L1C_P.py 43.7 KB
Newer Older
Daniel Scheffler's avatar
Daniel Scheffler committed
1
# -*- coding: utf-8 -*-
Daniel Scheffler's avatar
Daniel Scheffler committed
2
"""Level 1C Processor:   Atmospheric correction of TOA-reflectance data."""
Daniel Scheffler's avatar
Daniel Scheffler committed
3

4
import warnings
5
6
import re
import logging
7
import dill
8
import traceback
Daniel Scheffler's avatar
Daniel Scheffler committed
9
from typing import List  # noqa F401  # flake8 issue
10
11
from time import time
import os
12

13
import numpy as np
Daniel Scheffler's avatar
Daniel Scheffler committed
14

15
from geoarray import GeoArray
16
from py_tools_ds.geo.map_info import mapinfo2geotransform
17

18
from ..options.config import GMS_config as CFG
19
from . import geoprocessing as GEOP
Daniel Scheffler's avatar
Daniel Scheffler committed
20
from .L1B_P import L1B_object
21
from ..model.metadata import get_LayerBandsAssignment
22
from ..misc.definition_dicts import get_outFillZeroSaturated, proc_chain, get_mask_classdefinition
23
from ..io.input_reader import SRF
24
# from .cloud_masking import Cloud_Mask_Creator  # circular dependencies
25

26
from sicor.sicor_ac import ac_gms
27
from sicor.sensors import RSImage
28
from sicor.Mask import S2Mask
29
from sicor.ECMWF import download_variables
30

Daniel Scheffler's avatar
Daniel Scheffler committed
31
32
__author__ = 'Daniel Scheffler'

Daniel Scheffler's avatar
Daniel Scheffler committed
33

34
class L1C_object(L1B_object):
35
    def __init__(self, L1B_obj=None):
36
        super(L1C_object, self).__init__()
37
38
39

        if L1B_obj:
            # populate attributes
Daniel Scheffler's avatar
Daniel Scheffler committed
40
            [setattr(self, key, value) for key, value in L1B_obj.__dict__.items()]
41

42
43
44
45
46
47
48
49
        # private attributes
        self._VZA_arr = None
        self._VAA_arr = None
        self._SZA_arr = None
        self._SAA_arr = None
        self._RAA_arr = None
        self._lonlat_arr = None

50
        self.proc_level = 'L1C'
51
        self.proc_status = 'initialized'
52

53
54
55
    @property
    def lonlat_arr(self):
        """Calculates pixelwise 2D-array with longitude and latitude coordinates.
56

57
58
59
60
61
62
63
64
        :return:
        """
        if self._lonlat_arr is None:
            self.logger.info('Calculating LonLat array...')
            self._lonlat_arr = \
                GEOP.get_lonlat_coord_array(self.shape_fullArr, self.arr_pos,
                                            mapinfo2geotransform(self.meta_odict['map info']),
                                            self.meta_odict['coordinate system string'],
Daniel Scheffler's avatar
Daniel Scheffler committed
65
66
                                            meshwidth=10,  # for faster processing
                                            nodata_mask=None,  # dont overwrite areas outside the image with nodata
67
68
                                            outFill=get_outFillZeroSaturated(np.float32)[0])[0]
        return self._lonlat_arr
69

70
71
72
    @lonlat_arr.setter
    def lonlat_arr(self, lonlat_arr):
        self._lonlat_arr = lonlat_arr
73

74
75
76
77
78
79
80
81
82
83
84
85
    @property
    def VZA_arr(self):
        """Get viewing zenith angle.

        :return:
        """
        if self._VZA_arr is None:
            self.logger.info('Calculating viewing zenith array...')
            if 'ViewingAngle_arrProv' in self.meta_odict and self.meta_odict['ViewingAngle_arrProv']:
                # Sentinel-2
                self._VZA_arr = GEOP.adjust_acquisArrProv_to_shapeFullArr(self.meta_odict['ViewingAngle_arrProv'],
                                                                          self.shape_fullArr,
Daniel Scheffler's avatar
Daniel Scheffler committed
86
                                                                          meshwidth=10,  # for faster processing
87
88
89
90
                                                                          subset=None,
                                                                          bandwise=0)
            else:
                self._VZA_arr = GEOP.calc_VZA_array(self.shape_fullArr, self.arr_pos, self.fullSceneCornerPos,
91
92
93
                                                    float(self.meta_odict['ViewingAngle']),
                                                    float(self.meta_odict['FieldOfView']),
                                                    self.logger,
Daniel Scheffler's avatar
Daniel Scheffler committed
94
                                                    nodata_mask=None,  # dont overwrite areas outside image with nodata
95
                                                    outFill=get_outFillZeroSaturated(np.float32)[0],
Daniel Scheffler's avatar
Daniel Scheffler committed
96
                                                    meshwidth=10)  # for faster processing
97
98
99
100
101
        return self._VZA_arr

    @VZA_arr.setter
    def VZA_arr(self, VZA_arr):
        self._VZA_arr = VZA_arr
102

103
104
105
    @property
    def VAA_arr(self):
        """Get viewing azimuth angle.
106

