test_gms_preprocessing.py 32.4 KB
Newer Older
1
2
3
#!/usr/bin/env python
# -*- coding: utf-8 -*-

4
###################################################################################
5

6
"""
7
test_gms_preprocessing
8
----------------------------------
9

10
The testcases contained in this testscript, are parametrized testcases. They test
11
12
the level-processing steps defined in the 'gms_preprocessing' module in the
"gms_preprocessing"-project with the help of the test datasets:
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
- Landsat-5, Pre-Collection Data,
- Landsat-5, Collection Data,
- Landsat-7, SLC on, Pre-Collection Data,
- Landsat-7, SLC off, Pre-Collection Data,
- Landsat-7, SLC off, Collection Data,
- Landsat-8, Pre-Collection Data,
- Landsat-8, Collection Data,
- Sentinel-2A, Pre-Collection Data and
- Sentinel-2A, Collection Data.
The test datasets can be found in the directory "tests/data/archive_data/...". The
respective SRTM-datasets needed in the data-processing can be found in the directory
"tests/data/archive_data/Endeavor".

The tests, defined in a base-testcase (not executed), are triggered by creating
jobs (based on given job-IDs) in individual testcases that inherit the tests
from the base-testcase. The exception: The job-ID used in the last testclass
contains 3 different test datasets of the above listed datasets.

Note that the testresults are outputted in the console as well as a log-textfile
that can be found in the directory "tests/logs".

Program edited in July 2017.
"""

37
# Import python standard libraries.
38
39
40
41
42
43
import itertools
import logging
import os
import pandas
import sys
import time
44
45
import unittest

46
47
# Imports regarding the 'gms_preprocessing' module.
from gms_preprocessing import process_controller, __file__
48
from gms_preprocessing.model.gms_object import GMS_object
49
50
51
52
53
from gms_preprocessing.algorithms.L1A_P import L1A_object
from gms_preprocessing.algorithms.L1B_P import L1B_object
from gms_preprocessing.algorithms.L1C_P import L1C_object
from gms_preprocessing.algorithms.L2A_P import L2A_object
from gms_preprocessing.algorithms.L2B_P import L2B_object
54
# from gms_preprocessing.algorithms.L2C_P import L2C_object
55
from gms_preprocessing.misc.database_tools import get_info_from_postgreSQLdb
56
from gms_preprocessing.model.gms_object import GMS_object_2_dataset_dict
57

58
from . import db_host, index_host
59

60
__author__ = 'Daniel Scheffler'  # edited by Jessica Palka.
61

62
# Rootpath of the gms_preprocessing-repository.
63
64
65
66
gmsRepo_rootpath = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))

# Defining the configurations needed to start a job containing the different dataset scenes.
# TODO Change the job-configurations for selected datasets.
67
job_config_kwargs = dict(parallelization_level='scenes', db_host=db_host, spatial_index_server_host=index_host,
68
                         delete_old_output=True, is_test=True, reset_status=True,
69
70
                         inmem_serialization=False,
                         exec_L1AP=[True, True, True], exec_L1BP=[True, True, True], exec_L1CP=[True, True, True],
71
                         exec_L2AP=[True, True, True], exec_L2BP=[True, True, False], exec_L2CP=[True, True, False])
72

Daniel Scheffler's avatar
Daniel Scheffler committed
73
##########################
74
# Test case: BaseTestCases
Daniel Scheffler's avatar
Daniel Scheffler committed
75
76
##########################

77
78
79
80

class BaseTestCases:
    """
    General testclass. The tests defined in this testclass test the processing steps Level-1A, Level-1B, Level-1C,
81
    Level-2A, Level-2B and Level-2C defined in the "gms_preprocessing"-repository.
82
83
84
85
    Note that the tests in this testclass are not executed directly. They are re-used in the other classes defined
    in this test-script.
    """
    class TestAll(unittest.TestCase):
86
        PC = None  # default
87
88
89

        @classmethod
        def tearDownClass(cls):
90
            cls.PC.config.DB_job_record.delete_procdata_of_entire_job(force=True)
91
92
93

        @classmethod
        def validate_db_entry(cls, filename):
94
95
            sceneID_res = get_info_from_postgreSQLdb(cls.PC.config.conn_database, 'scenes', ['id'],
                                                     {'filename': filename})
96
97
98
99
            assert sceneID_res and isinstance(sceneID_res[0][0], int), 'Invalid database entry.'

