS in GMSfile_list_prevLvl_inDB]
322
323
            else:
                # define tile positions and size
324
                def get_tilepos_list(GMSfile):
325
326
                    return get_array_tilebounds(array_shape=INP_R.GMSfile2dict(GMSfile)['shape_fullArr'],
                                                tile_shape=blocksize)
327
328
329

                # get input parameters for creating GMS objects as blocks
                work = [[GMSfile, ['block', tp]] for GMSfile in GMSfile_list_prevLvl_inDB
330
                        for tp in get_tilepos_list(GMSfile)]
331

332
333
334
335
            # create GMS objects for the found files on disk
            # NOTE: DON'T multiprocess that with MAP(GMS_object(*initargs).from_disk, work)
            # in case of multiple subsystems GMS_object(*initargs) would always point to the same object in memory
            # -> subsystem attribute will be overwritten each time
336
            def init_GMS_obj(): return HLP_F.parentObjDict[prevLvl](*HLP_F.initArgsDict[prevLvl])
337
338
            DB_objs = [init_GMS_obj().from_disk(tuple_GMS_subset=w) for w in work]  # init

339
340
341
342
343
            if DB_objs:
                DB_objs = list(chain.from_iterable(DB_objs)) if list in [type(i) for i in DB_objs] else list(DB_objs)

            return DB_objs

Daniel Scheffler's avatar
Daniel Scheffler committed
344
    def run_all_processors_OLD(self, custom_data_list=None):
345
346
347
        """
        Run all processors at once.
        """
348

349
        signal.signal(signal.SIGINT, self.stop)  # enable clean shutdown possibility
350

351
        # noinspection PyBroadException
352
        try:
353
            if self.config.profiling:
354
355
356
357
                from pyinstrument import Profiler
                self.profiler = Profiler()  # or Profiler(use_signal=False), see below
                self.profiler.start()

358
            self.logger.info('Execution of entire GeoMultiSens pre-processing chain started for job ID %s...'
359
                             % self.config.ID)
360
            self.DB_job_record.reset_job_progress()  # updates attributes of DB_job_record and related DB entry
361
            self.config.status = 'running'
362
            self.update_DB_job_record()  # TODO implement that into job.status.setter
363
364
365
366
367

            self.failed_objects = []

            # get list of datasets to be processed
            if custom_data_list:
368
                self.config.data_list = custom_data_list
369
370

            # add local availability
Daniel Scheffler's avatar
Daniel Scheffler committed
371
            self.config.data_list = self.add_local_availability(self.config.data_list)
372
            self.update_DB_job_statistics(self.config.data_list)
373
374
375
376
377
378
379
380
381
382
383
384

            self.L1A_processing()
            self.L1B_processing()
            self.L1C_processing()
            self.L2A_processing()
            self.L2B_processing()
            self.L2C_processing()

            # create summary
            self.create_job_summary()

            self.logger.info('Execution finished.')
385
            # TODO implement failed_with_warnings:
386
387
388
389
            self.config.status = 'finished' if not self.failed_objects else 'finished_with_errors'
            self.config.end_time = datetime.datetime.now()
            self.config.computation_time = self.config.end_time - self.config.start_time
            self.logger.info('Time for execution: %s' % self.config.computation_time)
390
391
392
393

            # update database entry of current job
            self.update_DB_job_record()

394
            if self.config.profiling:
395
396
397
398
399
                self.profiler.stop()
                print(self.profiler.output_text(unicode=True, color=True))

            shutdown_loggers()

400
        except Exception:  # noqa E722  # bare except
401
            if self.config.profiling:
402
403
404
                self.profiler.stop()
                print(self.profiler.output_text(unicode=True, color=True))

405
            self.config.status = 'failed'
Daniel Scheffler's avatar
Daniel Scheffler committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
            self.update_DB_job_record()

            if not self.config.disable_exception_handler:
                self.logger.error('Execution failed with an error:', exc_info=True)
                shutdown_loggers()
            else:
                self.logger.error('Execution failed with an error:')
                shutdown_loggers()
                raise

    def run_all_processors(self, custom_data_list=None):
        signal.signal(signal.SIGINT, self.stop)  # enable clean shutdown possibility