107
108
109
110
111
112
113
114
        :return:
        """
        if self._VAA_arr is None:
            self.logger.info('Calculating viewing azimuth array...')
            if 'IncidenceAngle_arrProv' in self.meta_odict and self.meta_odict['IncidenceAngle_arrProv']:
                # Sentinel-2
                self._VAA_arr = GEOP.adjust_acquisArrProv_to_shapeFullArr(self.meta_odict['IncidenceAngle_arrProv'],
                                                                          self.shape_fullArr,
Daniel Scheffler's avatar
Daniel Scheffler committed
115
                                                                          meshwidth=10,  # for faster processing
116
117
118
119
120
                                                                          subset=None,
                                                                          bandwise=0)
            else:
                # only a mean VAA is available
                if self.VAA_mean is None:
121
122
                    self.VAA_mean = \
                        GEOP.calc_VAA_using_fullSceneCornerLonLat(self.fullSceneCornerLonLat, self.MetaObj.orbitParams)
123
124
                    assert isinstance(self.VAA_mean, float)

125
                self._VAA_arr = np.full(self.VZA_arr.shape, self.VAA_mean, np.float32)
126
127
128
129
130
        return self._VAA_arr

    @VAA_arr.setter
    def VAA_arr(self, VAA_arr):
        self._VAA_arr = VAA_arr
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    @property
    def SZA_arr(self):
        """Get solar zenith angle.

        :return:
        """
        if self._SZA_arr is None:
            self.logger.info('Calculating solar zenith and azimuth arrays...')
            self._SZA_arr, self._SAA_arr = \
                GEOP.calc_SZA_SAA_array(
                    self.shape_fullArr, self.arr_pos,
                    self.meta_odict['AcqDate'],
                    self.meta_odict['AcqTime'],
                    self.fullSceneCornerPos,
                    self.fullSceneCornerLonLat,
                    self.meta_odict['overpass duraction sec'],
                    self.logger,
                    meshwidth=10,
                    nodata_mask=None,  # dont overwrite areas outside the image with nodata
                    outFill=get_outFillZeroSaturated(np.float32)[0],
152
153
                    accurracy=CFG.SZA_SAA_calculation_accurracy,
                    lonlat_arr=self.lonlat_arr if CFG.SZA_SAA_calculation_accurracy == 'fine' else None)
154
155
156
157
158
159
160
161
162
163
164
165
166
        return self._SZA_arr

    @SZA_arr.setter
    def SZA_arr(self, SZA_arr):
        self._SZA_arr = SZA_arr

    @property
    def SAA_arr(self):
        """Get solar azimuth angle.

        :return:
        """
        if self._SAA_arr is None:
167
168
            # noinspection PyStatementEffect
            self.SZA_arr  # getter also sets self._SAA_arr
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        return self._SAA_arr

    @SAA_arr.setter
    def SAA_arr(self, SAA_arr):
        self._SAA_arr = SAA_arr

    @property
    def RAA_arr(self):
        """Get relative azimuth angle.

        :return:
        """
        if self._RAA_arr is None:
            self.logger.info('Calculating relative azimuth array...')
            self._RAA_arr = GEOP.calc_RAA_array(self.SAA_arr, self.VAA_mean,
                                                nodata_mask=None, outFill=get_outFillZeroSaturated(np.float32)[0])
        return self._RAA_arr

    @RAA_arr.setter
    def RAA_arr(self, RAA_arr):
        self._RAA_arr = RAA_arr
190

191
    def delete_ac_input_arrays(self):
Daniel Scheffler's avatar
Daniel Scheffler committed
192
193
194
195
196
        self.VZA_arr = None  # not needed anymore
        self.SZA_arr = None  # not needed anymore
        self.SAA_arr = None  # not needed anymore
        self.RAA_arr = None  # not needed anymore
        self.lonlat_arr = None  # not needed anymore
Daniel Scheffler's avatar
Daniel Scheffler committed
197
198
199
200
201

        # use self.dem deleter
        # would have to be resampled when writing MGRS tiles
        # -> better to directly warp it to the output dims and projection
        del self.dem
202
203
204


class AtmCorr(object):
205
    def __init__(self, *L1C_objs, reporting=False):
206
        """Wrapper around atmospheric correction by Andre Hollstein, GFZ Potsdam
207
208
209
210
211
212

        Creates the input arguments for atmospheric correction from one or multiple L1C_object instance(s) belonging to
        the same scene ID, performs the atmospheric correction and returns the atmospherically corrected L1C object(s).