        @classmethod
        def create_job(cls, jobID, config):
100
            cls.PC = process_controller(jobID, **config)
101
102

            # update attributes of DB_job_record and related DB entry
103
            cls.PC.config.DB_job_record.reset_job_progress()
104

105
            GMS_object.proc_status_all_GMSobjs.clear()  # reset
106

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
107
            cls.PC.config.data_list = cls.PC.add_local_availability(cls.PC.config.data_list)
108

109
            [cls.validate_db_entry(ds['filename']) for ds in cls.PC.config.data_list]
110

111
112
113
            cls.PC.config.ac_estimate_accuracy = True
            cls.PC.config.spathomo_estimate_accuracy = True
            cls.PC.config.spechomo_estimate_accuracy = True
114

115
116
117
118
        def check_availability(self, GMS_objs, tgt_procL):
            dss = self.PC.add_local_availability([GMS_object_2_dataset_dict(obj) for obj in GMS_objs])
            for ds in dss:
                self.assertEqual(ds['proc_level'], tgt_procL,
Daniel Scheffler's avatar
Daniel Scheffler committed
119
120
                                 msg='Written %s dataset cannot be found by PC.add_local_availability().'
                                     % (' '.join([ds['satellite'], ds['sensor'], ds['subsystem'], tgt_procL])))
121

122
123
124
        def test_L1A_processing(self):
            self.L1A_newObjects = self.PC.L1A_processing()
            self.assertIsInstance(self.L1A_newObjects, list)
125
            self.assertNotEqual(len(self.L1A_newObjects), 0, msg='L1A_processing did not output an L1A object.')
126
127
            self.assertIsInstance(self.L1A_newObjects[0], L1A_object)

128
            # check if PC.add_local_availability finds the written dataset
Daniel Scheffler's avatar
Daniel Scheffler committed
129
130
            if self.PC.config.exec_L1AP[1]:
                self.check_availability(self.L1A_newObjects, 'L1A')
131

132
133
134
        def test_L1B_processing(self):
            self.L1B_newObjects = self.PC.L1B_processing()
            self.assertIsInstance(self.L1B_newObjects, list)
135
            self.assertNotEqual(len(self.L1B_newObjects), 0, msg='L1B_processing did not output an L1B object.')
136
137
            self.assertIsInstance(self.L1B_newObjects[0], L1B_object)

138
            # check if PC.add_local_availability finds the written dataset
Daniel Scheffler's avatar
Daniel Scheffler committed
139
140
            if self.PC.config.exec_L1BP[1]:
                self.check_availability(self.L1B_newObjects, 'L1B')
141

142
143
144
        def test_L1C_processing(self):
            self.L1C_newObjects = self.PC.L1C_processing()
            self.assertIsInstance(self.L1C_newObjects, list)
145
            self.assertNotEqual(len(self.L1C_newObjects), 0, msg='L1C_processing did not output an L1C object.')
146
147
            self.assertIsInstance(self.L1C_newObjects[0], L1C_object)

148
            # check if PC.add_local_availability finds the written dataset
Daniel Scheffler's avatar
Daniel Scheffler committed
149
150
            # if self.PC.config.exec_L1CP[1]:
            #     self.check_availability(self.L1C_newObjects, 'L1C')
151

152
153
154
        def test_L2A_processing(self):
            self.L2A_newObjects = self.PC.L2A_processing()
            self.assertIsInstance(self.L2A_newObjects, list)
155
            self.assertNotEqual(len(self.L2A_newObjects), 0, msg='L2A_processing did not output an L2A object.')
156
157
            self.assertIsInstance(self.L2A_newObjects[0], L2A_object)

158
            # check if PC.add_local_availability finds the written dataset
159
            # FIXME this will fail because AC outputs TOA-Ref if ECMWF data are missing
Daniel Scheffler's avatar
Daniel Scheffler committed
160
161
            # if self.PC.config.exec_L2AP[1]:
            #     self.check_availability(self.L2A_newObjects, 'L2A')
162

163
164
165
        def test_L2B_processing(self):
            self.L2B_newObjects = self.PC.L2B_processing()
            self.assertIsInstance(self.L2B_newObjects, list)
166
            self.assertNotEqual(len(self.L2B_newObjects), 0, msg='L2B_processing did not output an L2B object.')
167
168
            self.assertIsInstance(self.L2B_newObjects[0], L2B_object)