        # noinspection PyBroadException
        try:
            if self.config.profiling:
                from pyinstrument import Profiler
                self.profiler = Profiler()  # or Profiler(use_signal=False), see below
                self.profiler.start()

            self.logger.info('Execution of entire GeoMultiSens pre-processing chain started for job ID %s...'
                             % self.config.ID)
            self.DB_job_record.reset_job_progress()  # updates attributes of DB_job_record and related DB entry
            self.config.status = 'running'
430
            GMS_object.proc_status_all_GMSobjs.clear()  # reset
Daniel Scheffler's avatar
Daniel Scheffler committed
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
            self.update_DB_job_record()  # TODO implement that into config.status.setter

            self.failed_objects = []

            # get list of datasets to be processed
            if custom_data_list:
                self.config.data_list = custom_data_list

            # add local availability
            self.config.data_list = self.add_local_availability(self.config.data_list)
            self.update_DB_job_statistics(self.config.data_list)

            # group dataset dicts by sceneid
            dataset_groups = HLP_F.group_dicts_by_key(self.config.data_list, key='scene_ID')

            from .pipeline import run_complete_preprocessing
447
            GMS_objs = imap_unordered(run_complete_preprocessing, dataset_groups)
Daniel Scheffler's avatar
Daniel Scheffler committed
448
449

            # separate results into successful and failed objects
450
451
452
453
454
455
456
457
458
            def assign_attr(tgt_procL):
                return [obj for obj in GMS_objs if isinstance(obj, GMS_object) and obj.proc_level == tgt_procL]

            self.L1A_newObjects = assign_attr('L1A')
            self.L1B_newObjects = assign_attr('L1B')
            self.L1C_newObjects = assign_attr('L1C')
            self.L2A_newObjects = assign_attr('L2A')
            self.L2B_newObjects = assign_attr('L2B')
            self.L2C_newObjects = assign_attr('L2C')
Daniel Scheffler's avatar
Daniel Scheffler committed
459
460
461
462
463
464
            self.failed_objects = [obj for obj in GMS_objs if isinstance(obj, failed_GMS_object)]

            # create summary
            self.create_job_summary()

            self.logger.info('Execution finished.')
465
            # TODO implement failed_with_warnings
Daniel Scheffler's avatar
Daniel Scheffler committed
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
            self.config.status = 'finished' if not self.failed_objects else 'finished_with_errors'
            self.config.end_time = datetime.datetime.now()
            self.config.computation_time = self.config.end_time - self.config.start_time
            self.logger.info('Time for execution: %s' % self.config.computation_time)

            # update database entry of current job
            self.update_DB_job_record()

            if self.config.profiling:
                self.profiler.stop()
                print(self.profiler.output_text(unicode=True, color=True))

            shutdown_loggers()

        except Exception:  # noqa E722  # bare except
            if self.config.profiling:
                self.profiler.stop()
                print(self.profiler.output_text(unicode=True, color=True))

            self.config.status = 'failed'
486
487
            self.update_DB_job_record()

488
            if not self.config.disable_exception_handler:
489
                self.logger.error('Execution failed with an error:', exc_info=True)
490
491
                shutdown_loggers()
            else:
492
                self.logger.error('Execution failed with an error:')
493
494
                shutdown_loggers()
                raise
495

496
497
    def stop(self, signum, frame):
        """Interrupt the running process controller gracefully."""
498

499
        self.config.status = 'canceled'
500
501
        self.update_DB_job_record()

502
        self.logger.warning('Process controller stopped by user.')
503
504
        del self.logger
        shutdown_loggers()
505

506
        raise KeyboardInterrupt  # terminate execution and show traceback
507