        :param L1C_objs: one or more instances of L1C_object belonging to the same scene ID
        """
213
        # FIXME not yet usable for data < 2012 due to missing ECMWF archive
214
215
216
        L1C_objs = L1C_objs if isinstance(L1C_objs, tuple) else (L1C_objs,)

        # hidden attributes
Daniel Scheffler's avatar
Daniel Scheffler committed
217
218
219
        self._logger = None
        self._GSDs = []
        self._data = {}
220
        self._metadata = {}
Daniel Scheffler's avatar
Daniel Scheffler committed
221
        self._nodata = {}
222
        self._band_spatial_sampling = {}
Daniel Scheffler's avatar
Daniel Scheffler committed
223
        self._options = {}
224
225
226

        # assertions
        scene_IDs = [obj.scene_ID for obj in L1C_objs]
Daniel Scheffler's avatar
Daniel Scheffler committed
227
        assert len(list(set(scene_IDs))) == 1, \
Daniel Scheffler's avatar
Daniel Scheffler committed
228
            "Input GMS objects for 'AtmCorr' must all belong to the same scene ID!. Received %s." % scene_IDs
229

Daniel Scheffler's avatar
Daniel Scheffler committed
230
        self.inObjs = L1C_objs  # type: List[L1C_object]
231
        self.reporting = reporting
Daniel Scheffler's avatar
Daniel Scheffler committed
232
233
        self.ac_input = {}  # set by self.run_atmospheric_correction()
        self.results = None  # direct output of external atmCorr module (set by run_atmospheric_correction)
234
        self.proc_info = {}
Daniel Scheffler's avatar
Daniel Scheffler committed
235
        self.outObjs = []  # atmospherically corrected L1C objects
236
237

        # append AtmCorr object to input L1C objects
Daniel Scheffler's avatar
Daniel Scheffler committed
238
        # [setattr(L1C_obj, 'AtmCorr', self) for L1C_obj in self.inObjs] # too big for serialization
239

240
        if not re.search('Sentinel-2', self.inObjs[0].satellite, re.I):
Daniel Scheffler's avatar
Daniel Scheffler committed
241
242
            self.logger.warning('Calculation of acquisition geometry arrays is currently only validated for '
                                'Sentinel-2!')
243
244
            # validation possible by comparing S2 angles provided by ESA with own angles

245
246
247
248
249
    @property
    def logger(self):
        if self._logger and self._logger.handlers[:]:
            return self._logger
        else:
Daniel Scheffler's avatar
Daniel Scheffler committed
250
            if len(self.inObjs) == 1:
251
252
253
254
255
256
257
258
259
260
                # just use the logger of the inObj
                logger_atmCorr = self.inObjs[0].logger
            else:
                # in case of multiple GMS objects to be processed at once:
                # get the logger of the first inObj
                logger_atmCorr = self.inObjs[0].logger

                # add additional file handlers for the remaining inObj (that belong to the same scene_ID)
                for inObj in self.inObjs[1:]:
                    path_logfile = inObj.pathGen.get_path_logfile()
Daniel Scheffler's avatar
Daniel Scheffler committed
261
                    fileHandler = logging.FileHandler(path_logfile, mode='a')
262
                    fileHandler.setFormatter(logger_atmCorr.formatter_fileH)
263
                    fileHandler.setLevel(CFG.log_level)
264
265
266

                    logger_atmCorr.addHandler(fileHandler)

Daniel Scheffler's avatar
Daniel Scheffler committed
267
268
                    inObj.close_GMS_loggers()

269
270
271
272
273
274
            self._logger = logger_atmCorr
            return self._logger

    @logger.setter
    def logger(self, logger):
        assert isinstance(logger, logging.Logger) or logger in ['not set', None], \
Daniel Scheffler's avatar
Daniel Scheffler committed
275
            "AtmCorr.logger can not be set to %s." % logger
276
277
278
279
280
281
282
283
        if logger in ['not set', None]:
            self._logger.close()
            self._logger = logger
        else:
            self._logger = logger

    @logger.deleter
    def logger(self):
284
285
286
        if self._logger not in [None, 'not set']:
            self._logger.close()
            self._logger = None
287

Daniel Scheffler's avatar
Daniel Scheffler committed
288
289
        [inObj.close_GMS_loggers() for inObj in self.inObjs]

290
291
292
293
294
295
296
297
    @property
    def GSDs(self):
        """
        Returns a list of spatial samplings within the input GMS objects, e.g. [10,20,60].
        """
        for obj in self.inObjs:
            if obj.arr.xgsd != obj.arr.ygsd:
                warnings.warn("X/Y GSD is not equal for entity ID %s" % obj.entity_ID +
Daniel Scheffler's avatar
Daniel Scheffler committed
298
                              (' (%s)' % obj.subsystem if obj.subsystem else '') +
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
                              'Using X-GSD as key for spatial sampling dictionary.')
                self._GSDs.append(obj.arr.xgsd)

        return self._GSDs

    @property
    def data(self):
        """

        :return:
            ___ attribute: data, type:<class 'dict'>
            ______ key:B05, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 085998540.0803833 ]]
            ______ key:B01, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 131225590.13208008]]
            ______ key:B06, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .14965820.13977051]]
            ______ key:B11, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .11492920.10192871]]
            ______ key:B02, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 104187010.10308838]]
            ______ key:B10, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 013099670.01300049]]
            ______ key:B08, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .16857910.15783691]]
            ______ key:B04, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 065490720.06228638]]
            ______ key:B03, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 082702640.08148193]]
            ______ key:B12, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 068420410.06060791]]
            ______ key:B8A, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 192138670.17553711]]
            ______ key:B09, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .09600830.09887695]]
            ______ key:B07, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 173339840.15600586]]
        """
        if not self._data:
325
326
            data_dict = {}