169
            # check if PC.add_local_availability finds the written dataset
170
            # FIXME this will fail because AC outputs TOA-Ref if ECMWF data are missing
Daniel Scheffler's avatar
Daniel Scheffler committed
171
172
            # if self.PC.config.exec_L2BP[1]:
            #     self.check_availability(self.L2B_newObjects, 'L2B')
173

174
175
176
        def test_L2C_processing(self):
            self.L2C_newObjects = self.PC.L2C_processing()
            self.assertIsInstance(self.L2C_newObjects, list)
177
            self.assertNotEqual(len(self.L2C_newObjects), 0, msg='L2C_processing did not output an L2C object.')
178
            # self.assertIsInstance(self.L2C_newObjects[0], L2C_object)
179
180

            # check if PC.add_local_availability finds the written dataset
181
            # FIXME this will fail because AC outputs TOA-Ref if ECMWF data are missing
Daniel Scheffler's avatar
Daniel Scheffler committed
182
183
            # if self.PC.config.exec_L2CP[1]:
            #     self.check_availability(self.L2C_newObjects, 'L2C')  # FIXME fails (not yet working)
184

Daniel Scheffler's avatar
Daniel Scheffler committed
185
            # Setting the config.status manually.
186
            # if self.L2C_newObjects:
187
            #     self.PC.config.status = "finished"
188
189
            # FIXME after updating the job.status-attribute for the level-processes, delete the code that is commented
            # FIXME out.
190

Daniel Scheffler's avatar
Daniel Scheffler committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    class TestCompletePipeline(unittest.TestCase):
        PC = None  # default

        @classmethod
        def tearDownClass(cls):
            cls.PC.config.DB_job_record.delete_procdata_of_entire_job(force=True)

        @classmethod
        def validate_db_entry(cls, filename):
            sceneID_res = get_info_from_postgreSQLdb(cls.PC.config.conn_database, 'scenes', ['id'],
                                                     {'filename': filename})
            assert sceneID_res and isinstance(sceneID_res[0][0], int), 'Invalid database entry.'

        @classmethod
        def create_job(cls, jobID, config):
            cls.PC = process_controller(jobID, **config)

            [cls.validate_db_entry(ds['filename']) for ds in cls.PC.config.data_list]

210
211
            cls.PC.config.CPUs_all_jobs = 3
            cls.PC.config.max_parallel_reads_writes = 3
212
213
214
            cls.PC.config.spathomo_estimate_accuracy = True
            cls.PC.config.ac_estimate_accuracy = True
            cls.PC.config.spechomo_estimate_accuracy = True
215
216
            # cls.PC.config.exec_L1CP = [1, 1, 0]
            # cls.PC.config.exec_2ACP = [1, 1, 0]
217

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
218
219
        def test_run_all_processors(self):
            self.PC.run_all_processors()
Daniel Scheffler's avatar
Daniel Scheffler committed
220
            self.assertIsInstance(self.PC.L2C_newObjects, list)
221
222
223
224
            self.assertIsInstance(self.PC.summary_detailed, pandas.DataFrame)
            self.assertFalse(self.PC.summary_detailed.empty)
            self.assertIsInstance(self.PC.summary_quick, pandas.DataFrame)
            self.assertFalse(self.PC.summary_quick.empty)
225
226
227
228
229
230
231
232
233
234

###################################################################################
# Test cases 1-9: Test_<Satelite-Dataset>_<PreCollection or Collection>Data
# Test case 10: Test_MultipleDatasetsInOneJob


# TESTDATA-CLASSES.
class Test_Landsat5_PreCollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-5 TM scene (pre-collection data).
235
    More information on the dataset will be output after the tests-classes are executed.
236
237
238
239
240
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186263, job_config_kwargs)

241
242
243
244
245
246
247
248
249
250
251

class Test_Landsat5_PreCollectionData_CompletePipeline(BaseTestCases.TestCompletePipeline):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-5 TM scene (pre-collection data).
    More information on the dataset will be output after the tests-classes are executed.
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186263, job_config_kwargs)


252
253
254
255
256
257
258
259
260
# class Test_Landsat5_CollectionData(BaseTestCases.TestAll):
#     """
#     Parametrized testclass. Tests the level-processes on a Landsat-5 TM scene (collection data).
#     More information on the dataset will be outputted after the tests-classes are executed.
#     """
#     @classmethod
#     def setUpClass(cls):
#         cls.create_job(26186263, job_config_kwargs) # FIXME job_ID!