508
509
510
511
    def benchmark(self):
        """
        Run a benchmark.
        """
512
        data_list_bench = self.config.data_list
513
514
515
516
        for count_datasets in range(len(data_list_bench)):
            t_processing_all_runs, t_IO_all_runs = [], []
            for count_run in range(10):
                current_data_list = data_list_bench[0:count_datasets + 1]
517
518
                if os.path.exists(self.config.path_database):
                    os.remove(self.config.path_database)
519
520
521
522
523
524
525
526
527
528
                t_start = time.time()
                self.run_all_processors(current_data_list)
                t_processing_all_runs.append(time.time() - t_start)
                t_IO_all_runs.append(globals()['time_IO'])

            assert current_data_list, 'Empty data list.'
            OUT_W.write_global_benchmark_output(t_processing_all_runs, t_IO_all_runs, current_data_list)

    def L1A_processing(self):
        """
529
        Run Level 1A processing: Data import and metadata homogenization
530
        """
531
        if self.config.exec_L1AP[0]:
532
            self.logger.info('\n\n##### Level 1A Processing started - raster format and metadata homogenization ####\n')
533

534
535
            datalist_L1A_P = self._get_processor_data_list('L1A')

536
            if self.config.parallelization_level == 'scenes':
537
                # map
538
                L1A_resObjects = MAP(L1A_map, datalist_L1A_P, CPUs=12)
539
            else:  # tiles
540
541
                all_L1A_tiles_map1 = MAP(L1A_map_1, datalist_L1A_P,
                                         flatten_output=True)  # map_1 # merge results to new list of splits
542

543
544
545
                L1A_obj_tiles = MAP(L1A_map_2, all_L1A_tiles_map1)  # map_2
                grouped_L1A_Tiles = HLP_F.group_objects_by_attributes(
                    L1A_obj_tiles, 'scene_ID', 'subsystem')  # group results
546

547
                L1A_objects = MAP(L1A_P.L1A_object().from_tiles, grouped_L1A_Tiles)  # reduce
548

549
                L1A_resObjects = MAP(L1A_map_3, L1A_objects)  # map_3
550

551
            self.L1A_newObjects = [obj for obj in L1A_resObjects if isinstance(obj, L1A_P.L1A_object)]
552
            self.failed_objects += [obj for obj in L1A_resObjects if isinstance(obj, failed_GMS_object) and
553
554
555
556
557
558
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L1A_newObjects

    def L1B_processing(self):
        """
559
        Run Level 1B processing: calculation of geometric shifts
560
561
562
563
        """
        # TODO implement check for running spatial index mediator server
        # run on full cubes

564
        if self.config.exec_L1BP[0]:
565
            self.logger.info('\n\n####### Level 1B Processing started - detection of geometric displacements #######\n')
566

567
568
            L1A_DBObjects = self.get_DB_objects('L1B', self.L1A_newObjects, parallLev='scenes')
            L1A_Instances = self.L1A_newObjects + L1A_DBObjects  # combine newly and earlier processed L1A data
569

570
            L1B_resObjects = MAP(L1B_map, L1A_Instances)
571

572
573
574
            self.L1B_newObjects = [obj for obj in L1B_resObjects if isinstance(obj, L1B_P.L1B_object)]
            self.failed_objects += [obj for obj in L1B_resObjects if isinstance(obj, failed_GMS_object) and
                                    obj.scene_ID not in self.sceneids_failed]
575
576
577
578
579

        return self.L1B_newObjects

    def L1C_processing(self):
        """
580
        Run Level 1C processing: atmospheric correction
581
        """
582
        if self.config.exec_L1CP[0]:
583
            self.logger.info('\n\n############## Level 1C Processing started - atmospheric correction ##############\n')
584

585
            if self.config.parallelization_level == 'scenes':
586
587
588
589
                L1B_DBObjects = self.get_DB_objects('L1C', self.L1B_newObjects)
                L1B_Instances = self.L1B_newObjects + L1B_DBObjects  # combine newly and earlier processed L1B data

                # group by scene ID (all subsystems belonging to the same scene ID must be processed together)
590
                grouped_L1B_Instances = HLP_F.group_objects_by_attributes(L1B_Instances, 'scene_ID')
591

592
593
                L1C_resObjects = MAP(L1C_map, grouped_L1B_Instances, flatten_output=True,
                                     CPUs=15)  # FIXME CPUs set to 15 for testing
594