327
            for inObj in self.inObjs:
328
                for bandN, bandIdx in inObj.arr.bandnames.items():
329
                    if bandN not in data_dict:
Daniel Scheffler's avatar
Daniel Scheffler committed
330
331
332
333
                        # float32! -> conversion to np.float16 will convert -9999 to -10000
                        arr2pass = inObj.arr[:, :, bandIdx].astype(np.float32)
                        arr2pass[arr2pass == inObj.arr.nodata] = np.nan  # set nodata values to np.nan
                        data_dict[bandN] = (arr2pass / inObj.meta_odict['ScaleFactor']).astype(np.float16)
334
                    else:
335
                        inObj.logger.warning("Band '%s' cannot be included into atmospheric correction because it "
Daniel Scheffler's avatar
Daniel Scheffler committed
336
                                             "exists multiple times." % bandN)
337

338
            # validate: data must have all bands needed for AC
Daniel Scheffler's avatar
Daniel Scheffler committed
339
340
            full_LBA = get_LayerBandsAssignment(self.inObjs[0].GMS_identifier, return_fullLBA=True)
            all_bNs_AC = ['B%s' % i if len(i) == 2 else 'B0%s' % i for i in full_LBA]
341
342
            if not all([bN in list(data_dict.keys()) for bN in all_bNs_AC]):
                raise RuntimeError('Atmospheric correction did not receive all the needed bands. \n\tExpected: %s;\n\t'
Daniel Scheffler's avatar
Daniel Scheffler committed
343
                                   'Received: %s' % (str(all_bNs_AC), str(list(sorted(data_dict.keys())))))
344
345
346

            self._data = data_dict

347
348
349
350
351
352
353
354
        return self._data

    @data.setter
    def data(self, data_dict):
        assert isinstance(data_dict, dict), \
            "'data' can only be set to a dictionary with band names as keys and numpy arrays as values."
        self._data = data_dict

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    @property
    def nodata(self):
        """

        :return:
            ___ attribute: nodata, type:<class 'dict'>
            ______ key:60.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
            ______ key:10.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
            ______ key:20.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
        """

        if not self._nodata:
            for inObj in self.inObjs:
                self._nodata[inObj.arr.xgsd] = ~inObj.arr.mask_nodata[:]

        return self._nodata

    @property
    def tile_name(self):
374
        """Returns S2A tile name.
375
        NOTE: this is only needed if no DEM is passed to ac_gms
376
377
378
379
380

        :return: e.g.
            '32UMA'
        """

Daniel Scheffler's avatar
Daniel Scheffler committed
381
        return ''  # FIXME
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

    @property
    def band_spatial_sampling(self):
        """

        :return: e.g.
            {'B01': 60.0,
             'B02': 10.0,
             'B03': 10.0,
             'B04': 10.0,
             'B05': 20.0,
             'B06': 20.0,
             'B07': 20.0,
             'B08': 10.0,
             'B09': 60.0,
             'B10': 60.0,
             'B11': 20.0,
             'B12': 20.0,
             'B8A': 20.0}
        """

        if not self._band_spatial_sampling:
            for inObj in self.inObjs:
                for bandN in inObj.arr.bandnames:
                    if bandN not in self._band_spatial_sampling:
                        self._band_spatial_sampling[bandN] = inObj.arr.xgsd
        return self._band_spatial_sampling

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
    @property
    def metadata(self):
        """

        :return:
            ___ attribute: metadata, type:<class 'dict'>
            ______ key:spatial_samplings
            _________ key:60.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 1830
            ____________ key:XDIM, value_type:<class 'int'>, repr: 60
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 1830
            ____________ key:YDIM, value_type:<class 'int'>, repr: -60
            _________ key:10.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 10980
            ____________ key:XDIM, value_type:<class 'int'>, repr: 10
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 10980
            ____________ key:YDIM, value_type:<class 'int'>, repr: -10
            _________ key:20.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 5490
            ____________ key:XDIM, value_type:<class 'int'>, repr: 20
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 5490
            ____________ key:YDIM, value_type:<class 'int'>, repr: -20
            ______ key:SENSING_TIME, value_type:<class 'datetime.datetime'>, repr: 2016-03-26 10:34:06.538000+00:00
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
440

441
        if not self._metadata:
Daniel Scheffler's avatar
Daniel Scheffler committed
442
            del self.logger  # otherwise each input object would have multiple fileHandlers
443

