definition_dicts.py 8.15 KB
Newer Older
1
2
3
4
5
6
7
# -*- coding: utf-8 -*-

import collections
import re

import numpy as np

8
from ..options.config import GMS_config as CFG
9

10
11
12
13
14
15
16
17
18
19
__author__ = 'Daniel Scheffler'

dtype_lib_Python_IDL = {'bool_': 0, 'uint8': 1, 'int8': 1, 'int_': 1, 'int16': 2, 'uint16': 12, 'int32': 3,
                        'uint32': 13, 'int64': 14, 'uint64': 15, 'float32': 4, 'float64': 5, 'complex_': 6,
                        'complex64': 9}
dtype_lib_IDL_Python = {0: np.bool_, 1: np.uint8, 2: np.int16, 3: np.int32, 4: np.float32, 5: np.float64,
                        6: np.complex64, 9: np.complex128, 12: np.uint16, 13: np.uint32, 14: np.int64, 15: np.uint64}
dtype_lib_GDAL_Python = {"uint8": 1, "int8": 1, "uint16": 2, "int16": 3, "uint32": 4, "int32": 5, "float32": 6,
                         "float64": 7, "complex64": 10, "complex128": 11}
proc_chain = ['L1A', 'L1B', 'L1C', 'L2A', 'L2B', 'L2C']
20
db_jobs_statistics_def = {'pending': 1, 'started': 2, None: 2, 'L1A': 3, 'L1B': 4, 'L1C': 5, 'L2A': 6, 'L2B': 7,
21
                          'L2C': 8, 'FAILED': 9}  # NOTE: OrderedDicts passed to L1A_map have proc_level=None
22
bandslist_all_errors = ['ac_errors', 'mask_clouds_confidence', 'spat_homo_errors', 'spec_homo_errors']
23
24
25


def get_GMS_sensorcode(GMS_identifier):
26
27
    # type: (dict) -> str

28
29
30
    Satellite, Sensor, Subsystem = (GMS_identifier['Satellite'], GMS_identifier['Sensor'], GMS_identifier['Subsystem'])
    Sensor = Sensor[:-1] if re.match('SPOT', Satellite, re.I) and Sensor[-1] not in ['1', '2'] else Sensor
    meta_sensorcode = Satellite + '_' + Sensor + ('_' + Subsystem if Subsystem not in ["", None] else "")
31
    sensorcode_dic = {
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        'ALOS_AVNIR-2': 'AVNIR-2',
        'Landsat-4_TM': 'TM4',  # call from layerstacker
        'Landsat-4_TM_SAM': 'TM4',  # call from metadata object
        'Landsat-5_TM': 'TM5',
        'Landsat-5_TM_SAM': 'TM5',
        'Landsat-7_ETM+': 'TM7',
        'Landsat-7_ETM+_SAM': 'TM7',
        'Landsat-8_OLI': 'LDCM',
        'Landsat-8_OLI_TIRS': 'LDCM',
        'Landsat-8_LDCM': 'LDCM',
        'SPOT-1_HRV1': 'SPOT1a',  # MS
        'SPOT-1_HRV2': 'SPOT1b',
        'SPOT-2_HRV1': 'SPOT2a',
        'SPOT-2_HRV2': 'SPOT2b',
        'SPOT-3_HRV1': 'SPOT3a',
        'SPOT-3_HRV2': 'SPOT3b',
        'SPOT-4_HRVIR1': 'SPOT4a',
        'SPOT-4_HRVIR2': 'SPOT4b',
        'SPOT-5_HRG1': 'SPOT5a',  # PAN HRG2A
        'SPOT-5_HRG2': 'SPOT5b',  # MS HRG2J
        'RapidEye-1_MSI': 'RE1',
        'RapidEye-2_MSI': 'RE2',
        'RapidEye-3_MSI': 'RE3',
        'RapidEye-4_MSI': 'RE4',
        'RapidEye-5_MSI': 'RE5',
        'SRTM_SRTM2': 'SRTM2',
        'Terra_ASTER': 'AST_full',
        'Terra_ASTER_VNIR1': 'AST_V1',
        'Terra_ASTER_VNIR2': 'AST_V2',
        'Terra_ASTER_SWIR': 'AST_S',
        'Terra_ASTER_TIR': 'AST_T',
        'Sentinel-2A_MSI': 'S2A_full',
        'Sentinel-2B_MSI': 'S2B_full',
        'Sentinel-2A_MSI_S2A10': 'S2A10',
        'Sentinel-2A_MSI_S2A20': 'S2A20',
        'Sentinel-2A_MSI_S2A60': 'S2A60',
        'Sentinel-2B_MSI_S2B10': 'S2B10',
        'Sentinel-2B_MSI_S2B20': 'S2B20',
        'Sentinel-2B_MSI_S2B60': 'S2B60'
71
72
73
74
75
    }
    try:
        return sensorcode_dic[meta_sensorcode]
    except KeyError:
        raise KeyError('Sensor %s is not included in sensorcode dictionary and can not be converted into GMS '
76
                       'sensorcode.' % meta_sensorcode)
77
78


79
def get_mask_classdefinition(maskname, satellite):
80
    if maskname == 'mask_nodata':
81
        return {'No data': 0,
82
                'Data': 1}
83
    elif maskname == 'mask_clouds':
84
        legends = {
85
            'FMASK': {
86
                'No Data': 0,
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
                'Clear': 1,
                'Cloud': 2,
                'Shadow': 3,
                'Snow': 4,
                'Water': 5},
            # seems to be outdated:
            # {'Clear Land': 0, 'Clear Water': 1, 'Cloud Shadow': 2, 'Snow': 3, 'Cloud': 4, 'No data': 255}
            'Classical Bayesian': {
                'Clear': 10,
                'Thick Clouds': 20,
                'Thin Clouds': 30,
                'Snow': 40},  # Classical Bayesian py_tools_ah
            'SICOR': {
                'Clear': 10,
                'Water': 20,
102
103
                'Shadow': 30,
                'Cirrus': 40,
104
105
106
                'Cloud': 50,
                'Snow': 60}  # SICOR
        }
107