595
            else:  # tiles
596
597
                raise NotImplementedError("Tiled processing is not yet completely implemented for L1C processor. Use "
                                          "parallelization level 'scenes' instead!")
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
                # blocksize = (5000, 5000)
                # """if newly processed L1A objects are present: cut them into tiles"""
                # L1B_newTiles = []
                # if self.L1B_newObjects:
                #     tuples_obj_blocksize = [(obj, blocksize) for obj in self.L1B_newObjects]
                #     L1B_newTiles = MAP(HLP_F.cut_GMS_obj_into_blocks, tuples_obj_blocksize, flatten_output=True)
                #
                # """combine newly and earlier processed L1B data"""
                # L1B_newDBTiles = self.get_DB_objects('L1C', self.L1B_newObjects, blocksize=blocksize)
                # L1B_tiles = L1B_newTiles + L1B_newDBTiles
                #
                # # TODO merge subsets of S2/Aster in order to provide all bands for atm.correction
                # L1C_tiles = MAP(L1C_map, L1B_tiles)
                # grouped_L1C_Tiles = \
                #     HLP_F.group_objects_by_attributes(L1C_tiles, 'scene_ID', 'subsystem')  # group results
                # [L1C_tiles_group[0].delete_tempFiles() for L1C_tiles_group in grouped_L1C_Tiles]
                # L1C_resObjects = MAP(L1C_P.L1C_object().from_tiles, grouped_L1C_Tiles)  # reduce

            self.L1C_newObjects = [obj for obj in L1C_resObjects if isinstance(obj, L1C_P.L1C_object)]
617
            self.failed_objects += [obj for obj in L1C_resObjects if isinstance(obj, failed_GMS_object) and
618
619
620
621
622
623
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L1C_newObjects

    def L2A_processing(self):
        """
624
        Run Level 2A processing: geometric homogenization
625
        """
626
        if self.config.exec_L2AP[0]:
627
628
            self.logger.info(
                '\n\n#### Level 2A Processing started - shift correction / geometric homogenization ####\n')
629

630
            """combine newly and earlier processed L1C data"""
631
632
            L1C_DBObjects = self.get_DB_objects('L2A', self.L1C_newObjects, parallLev='scenes')
            L1C_Instances = self.L1C_newObjects + L1C_DBObjects  # combine newly and earlier processed L1C data
633
634
635
636

            # group by scene ID (all subsystems belonging to the same scene ID must be processed together)
            grouped_L1C_Instances = HLP_F.group_objects_by_attributes(L1C_Instances, 'scene_ID')

637
            L2A_resTiles = MAP(L2A_map, grouped_L1C_Instances, flatten_output=True)
638

639
            self.L2A_tiles = [obj for obj in L2A_resTiles if isinstance(obj, L2A_P.L2A_object)]
640
            self.failed_objects += [obj for obj in L2A_resTiles if isinstance(obj, failed_GMS_object) and
641
642
643
644
645
646
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L2A_tiles

    def L2B_processing(self):
        """
647
        Run Level 2B processing: spectral homogenization
648
        """
649
        if self.config.exec_L2BP[0]:
650
            self.logger.info('\n\n############# Level 2B Processing started - spectral homogenization ##############\n')
651

652
            if self.config.parallelization_level == 'scenes':
653
                # don't know if scenes makes sense in L2B processing because full objects are very big!
654
                """if newly processed L2A objects are present: merge them to scenes"""
655
656
                grouped_L2A_Tiles = HLP_F.group_objects_by_attributes(self.L2A_tiles, 'scene_ID')  # group results
                # reduce # will be too slow because it has to pickle back really large L2A_newObjects
657
                # L2A_newObjects  = MAP(HLP_F.merge_GMS_tiles_to_GMS_obj, grouped_L2A_Tiles)
658
                L2A_newObjects = [L2A_P.L2A_object().from_tiles(tileList) for tileList in grouped_L2A_Tiles]
659

660
                """combine newly and earlier processed L2A data"""
661
662
                L2A_DBObjects = self.get_DB_objects('L2B', self.L2A_tiles)
                L2A_Instances = L2A_newObjects + L2A_DBObjects  # combine newly and earlier processed L2A data
663