Daniel Scheffler's avatar
Daniel Scheffler committed
444
445
446
447
448
449
450
451
452
453
454
455
456
            metadata = dict(
                U=self.inObjs[0].meta_odict['EarthSunDist'],
                SENSING_TIME=self.inObjs[0].acq_datetime,
                # SENSING_TIME=datetime.strptime('2015-08-12 10:40:21 +0000', '%Y-%m-%d %H:%M:%S %z'),
                viewing_zenith=self._meta_get_viewing_zenith(),
                viewing_azimuth=self._meta_get_viewing_azimuth(),
                relative_viewing_azimuth=self._meta_get_relative_viewing_azimuth(),
                sun_mean_azimuth=self.inObjs[0].meta_odict['SunAzimuth'],
                sun_mean_zenith=90 - self.inObjs[0].meta_odict['SunElevation'],
                solar_irradiance=self._meta_get_solar_irradiance(),
                aux_data=self._meta_get_aux_data(),
                spatial_samplings=self._meta_get_spatial_samplings()
            )
457
458

            self._metadata = metadata
459
460
461

        return self._metadata

462
463
464
465
    @property
    def options(self):
        """Returns a dictionary containing AC options.
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
466
        # type: -> dict
467
468
469
470
        if self._options:
            return self._options
        else:
            self._options = self.inObjs[0].ac_options
Daniel Scheffler's avatar
Daniel Scheffler committed
471
            self._options["AC"]['bands'] = [b for b in self.data.keys() if b in self._options["AC"]['bands']]
472
            self._options["report"]["reporting"] = self.reporting
473
474
            return self._options

475
    def _meta_get_spatial_samplings(self):
476
477
478
        """

        :return:
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
         {10.0: {'NCOLS': 10980,
           'NROWS': 10980,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 10.0,
           'YDIM': -10.0},
          20.0: {'NCOLS': 5490,
           'NROWS': 5490,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 20.0,
           'YDIM': -20.0},
          60.0: {'NCOLS': 1830,
           'NROWS': 1830,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 60.0,
           'YDIM': -60.0}}
497
        """
498
499
        # set corner coordinates and dims
        spatial_samplings = {}
500
501
502

        for inObj in self.inObjs:

503
504
505
506
507
            # validate GSD
            if inObj.arr.xgsd != inObj.arr.ygsd:
                warnings.warn("X/Y GSD is not equal for entity ID %s" % inObj.entity_ID +
                              (' (%s)' % inObj.subsystem if inObj.subsystem else '') +
                              'Using X-GSD as key for spatial sampling dictionary.')
508

509
510
            # set spatial information
            spatial_samplings[inObj.arr.xgsd] = dict(
Daniel Scheffler's avatar
Daniel Scheffler committed
511
512
513
514
515
516
                ULX=inObj.arr.box.boxMapYX[0][1],
                ULY=inObj.arr.box.boxMapYX[0][0],
                XDIM=inObj.arr.xgsd,
                YDIM=-inObj.arr.ygsd,
                NROWS=inObj.arr.rows,
                NCOLS=inObj.arr.cols)
517

518
519
520
        return spatial_samplings

    def _meta_get_solar_irradiance(self):
521
522
523
        """

        :return:
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
        {'B01': 1913.57,
         'B02': 1941.63,
         'B03': 1822.61,
         'B04': 1512.79,
         'B05': 1425.56,
         'B06': 1288.32,
         'B07': 1163.19,
         'B08': 1036.39,
         'B09': 813.04,
         'B10': 367.15,
         'B11': 245.59,
         'B12': 85.25,
         'B8A': 955.19}
        """

        solar_irradiance = {}

        for inObj in self.inObjs:
            for bandN, bandIdx in inObj.arr.bandnames.items():
                if bandN not in solar_irradiance:
                    solar_irradiance[bandN] = inObj.meta_odict['SolIrradiance'][bandIdx]
        return solar_irradiance

    def _meta_get_viewing_zenith(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
        """

        viewing_zenith = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
555
        for inObj in self.inObjs:  # type: L1C_object
556
            for bandN, bandIdx in inObj.arr.bandnames.items():
557
                if bandN not in viewing_zenith:
558
559
                    arr2pass = inObj.VZA_arr[:, :, bandIdx] if inObj.VZA_arr.ndim == 3 else inObj.VZA_arr
                    viewing_zenith[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
560
                    # viewing_zenith[bandN] = inObj.VZA_arr[:, :, bandIdx] if inObj.VZA_arr.ndim==3 else inObj.VZA_arr
561
562
563
564
565
566
567
568
569
570
        return viewing_zenith

    def _meta_get_viewing_azimuth(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
        """

        viewing_azimuth = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
571
        for inObj in self.inObjs:  # type: L1C_object
572
            for bandN, bandIdx in inObj.arr.bandnames.items():
573
                if bandN not in viewing_azimuth:
Daniel Scheffler's avatar
Daniel Scheffler committed
574
                    arr2pass = inObj.VAA_arr[:, :, bandIdx] if inObj.VAA_arr.ndim == 3 else inObj.VAA_arr
575
                    viewing_azimuth[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
576
                    # viewing_azimuth[bandN] = inObj.VAA_arr[:, :, bandIdx] if inObj.VAA_arr.ndim==3 else inObj.VAA_arr
577

578
579
580
581
582
583
        return viewing_azimuth

    def _meta_get_relative_viewing_azimuth(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
584
585
        """

586
587
        relative_viewing_azimuth = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
588
        for inObj in self.inObjs:  # type: L1C_object
589
            for bandN, bandIdx in inObj.arr.bandnames.items():
590
                if bandN not in relative_viewing_azimuth:
591
592
                    arr2pass = inObj.RAA_arr[:, :, bandIdx] if inObj.RAA_arr.ndim == 3 else inObj.RAA_arr
                    relative_viewing_azimuth[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
593
594
                    # relative_viewing_azimuth[bandN] = \
                    #     inObj.RAA_arr[:, :, bandIdx] if inObj.RAA_arr.ndim==3 else inObj.RAA_arr
595