Daniel Scheffler's avatar
Daniel Scheffler committed
261

262
263
264
class Test_Landsat7_SLC_on_PreCollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-7 ETM+_SLC_ON scene (pre-collection data).
265
    More information on the dataset will be output after after the tests-classes are executed.
266
267
268
269
270
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186262, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
271

272
273
274
class Test_Landsat7_SLC_off_PreCollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-7 ETM+_SLC_OFF scene (pre-collection data).
275
    More information on the dataset will be output after the tests-classes are executed.
276
277
278
279
280
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186267, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
281

282
283
284
285
286
287
288
289
290
# class Test_Landsat7_SLC_off_CollectionData(BaseTestCases.TestAll):
#     """
#     Parametrized testclass. Tests the level-processes on a Landsat-7 ETM+_SLC_OFF scene (collection data).
#     More information on the dataset will be outputted after the tests-classes are executed.
#     """
#     @classmethod
#     def setUpClass(cls):
#         cls.create_job(26186267, job_config_kwargs) # FIXME job_ID!

291
#
292
293
294
class Test_Landsat8_PreCollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-8 OLI_TIRS scene (pre-collection data).
295
    More information on the dataset will be output after the tests-classes are executed.
296
297
298
299
300
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186196, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
301

302
303
304
class Test_Landsat8_CollectionData(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-8 OLI_TIRS scene (collection data).
305
    More information on the dataset will be output after the tests-classes are executed.
306
307
308
    """
    @classmethod
    def setUpClass(cls):
309
        cls.create_job(26188372, job_config_kwargs)
310

Daniel Scheffler's avatar
Daniel Scheffler committed
311

312
313
314
315
316
317
318
319
320
class Test_Landsat8_CollectionData_CompletePipeline(BaseTestCases.TestCompletePipeline):
    """
    Parametrized testclass. Tests the level-processes on a Landsat-8 OLI_TIRS scene (collection data).
    More information on the dataset will be output after the tests-classes are executed.
    """
    @classmethod
    def setUpClass(cls):
        cfg = job_config_kwargs
        # cfg.update(dict(inmem_serialization=True))
321
        cls.create_job(26188372, cfg)
322
323


324
class Test_Sentinel2A_SingleGranuleFormat(BaseTestCases.TestAll):
325
    """
326
327
    Parametrized testclass. Tests the level-processes on a Sentinel-2A MSI scene (1 granule in archive: > 2017).
    More information on the dataset will be output after the tests-classes are executed.
328
329
330
331
332
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186268, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
333

Daniel Scheffler's avatar
Daniel Scheffler committed
334
335
336
337
338
339
340
341
342
class Test_Sentinel2A_SingleGranuleFormat_CompletePipeline(BaseTestCases.TestCompletePipeline):
    """
    Parametrized testclass. Tests the level-processes on a Sentinel-2A MSI scene (1 granule in archive: > 2017).
    More information on the dataset will be output after the tests-classes are executed.
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186268, job_config_kwargs)

343
344
345
    # @classmethod
    # def tearDownClass(cls):
    #     super().tearDownClass()
346
347
        # PC = cls.PC

Daniel Scheffler's avatar
Daniel Scheffler committed
348

349
class Test_Sentinel2A_MultiGranuleFormat(BaseTestCases.TestAll):
350
    """
351
352
    Parametrized testclass. Tests the level-processes on a Sentinel-2A MSI scene (multiple granules in archive: < 2017).
    More information on the dataset will be output after the tests-classes are executed.
353
354
355
356
357
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186272, job_config_kwargs)

Daniel Scheffler's avatar
Daniel Scheffler committed
358

359
360
361
362
363
364
365
366
367
368
class Test_Sentinel2B_SingleGranuleFormat(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a Sentinel-2B MSI scene (1 granule in archive: > 2017).
    More information on the dataset will be output after the tests-classes are executed.
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186937, job_config_kwargs)


369
370
371
372
373
374
375
376
377
378
class Test_MultipleDatasetsInOneJob(BaseTestCases.TestAll):
    """
    Parametrized testclass. Tests the level-processes on a job containing a Landsat-5 (pre-collection data),
    Landsat-7 SLC_off (pre-collection data) and a Sentinel-2A (collection data) scene.
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186273, job_config_kwargs)


Daniel Scheffler's avatar
Daniel Scheffler committed
379
380
381
382
383
384
385
386
387
class Test_MultipleDatasetsInOneJob_CompletePipeline(BaseTestCases.TestCompletePipeline):
    """
    Parametrized testclass. Tests the level-processes on a job containing a Landsat-5 (pre-collection data),
    Landsat-7 SLC_off (pre-collection data) and a Sentinel-2A (collection data) scene.
    """
    @classmethod
    def setUpClass(cls):
        cls.create_job(26186273, job_config_kwargs)