664
                L2B_resObjects = MAP(L2B_map, L2A_Instances)
665
666

            else:  # tiles
667
                L2A_newTiles = self.L2A_tiles  # tiles have the block size specified in L2A_map_2
668
669

                """combine newly and earlier processed L2A data"""
670
671
672
                blocksize = (2048, 2048)  # must be equal to the blocksize of L2A_newTiles specified in L2A_map_2
                L2A_newDBTiles = self.get_DB_objects('L2B', self.L2A_tiles, blocksize=blocksize)
                L2A_tiles = L2A_newTiles + L2A_newDBTiles
673

674
                L2B_tiles = MAP(L2B_map, L2A_tiles)
675
676

                grouped_L2B_Tiles = \
677
678
                    HLP_F.group_objects_by_attributes(L2B_tiles,
                                                      'scene_ID')  # group results # FIXME nötig an dieser Stelle?
679
680
                [L2B_tiles_group[0].delete_tempFiles() for L2B_tiles_group in grouped_L2B_Tiles]

681
                L2B_resObjects = [L2B_P.L2B_object().from_tiles(tileList) for tileList in grouped_L2B_Tiles]
682

683
            self.L2B_newObjects = [obj for obj in L2B_resObjects if isinstance(obj, L2B_P.L2B_object)]
684
            self.failed_objects += [obj for obj in L2B_resObjects if isinstance(obj, failed_GMS_object) and
685
686
687
688
689
690
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L2B_newObjects

    def L2C_processing(self):
        """
691
        Run Level 2C processing: accurracy assessment and MGRS tiling
692
        """
693
        # FIXME only parallelization_level == 'scenes' implemented
694
        if self.config.exec_L2CP[0]:
695
            self.logger.info('\n\n########## Level 2C Processing started - calculation of quality layers ###########\n')
696

697
            """combine newly and earlier processed L2A data"""
698
699
            L2B_DBObjects = self.get_DB_objects('L2C', self.L2B_newObjects, parallLev='scenes')
            L2B_Instances = self.L2B_newObjects + L2B_DBObjects  # combine newly and earlier processed L2A data
700

701
            L2C_resObjects = MAP(L2C_map, L2B_Instances, CPUs=8)  # FIXME 8 workers due to heavy IO
702
            # FIXME in case of inmem_serialization mode results are too big to be back-pickled
703
            self.L2C_newObjects = [obj for obj in L2C_resObjects if isinstance(obj, L2C_P.L2C_object)]
704
            self.failed_objects += [obj for obj in L2C_resObjects if isinstance(obj, failed_GMS_object) and
705
706
707
708
709
710
711
712
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L2C_newObjects

    def update_DB_job_record(self):
        """
        Update the database records of the current job (table 'jobs').
        """
713
        # TODO move this method to config.Job
714
715
        # update 'failed_sceneids' column of job record within jobs table
        sceneids_failed = list(set([obj.scene_ID for obj in self.failed_objects]))
716
        DB_T.update_records_in_postgreSQLdb(
717
            self.config.conn_database, 'jobs',
718
            {'failed_sceneids': sceneids_failed,  # update 'failed_sceneids' column
719
720
721
             'finishtime': self.config.end_time,  # add job finish timestamp
             'status': self.config.status},  # update 'job_status' column
            {'id': self.config.ID})
722

723
724
725
726
727
    def update_DB_job_statistics(self, usecase_datalist):
        """
        Update job statistics of the running job in the database.
        """
        # TODO move this method to config.Job
728
        already_updated_IDs = []
729
        for ds in usecase_datalist:
730
731
            if ds['proc_level'] is not None and ds['scene_ID'] not in already_updated_IDs:
                # update statistics column of jobs table
732
                DB_T.increment_decrement_arrayCol_in_postgreSQLdb(
733
                    self.config.conn_database, 'jobs', 'statistics', cond_dict={'id': self.config.ID},
734
                    idx_val2decrement=db_jobs_statistics_def['pending'],
735
736
                    idx_val2increment=db_jobs_statistics_def[ds['proc_level']])