596
        return relative_viewing_azimuth
597

598
599
600
601
602
603
604
605
    def _meta_get_aux_data(self):
        """

        :return:  {lons:ndarray(dtype=float16),,lats:ndarray(dtype=float16)}
        """

        aux_data = dict(
            # set lons and lats (a 2D array for all bands is enough (different band resolutions dont matter))
Daniel Scheffler's avatar
Daniel Scheffler committed
606
607
            lons=self.inObjs[0].lonlat_arr[::10, ::10, 0].astype(np.float16),  # 2D array of lon values: 0° - 360°
            lats=self.inObjs[0].lonlat_arr[::10, ::10, 1].astype(np.float16)  # 2D array of lat values: -90° - 90°
608
            # FIXME correct to reduce resolution here by factor 10?
609
610
611
612
613
614
615
616
617
618
619
620
        )

        return aux_data

    def _get_dem(self):
        """Get a DEM to be used in atmospheric correction.

        :return: <np.ndarray> 2D array (with 20m resolution in case of Sentinel-2)
        """
        # determine which input GMS object is used to generate DEM
        if re.search('Sentinel-2', self.inObjs[0].satellite):
            # in case of Sentinel-2 the 20m DEM must be passed
Daniel Scheffler's avatar
Daniel Scheffler committed
621
            inObj4dem = [obj for obj in self.inObjs if obj.arr.xgsd == 20]
622
623
624
            if not inObj4dem:
                self.logger.warning('Sentinel-2 20m subsystem could not be found. DEM passed to '
                                    'atmospheric correction might have wrong resolution.')
625
626
627
628
            inObj4dem = inObj4dem[0]
        else:
            inObj4dem = self.inObjs[0]

629
630
631
632
        try:
            dem = inObj4dem.dem[:].astype(np.float32)
        except Exception as e:
            dem = None
Daniel Scheffler's avatar
Daniel Scheffler committed
633
            self.logger.warning('A static elevation is assumed during atmospheric correction due to an error during '
634
635
636
                                'creation of the DEM corresponding to scene %s (entity ID: %s). Error message was: '
                                '\n%s\n' % (self.inObjs[0].scene_ID, self.inObjs[0].entity_ID, repr(e)))
            self.logger.info("Print traceback in case you care:")
637
            self.logger.warning(traceback.format_exc())
638
639

        return dem
640
641

    def _get_srf(self):
642
        """Returns an instance of SRF in the same structure like sicor.sensors.SRF.SensorSRF
643
        """
644
645
646
        # FIXME calculation of center wavelengths within SRF() used not the GMS algorithm
        # SRF instance must be created for all bands and the previous proc level
        GMS_identifier_fullScene = self.inObjs[0].GMS_identifier
Daniel Scheffler's avatar
Daniel Scheffler committed
647
        GMS_identifier_fullScene['Subsystem'] = ''
648
649
650
        GMS_identifier_fullScene['proc_level'] = proc_chain[proc_chain.index(self.inObjs[0].proc_level) - 1]

        return SRF(GMS_identifier_fullScene, wvl_unit='nanometers', format_bandnames=True)
651

652
653
654
655
656
657
    def _get_mask_clouds(self):
        """Returns an instance of S2Mask in case cloud mask is given by input GMS objects. Otherwise None is returned.

        :return:
        """

658
659
        tgt_res = self.inObjs[0].ac_options['cld_mask']['target_resolution']

660
661
        # check if input GMS objects provide a cloud mask
        avail_cloud_masks = {inObj.GMS_identifier['Subsystem']: inObj.mask_clouds for inObj in self.inObjs}
662
        no_avail_CMs = list(set(avail_cloud_masks.values())) == [None]
663
664

        # compute cloud mask if not already provided
665
        if no_avail_CMs:
666
            algorithm = CFG.cloud_masking_algorithm[self.inObjs[0].satellite]
667

668
669
            if algorithm == 'SICOR':
                return None
670

671
672
673
674
675
            else:
                # FMASK or Classical Bayesian
                try:
                    from .cloud_masking import Cloud_Mask_Creator

676
                    CMC = Cloud_Mask_Creator(self.inObjs[0], algorithm=algorithm, tempdir_root=CFG.path_tempdir)
677
678
679
680
                    CMC.calc_cloud_mask()
                    cm_geoarray = CMC.cloud_mask_geoarray
                    cm_array = CMC.cloud_mask_array
                    cm_legend = CMC.cloud_mask_legend
Daniel Scheffler's avatar
Daniel Scheffler committed
681
                except Exception:
682
683
                    self.logger.error('\nAn error occurred during FMASK cloud masking. Error message was: ')
                    self.logger.error(traceback.format_exc())
684
                    return None
685