388
389
390
    # @classmethod
    # def tearDownClass(cls):
    #     super().tearDownClass()
391
392
        # PC = cls.PC

Daniel Scheffler's avatar
Daniel Scheffler committed
393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
class Test_ProcessContinuing_CompletePipeline(unittest.TestCase):
    """
    Parametrized testclass. Tests the level-processes on a job containing a Landsat-5 (pre-collection data),
    Landsat-7 SLC_off (pre-collection data) and a Sentinel-2A (collection data) scene.
    """
    PC = None  # default

    @classmethod
    def tearDownClass(cls):
        cls.PC.config.DB_job_record.delete_procdata_of_entire_job(force=True)

    @classmethod
    def validate_db_entry(cls, filename):
        sceneID_res = get_info_from_postgreSQLdb(cls.PC.config.conn_database, 'scenes', ['id'],
                                                 {'filename': filename})
        assert sceneID_res and isinstance(sceneID_res[0][0], int), 'Invalid database entry.'

    @classmethod
    def create_job(cls, jobID, config):
        cls.PC = process_controller(jobID, **config)

        cls.PC.logger.info('Execution of entire GeoMultiSens pre-processing chain started for job ID %s...'
                           % cls.PC.config.ID)

        [cls.validate_db_entry(ds['filename']) for ds in cls.PC.config.data_list]

    def setUp(self):
Daniel Scheffler's avatar
Daniel Scheffler committed
421
        self.cfg_kw = job_config_kwargs.copy()  # copy, because job_config_kwargs is modified otherwise
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
        self.cfg_kw.update(dict(
            exec_L1BP=[False, False, False],
            exec_L1CP=[False, False, False],
            exec_L2AP=[False, False, False],
            exec_L2BP=[False, False, False],
            exec_L2CP=[False, False, False]
        ))

        # produce L1A data and stop processing there
        self.create_job(26186263, self.cfg_kw)  # 1x L5 pre-collection
        self.PC.run_all_processors()

    def test_continue_from_L1A(self):
        # create a new job and try to continue from L1A
        cfg_kw = self.cfg_kw
        cfg_kw.update(dict(
            exec_L1BP=[True, True, False],
            delete_old_output=False
        ))
        self.create_job(26186263, cfg_kw)  # 1x L5 pre-collection
        self.PC.run_all_processors()


445
446
447
448
449
450
451
452
###################################################################################
# Summarizing the information regarding the test datasets.

# The information: 'country' (3-letter country code, UN), 'characteristic features of the shown scene', 'cloud cover
# present' and 'overlap area present' of each dataset are summarized in the dictionary "testdata_scenes". The
# information are sorted according to the testdata.
# 3-letter code:
# UKR-Ukraine, KGZ-Kyrgyztan, POL-Poland, AUT-Austria, JPN-Japan, BOL-Bolivia, TUR-Turkey, DEU-Germany, CHE-Switzerland.
453
454
455
456
457
458
459
460
461
462
463
testdata_scenes = \
    {'Landsat5_PreCollectionData': list(['UKR', 'City region, forest', 'Sparsely', 'Zone 34/35']),
     # 'Landsat5_CollectionData': list(['KGZ', 'Snowy Mountains', 'Yes', 'None']),
     'Landsat7_SLC_on_PreCollectionData': list(['POL', 'City region, lakes', 'Yes', 'None']),
     'Landsat7_SLC_off_PreCollectionData': list(['AUT', 'Stripes (partly), Mountains', 'None', 'None']),
     # 'Landsat7_SLC_off_CollectionData': list(['JPN', 'Stripes (completly), Mountains', 'Yes', 'Zone 53/54']),
     'Landsat8_PreCollectionData': list(['BOL', 'Forest', 'Yes', 'None']),
     'Landsat8_CollectionData': list(['TUR', 'Snowy Mountains', 'Yes', 'None']),
     'Sentinel2A_PreCollectionData': list(['DEU', 'Potsdam', 'Sparsely', 'None']),
     'Sentinel2A_CollectionData': list(['CHE', 'City region, on the Rhine', 'Yes', 'None'])
     }
464
465
466
467
468
469
470
471