108
        return legends[CFG.cloud_masking_algorithm[satellite]]
109
    else:
110
        raise ValueError("'%s' is not a supported mask name." % maskname)
111
112


Daniel Scheffler's avatar
Bugfix    
Daniel Scheffler committed
113
114
def get_mask_colormap(maskname):
    if maskname == 'mask_clouds':
115
116
117
        # return collections.OrderedDict(zip(['No data','Clear','Thick Clouds','Thin Clouds','Snow','Unknown Class'],
        #                                     [[0,0,0] ,[0,255,0],[80,80,80], [175,175,175],[255,255,255],[255,0,0]]))
        return collections.OrderedDict((
118
119
120
121
122
123
124
125
126
127
            ('No data', [0, 0, 0]),
            ('Clear', [0, 255, 0]),
            ('Water', [0, 0, 255]),
            ('Shadow', [50, 50, 50]),
            ('Cirrus', [175, 175, 175]),
            ('Cloud', [80, 80, 80]),
            ('Snow', [255, 255, 255]),
            ('Unknown Class', [255, 0, 0]),))
    else:
        return None
Daniel Scheffler's avatar
Bugfix    
Daniel Scheffler committed
128
129


130
131
132
def get_outFillZeroSaturated(dtype):
    """Returns the values for 'fill-', 'zero-' and 'saturated' pixels of an image
    to be written with regard to the target data type.
133

134
    :param dtype: data type of the image to be written"""
135

136
    dtype = str(np.dtype(dtype))
137
138
139
140
141
    assert dtype in ['bool', 'int8', 'uint8', 'int16', 'uint16', 'float32'], \
        "get_outFillZeroSaturated: Unknown dType: '%s'." % dtype
    dict_outFill = {'bool': None, 'int8': -128, 'uint8': 0, 'int16': -9999, 'uint16': 9999, 'float32': -9999.}
    dict_outZero = {'bool': None, 'int8': 0, 'uint8': 1, 'int16': 0, 'uint16': 0, 'float32': 0.}
    dict_outSaturated = {'bool': None, 'int8': 127, 'uint8': 256, 'int16': 32767, 'uint16': 65535, 'float32': 65535.}
142
143
144
    return dict_outFill[dtype], dict_outZero[dtype], dict_outSaturated[dtype]


145
146
147
148
149
150
151
152
153
154
155
def is_dataset_provided_as_fullScene(GMS_identifier):
    # type: (dict) -> bool
    """Returns True if the dataset belonging to the given GMS_identifier is provided as full scene and returns False if
     it is provided as multiple tiles.

    :param GMS_identifier:
    :return:
    """

    sensorcode = get_GMS_sensorcode(GMS_identifier)
    dict_fullScene_or_tiles = {
156
        'AVNIR-2': True,
157
        'AST_full': True,
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        'AST_V1': True,
        'AST_V2': True,
        'AST_S': True,
        'AST_T': True,
        'TM4': True,
        'TM5': True,
        'TM7': True,
        'LDCM': True,
        'SPOT1a': True,
        'SPOT2a': True,
        'SPOT3a': True,
        'SPOT4a': True,
        'SPOT5a': True,
        'SPOT1b': True,
        'SPOT2b': True,
        'SPOT3b': True,
        'SPOT4b': True,
        'SPOT5b': True,
        'RE5': False,
177
        'S2A_full': False,
178
179
180
        'S2A10': False,
        'S2A20': False,
        'S2A60': False,
181
        'S2B_full': False,
182
183
184
        'S2B10': False,
        'S2B20': False,
        'S2B60': False, }
185
    return dict_fullScene_or_tiles[sensorcode]
186
187


188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
def datasetid_to_sat_sen(dsid):
    # type: (int) -> tuple
    conv_dict = {
        8: ('Terra', 'ASTER'),  # ASTER L1B
        104: ('Landsat-8', 'OLI_TIRS'),  # pre-collection-ID
        108: ('Landsat-5', 'TM'),  # pre-collection-ID
        112: ('Landsat-7', 'ETM+'),  # pre-collection-ID SLC-off
        113: ('Landsat-7', 'ETM+'),  # pre-collection-ID SLC-on
        189: ('Terra', 'ASTER'),  # ASTER L1T
        249: ('Sentinel-2A', 'MSI'),  # actually only Sentinel-2
        250: ('Landsat-8', 'OLI_TIRS'),
        251: ('Landsat-7', 'ETM+'),
        252: ('Landsat-5', 'TM'),  # also includes Landsat-4
        }
    try:
        return conv_dict[dsid]
    except KeyError:
        raise ValueError('No satellite / sensor tuple available for dataset ID %s.' % dsid)


def sat_sen_to_datasetid(satellite, sensor):
    # type: (str, str) -> int
    conv_dict = {
        ('Landsat-5', 'TM'): 252,
        ('Landsat-7', 'ETM+'): 251,
        ('Landsat-8', 'OLI_TIRS'): 250,
        ('Sentinel-2A', 'MSI'): 249,
        ('Sentinel-2B', 'MSI'): 249,
        ('Terra', 'ASTER'): 189  # ASTER L1T
    }
    try:
        return conv_dict[(satellite, sensor)]
    except KeyError:
        raise ValueError('No dataset ID available for %s %s.' % (satellite, sensor))