686
687
        else:
            # check if there is a cloud mask with suitable GSD
Daniel Scheffler's avatar
Daniel Scheffler committed
688
            inObjs2use = [obj for obj in self.inObjs if obj.mask_clouds is not None and obj.mask_clouds.xgsd == tgt_res]
689
690
            if not inObjs2use:
                raise ValueError('Error appending cloud mask to input arguments of atmospheric correction. No input '
Daniel Scheffler's avatar
Daniel Scheffler committed
691
                                 'GMS object provides a cloud mask with spatial resolution of %s.' % tgt_res)
692
693
694
695
696
697
698
699
            inObj2use = inObjs2use[0]

            # get mask (geo)array
            cm_geoarray = inObj2use.mask_clouds
            cm_array = inObj2use.mask_clouds[:]

            # get legend
            cm_legend = get_mask_classdefinition('mask_clouds', inObj2use.satellite)
700
            #    {'Clear': 10, 'Thick Clouds': 20, 'Thin Clouds': 30, 'Snow': 40}  # FIXME hardcoded
701
702
703
704
705
706

            # validate that xGSD equals yGSD
            if cm_geoarray.xgsd != cm_geoarray.ygsd:
                warnings.warn("Cloud mask X/Y GSD is not equal for entity ID %s" % inObj2use.entity_ID +
                              (' (%s)' % inObj2use.subsystem if inObj2use.subsystem else '') +
                              'Using X-GSD as key for cloud mask geocoding.')
707
708
709
710

        # get geocoding
        cm_geocoding = self.metadata["spatial_samplings"][tgt_res]

711
712
        # get nodata value
        self.options['cld_mask']['nodata_value_mask'] = cm_geoarray.nodata
713

714
        # append cloud mask to input object with the same spatial resolution if there was no mask before
715
        for inObj in self.inObjs:
716
            if inObj.arr.xgsd == cm_geoarray.xgsd:
717
718
                inObj.mask_clouds = cm_geoarray
                inObj.build_combined_masks_array()
Daniel Scheffler's avatar
Daniel Scheffler committed
719
                break  # appending it to one inObj is enough
720

721
722
723
        return S2Mask(mask_array=cm_array,
                      mask_legend=cm_legend,
                      geo_coding=cm_geocoding)
724

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
    def _check_or_download_ECMWF_data(self):
        """Check if ECMWF files are already downloaded. If not, start the downloader."""
        self.logger.info('Checking if ECMWF data are available... (if not, run download!)')

        default_products = [
            "fc_T2M",
            "fc_O3",
            "fc_SLP",
            "fc_TCWV",
            "fc_GMES_ozone",
            "fc_total_AOT_550nm",
            "fc_sulphate_AOT_550nm",
            "fc_black_carbon_AOT_550nm",
            "fc_dust_AOT_550nm",
            "fc_organic_matter_AOT_550nm",
            "fc_sea_salt_AOT_550nm"]

        try:
            t0 = time()
            results = download_variables(date_from=self.inObjs[0].acq_datetime,
                                         date_to=self.inObjs[0].acq_datetime,
746
                                         db_path=CFG.path_ECMWF_db,
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
                                         max_step=120,  # default
                                         ecmwf_variables=default_products,
                                         processes=0,  # singleprocessing
                                         force=False)  # dont force download if files already exist
            t1 = time()
            self.logger.info("Runtime: %.2f" % (t1 - t0))
            for result in results:
                self.logger.info(result)

        except Exception as err:
            self.logger.error("ECMWF data download failed for scene %s (entity ID: %s). Traceback: "
                              % (self.inObjs[0].scene_ID, self.inObjs[0].entity_ID))
            self.logger.error(traceback.format_exc())

    def _validate_snr_source(self):
        """Check if the given file path for the SNR model exists - if not, use a constant SNR of 500."""
        if not os.path.isfile(self.options["uncertainties"]["snr_model"]):
764
765
            self.logger.warning('No valid SNR model found for %s %s. Using constant SNR to compute uncertainties of '
                                'atmospheric correction.' % (self.inObjs[0].satellite, self.inObjs[0].sensor))
766
767
768
            # self.options["uncertainties"]["snr_model"] = np.nan  # causes the computed uncertainties to be np.nan
            self.options["uncertainties"]["snr_model"] = 500  # use a constant SNR of 500 to compute uncertainties

769
770
    def run_atmospheric_correction(self, dump_ac_input=False):
        # type: (bool) -> list
771
772
773
        """Collects all input data for atmospheric correction, runs the AC and returns the corrected L1C objects
        containing surface reflectance.

774
775
        :param dump_ac_input:   allows to dump the inputs of AC to the scene's processing folder in case AC fails
        :return:                list of L1C_object instances containing atmospherically corrected data
776
        """
777
778

        # collect input args/kwargs for AC
779
780
        self.logger.info('Calculating input data for atmospheric correction...')