# The key of the dictionary is the key-value to parametrize the testclasses so that each testclass is executed
# automatically.
testdata = list(testdata_scenes.keys())
testdata.append('MultipleDatasetsInOneJob')


###################################################################################
472
# Parameterizing the test cases and creating a summary of the test results.
473
474
475

summary_testResults, summary_errors, summary_failures, summary_skipped, jobstatus = [[] for _ in range(5)]

476

477
@unittest.SkipTest
478
479
class Test_in_normal_mode(unittest.TestCase):
    def setUp(self):
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
        # self.job_id = 26184107
        # self.job_id = 26185175   # 1x TM5
        # self.job_id = 26185176   # 1x Landsat
        # self.job_id = 26185177  # 1. Sentinel-2-Testszene
        # self.job_id = 26185189   # direkt benachbarte Granules von 1. Sentinel-2-Testszene
        # self.job_id = 26185237  # 4 x Landsat-8 -> Job per database tools erstellt
        # self.job_id = 26185239  # 50 x Landsat-8 -> Job per database tools erstellt - 1. L8 Beta-Testjob
        # self.job_id = 26185242  # 1 x Landsat-8 - Bug files_in_archive=None
        # self.job_id = 26185250  # Beta-Job - 219 x L8, 172 x L7, 111 x S2, spatref S2
        # self.job_id = 26185251  # 1x L8, Zielsensor L8
        # self.job_id = 26185252  # 1x L8, Zielsensor L8, spat.ref L8
        # self.job_id = 26185253  # 25x L8, Zielsensor L8, spat.ref L8
        # self.job_id = 26185254  # 10x L8, Zielsensor L8, spat.ref L8
        # Grund=Schreibfehler L1A im tiled Python-mode bei mehr als 1 Szene im Job:
        # self.job_id = 26185255  # 1x L8 Bug 5 corners found
        # self.job_id = 26185256  # 1x L7 SLC off, Zielsensor L8, spat.ref L8
        # self.job_id = 26185257  # Beta-Job - 219 x L8, 172 x L7, 111 x S2, spatref L8
        # self.job_id = 26185258  # Beta-Job - 219 x L8, spatref L8
        # self.job_id = 26185259  # Beta-Job - 172 x L7, spatref L8
        # self.job_id = 26185260  # Beta-Job - 111 x S2, spatref L8
        # self.job_id = 26185268  # 25x L7 SLC off, Zielsensor L8, spat.ref L8
        # self.job_id = 26185269  # 1x L7 SLC off, Bug SpatialIndexMediator
        # self.job_id = 26185270  # 5x L7 SLC off, Bug SpatialIndexMediator
        # self.job_id = 26185275  # 1x L8, spat. Ref. L8 Bug L1B_mask not found
        # self.job_id = 26185264  # 1x L8, Bug L1B_masks not found
        # self.job_id = 26185265  # 1x L8, Bug L2B_masks not found
        # self.job_id = 26185268  # "2x L8, Bug L2B_masks not found, incl. 1x bad archive"
        # self.job_id = 26185269 # "10x L8, Bug L2B_masks not found"
        # self.job_id = 26185272 # "1x S2A Sips"
        # self.job_id = 26185273  # "1x L7, target L8, spat.ref L8"
        # self.job_id = 26185275 # "1x L7, target L8, spat.ref L8 L1B Matching failed"
        # self.job_id = 26185276 # "1x L7, target L8, spat.ref L8 L1B Matching window became too small."
        # self.job_id = 26185279 # "GEOMS: 25x L7, target L8, spat.ref L8"
        # "GEOMS: 1x L7, target L8, spat.ref L8, debugging NoneType object is not subscriptable within
        # mapinfo2geotransform":
        # self.job_id = 26185280
        # self.job_id = 26185281 # "GEOMS: 4x L7, target L8, spat.ref L8, freeze of pool.map"
        # self.job_id = 26185283 # "GEOMS: 10x L7, target L8, spat.ref L8, freeze of pool.map"
        # self.job_id = 26185284 # "GEOMS: 11x L7, target L8, spat.ref L8, freeze of pool.map"
        # self.job_id = 26185321 # "GEOMS: 1x L7, target L8, spat.ref L8, debugging L1B_P"
        # "GEOMS: 1x L7, target L8, spat.ref L8, Bug calc_shifted_cross_power_spectrum: NoneType object not iterable":
        # self.job_id = 26185322
        # self.job_id = 26185277 # "GMS41: 10x L7, target L8, spat.ref L8, Permission errors during logging"
        # self.job_id = 26185278 # "Beta-Job - 172 x L7, spatref L8"
        # self.job_id = 26185284 # "GMS41: "all beta-L8 with cloud cover <30% (74 scenes)"
        # self.job_id = 26185285 # "GMS41: "all beta-L7 with cloud cover <30% (49 scenes)"
        # self.job_id = 26185396 # "GEOMS: 1x S2A multi GSD testing"
        # self.job_id = 26185398  # "GEOMS: 1x S2A granule multi GSD testing"