737
738
739
                # avoid double updating in case of subsystems belonging to the same scene ID
                already_updated_IDs.append(ds['scene_ID'])

740
741
742
743
    def create_job_summary(self):
        """
        Create job success summary
        """
744
745
746

        # get objects with highest requested processing level
        highest_procL_Objs = []
747
        for pL in reversed(proc_chain):
748
            if getattr(self.config, 'exec_%sP' % pL)[0]:
749
                highest_procL_Objs = getattr(self, '%s_newObjects' % pL) if pL != 'L2A' else self.L2A_tiles
750
751
                break

752
753
754
755
        gms_objects2summarize = highest_procL_Objs + self.failed_objects
        if gms_objects2summarize:
            # create summaries
            detailed_JS, quick_JS = get_job_summary(gms_objects2summarize)
756
757
758
            detailed_JS.to_excel(os.path.join(self.config.path_job_logs, '%s_summary.xlsx' % self.config.ID))
            detailed_JS.to_csv(os.path.join(self.config.path_job_logs, '%s_summary.csv' % self.config.ID), sep='\t')
            self.logger.info('\nQUICK JOB SUMMARY (ID %s):\n' % self.config.ID + quick_JS.to_string())
759
760

            self.summary_detailed = detailed_JS
761
            self.summary_quick = quick_JS
762
763
764
765
766

        else:
            # TODO implement check if proc level with lowest procL has to be processed at all (due to job.exec_L1X)
            # TODO otherwise it is possible that get_job_summary receives an empty list
            self.logger.warning("Job summary skipped because get_job_summary() received an empty list of GMS objects.")
767
768
769
770
771
772

    def clear_lists_procObj(self):
        self.failed_objects = []
        self.L1A_newObjects = []
        self.L1B_newObjects = []
        self.L1C_newObjects = []
773
        self.L2A_tiles = []
774
        self.L2B_newObjects = []
775
776
777
778
779
        self.L2C_newObjects = []


def get_job_summary(list_GMS_objects):
    # get detailed job summary
780
781
    DJS_cols = ['GMS_object', 'scene_ID', 'entity_ID', 'satellite', 'sensor', 'subsystem', 'image_type', 'proc_level',
                'arr_shape', 'arr_pos', 'failedMapper', 'ExceptionType', 'ExceptionValue', 'ExceptionTraceback']
782
783
784
785
    DJS = DataFrame(columns=DJS_cols)
    DJS['GMS_object'] = list_GMS_objects

    for col in DJS_cols[1:]:
786
787
        def get_val(obj): return getattr(obj, col) if hasattr(obj, col) else None
        DJS[col] = list(DJS['GMS_object'].map(get_val))
788
789

    del DJS['GMS_object']
790
    DJS = DJS.sort_values(by=['satellite', 'sensor', 'entity_ID'])
791
792

    # get quick job summary
793
794
795
796
    QJS = DataFrame(columns=['satellite', 'sensor', 'count', 'proc_successfully', 'proc_failed'])
    all_sat, all_sen = zip(*[i.split('__') for i in (np.unique(DJS['satellite'] + '__' + DJS['sensor']))])
    QJS['satellite'] = all_sat
    QJS['sensor'] = all_sen
797
    # count objects with the same satellite/sensor/sceneid combination
798
799
    QJS['count'] = [len(DJS[(DJS['satellite'] == sat) & (DJS['sensor'] == sen)]['scene_ID'].unique())
                    for sat, sen in zip(all_sat, all_sen)]
800
    QJS['proc_successfully'] = [len(DJS[(DJS['satellite'] == sat) &
801
802
                                        (DJS['sensor'] == sen) &
                                        (DJS['failedMapper'].isnull())]['scene_ID'].unique())
803
                                for sat, sen in zip(all_sat, all_sen)]
804
    QJS['proc_failed'] = QJS['count'] - QJS['proc_successfully']
805
806
    QJS = QJS.sort_values(by=['satellite', 'sensor'])
    return DJS, QJS