529
        # self.job_id = 26186740  # Testjob Landsat-8
530
        # self.job_id = 26186906  # Bug Input Validator
531
        # self.job_id = 26186925  # 1 Sentinel-2A, Bug NoneType' object has no attribute 'find'
532
533
        # self.job_id = 26187051  # GMS41: 1 Landsat, FileNotFoundError
        # self.job_id = 26187052  # GMS41: 1 Landsat, DB query returns no DEM
534
        # self.job_id = 26187053  # GMS41: AC: The input 'list_GMS_objs' contains duplicates: ['', '']
535
        # self.job_id = 26187750  # GEOMS: [AC]: RuntimeWarning: All-NaN slice encountered
536
        # self.job_id = 26187760  # GEOMS: [L2C]: ValueError: 'axis' entry is out of bounds
537
        # self.job_id = 26187804  # GEOMS: Spatial homogenization leaves resampling artifacs at the image edges.
538
        # self.job_id = 26187922  # GEOMS: AssertionError (self.job_id = 26187922  # GEOMS: AssertionError)
539
        self.job_id = 26188163  # GEOMS: pandas.errors.ParserError: Expected 2 fields in line 31, saw 3
540

541
        self.PC = process_controller(self.job_id, **dict(is_test=False, parallelization_level='scenes', db_host=db_host,
542
                                                         delete_old_output=True, disable_exception_handler=True))
543
544
545
        # self.PC.config.spathomo_estimate_accuracy = True
        # self.PC.config.ac_estimate_accuracy = True
        # self.PC.config.spechomo_estimate_accuracy = True
546
547
548
        # self.PC.config.exec_L1CP = [1, 1, 0]
        # self.PC.config.exec_2ACP = [1, 1, 0]
        # self.PC.config.path_procdata_scenes = '/storage/gms/processed_scenes/20180227_MGRS33UUU_S2_L8_L7/'
549
550
551
552
553

    def test(self):
        self.PC.run_all_processors()


554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
if __name__ == '__main__':
    # Part 1: Creating and running a testsuite for each dataset-testcase, and querying the job.status of the job.
    for items in testdata:
        suite = unittest.TestLoader().loadTestsFromTestCase(eval("Test_"+items))
        alltests = unittest.TestSuite(suite)

        # Part 2: Saving the results of each testsuite and the query for the job.status in individual variables.
        testResult = unittest.TextTestRunner(verbosity=2).run(alltests)

        summary_testResults.append([testResult.testsRun, testResult.wasSuccessful(),
                                    len(testResult.errors), len(testResult.failures),
                                    len(testResult.skipped)])
        summary_errors.append(testResult.errors)
        summary_failures.append(testResult.failures)
        summary_skipped.append(testResult.skipped)

570
        # FIXME: If the job.status-issue is fixed, the commented out section can be nullified.
571
        # jobstatus.append(eval("Test_"+items).PC.status)
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

    # Part 3: Summarizing the testresults of each testsuite and outputting the results in an orderly fashion on the
    # console and in a textfile.
    # Note that the testresults are outputted as usual after each test is executed. Since the output of each
    # level-process is rather long, the output of the testresults become lost. Therefore, the purpose to output the
    # testresults again is simply to summarize the testresults in one place and to give an overview over the results.

    # Output: a) Information on the test datasets (table), b) testresults summarized in a table, c)if existing,
    # a list of errors, failures and skips in the testcases and d) the job.status that is not set to "finished".

    time.sleep(0.5)

    # Path of the textfile the results will be logged to.
    test_log_path = os.path.join(gmsRepo_rootpath, 'tests', 'data', 'logs', time.strftime('%Y%m%d_%H%M%S_log.txt'))

    # Creating a logging system for the testresults.
588
589
    # Source: The "GMS_logger"-function in the "gms_preprocessing" --> "misc" --> "logging.py"-script was used and
    # slightly altered to meet the needs of the current problem.
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
    logger = logging.getLogger("log_Test")
    logger.setLevel(logging.INFO)

    # Defining the format of the console and the file-output.
    formatter_fileH = logging.Formatter('')
    formatter_ConsoleH = logging.Formatter('')

    # Creating a handler for the file for the logging level "INFO".
    fileHandler = logging.FileHandler(test_log_path)
    fileHandler.setFormatter(formatter_fileH)
    fileHandler.setLevel(logging.INFO)

    # Creating a handler for the console for the logging level "INFO". "sys.stdout" is used for the logging output.
    consoleHandler_out = logging.StreamHandler(stream=sys.stdout)
    consoleHandler_out.setFormatter(formatter_ConsoleH)
    consoleHandler_out.set_name('console handler stdout')
    consoleHandler_out.setLevel(logging.INFO)

    # Adding the defined handlers to the instantiated logger.
    logger.addHandler(fileHandler)
    logger.addHandler(consoleHandler_out)

    # OUPUT, START.
    # Header of the file.
614
    logger.info("\ntest_gms_preprocessing.py"
615
616
617
618
619
620
                "\nREVIEW OF ALL TEST RESULTS, SUMMARY:"
                "\n***************************************************************************************"
                "\n--> SPECIFIC FEATURES OF DATA:")

    # Adding a table displaying the characteristic features of each dataset.
    logger.info(pandas.DataFrame.from_items(testdata_scenes.items(),
621
622
                                            orient='index',
                                            columns=['Country', 'Characteristic', 'Clouds', 'Overlap_area']))
623
624
625
626
627
628
629
630
631
632
    logger.info("\nThe jobID used in Test_" + testdata[-1] + " contains the datasets: "
                "\n-Landsat5_PreCollectionData,\n-Landsat7_SLC_off_PreCollectionData and "
                "\n-Sentinel2A_CollectionData.")

    # Adding a table displaying the testresults.
    logger.info("\n***************************************************************************************"
                "\n--> TESTRESULTS:")

    results = ["Run", "Success", "Errors", "Failures", "Skips"]
    testdata_index = ["Test_" + item for item in testdata]
633
    logger.info(pandas.DataFrame(summary_testResults, columns=results, index=testdata_index))
634
635
636
637
638

    # If errors, failures or skips (there is yet nothing to skip in the code) occurres, the respective message will
    # be printed.
    logger.info("\n***************************************************************************************")
    if list(itertools.chain(*summary_errors)) or list(itertools.chain(*summary_failures)) or \
639
       list(itertools.chain(*summary_skipped)):
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
        logger.info("--> ERRORS/FAILURES/SKIPS:")
        logger.info("\n---------------------------------------------------------------------------------------")

        for index, test in enumerate(testdata):
            logger.info("Test_" + test + ", ERRORS:")
            if summary_errors[index]:
                logger.info(summary_errors[index][0][1])
            else:
                logger.info("None. \n")

            logger.info("Test_" + test + ", FAILURES:")
            if summary_failures[index]:
                logger.info(summary_failures[index][0][1])
            else:
                logger.info("None. \n")
655

656
657
658
659
660
            logger.info("Test_" + test + ", SKIPS:")
            if summary_skipped[index]:
                logger.info(summary_skipped[index][0][1])
            else:
                logger.info("None.")
661

662
663
            if not index == (len(testdata) - 1):
                logger.info("\n---------------------------------------------------------------------------------------")
664

665
        logger.info("\n***************************************************************************************")
666

667
668
    else:
        pass
669

670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    # Checking, if the job.status of each job is set to "finished". Is it not set to "finished", a dataframe is created
    # containing the test-name with and the different job.status itself.
    # FIXME: If the job.status-issue is fixed, the commented out section can be nullified.
    # jobstatus_table, index_table = [[] for _ in range(2)]
    # for index, test in enumerate(testdata):
    #     if jobstatus[index] != "finished":
    #         jobstatus_table.append(jobstatus[index])
    #         index_table.append("Test_" + test)
    #
    # if jobstatus_table:
    #     logger.info("--> WARNING!!! JOBSTATUS of the following testcase(s) is not set to 'finished': \n")
    #     logger.info(pandas.DataFrame(jobstatus_table, columns=["jobstatus"], index=index_table))
    #     logger.info("\n***************************************************************************************")
    # else:
    #     pass
685

686
    logger.info("END.")  # OUTPUT, END.
687

688
    # Delete the handlers added to the "log_Test"-logger to ensure that no message is output twice in a row, when
689
690
    # the logger is used again.
    logger.handlers = []