781
        rs_data = dict(
Daniel Scheffler's avatar
Daniel Scheffler committed
782
783
784
785
786
787
788
789
790
            data=self.data,
            metadata=self.metadata,
            nodata=self.nodata,
            band_spatial_sampling=self.band_spatial_sampling,
            tile_name=self.tile_name,
            dem=self._get_dem(),
            srf=self._get_srf(),
            mask_clouds=self._get_mask_clouds()
            # returns an instance of S2Mask or None if cloud mask is not given by input GMS objects
Daniel Scheffler's avatar
Daniel Scheffler committed
791
        )  # NOTE: all keys of this dict are later converted to attributes of RSImage
792

793
794
795
796
        # remove empty values from RSImage kwargs because SICOR treats any kind of RSImage attributes as given
        # => 'None'-attributes may cause issues
        rs_data = {k: v for k, v in rs_data.items() if v is not None}

Daniel Scheffler's avatar
Daniel Scheffler committed
797
        script = False
798

799
        # check if ECMWF data are available - if not, start the download
800
        if CFG.auto_download_ecmwf:
801
            self._check_or_download_ECMWF_data()
802
803
804
805

        # validate SNR
        self._validate_snr_source()

806
807
808
        # create an instance of RSImage
        rs_image = RSImage(**rs_data)

809
        self.ac_input = dict(
810
            rs_image=rs_image,
Daniel Scheffler's avatar
Daniel Scheffler committed
811
            options=self.options,  # type: dict
812
813
            logger=repr(self.logger),  # only a string
            script=script
814
        )
815

816
817
818
819
        # path_dump = self.inObjs[0].pathGen.get_path_ac_input_dump()
        # with open(path_dump, 'wb') as outF:
        #     dill.dump(self.ac_input, outF)

820
        # run AC
821
        self.logger.info('Atmospheric correction started.')
822
        try:
823
            rs_image.logger = self.logger
824
            self.results = ac_gms(rs_image, self.options, logger=self.logger, script=script)
825

826
        except Exception as e:
827
            # serialialize AC input
828
829
830
831
832
833
            if dump_ac_input:
                path_dump = self.inObjs[0].pathGen.get_path_ac_input_dump()
                with open(path_dump, 'wb') as outF:
                    dill.dump(self.ac_input, outF)

                self.logger.error('An error occurred during atmospheric correction. Inputs have been dumped to %s.'
Daniel Scheffler's avatar
Daniel Scheffler committed
834
                                  % path_dump)
835
836

            # delete AC input arrays
Daniel Scheffler's avatar
Daniel Scheffler committed
837
            for inObj in self.inObjs:  # type: L1C_object
838
839
                inObj.delete_ac_input_arrays()

840
841
            self.logger.error('\nAn error occurred during atmospheric correction. BE AWARE THAT THE SCENE %s '
                              '(ENTITY ID %s) HAS NOT BEEN ATMOSPHERICALLY CORRECTED! Error message was: \n%s\n'
842
                              % (self.inObjs[0].scene_ID, self.inObjs[0].entity_ID, repr(e)))
843
            self.logger.error(traceback.format_exc())
844
            # TODO include that in the job summary
845

846
847
            return list(self.inObjs)

848
        # get processing infos
Daniel Scheffler's avatar
Daniel Scheffler committed
849
        self.proc_info = self.ac_input['options']['processing']  # FIXME this is not appended to GMS objects
850

851
        # join results
Daniel Scheffler's avatar
Daniel Scheffler committed
852
        self._join_results_to_inObjs()  # sets self.outObjs
853

854
855
        # delete input arrays that are not needed anymore
        [inObj.delete_ac_input_arrays() for inObj in self.inObjs]
856

857
858
859
        return self.outObjs

    def _join_results_to_inObjs(self):
860
861
862
        """
        Join results of atmospheric correction to the input GMS objects.
        """
863

864
        self.logger.info('Joining results of atmospheric correction to input GMS objects.')
Daniel Scheffler's avatar
Daniel Scheffler committed
865
866
867
        # delete logger
        # -> otherwise logging in inObjs would open a second FileHandler to the same file (which is permitted)
        del self.logger
868
869
870
871
872
873
874
875

        self._join_data_ac()
        self._join_data_errors()
        self._join_mask_clouds()
        self._join_mask_confidence_array()

        # update masks (always do that because masks can also only contain one layer)
        [inObj.build_combined_masks_array() for inObj in self.inObjs]
876

877
878
879
880
        self.outObjs = self.inObjs

    def _join_data_ac(self):
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
881
882
        Join ATMOSPHERICALLY CORRECTED ARRAY as 3D int8 or int16 BOA reflectance array, scaled to scale factor from
        config.
883
        """
884

885
        if self.results.data_ac is not None:
886
            for inObj in self.inObjs:
887
                assert isinstance(inObj, L1B_object)
888
                nodata = self.results.nodata[inObj.arr.xgsd]  # 2D mask with True outside of image coverage
Daniel Scheffler's avatar
Daniel Scheffler committed
889
                ac_bandNs = [bandN for bandN in inObj.arr.bandnames if bandN in self.results.data_ac.keys()]
890
                out_LBA = [bN.split('B0')[1] if bN.startswith('B0') else bN.split('B')[1] for bN in ac_bandNs]
891

892
893
894
                # update metadata
                inObj.arr_desc = 'BOA_Ref'
                inObj.MetaObj.bands = len(self.results.data_ac)
895
                inObj.MetaObj.PhysUnit = 'BOA_Reflectance in [0-%d]' % CFG.scale_factor_BOARef
896
897
                inObj.MetaObj.LayerBandsAssignment = out_LBA
                inObj.MetaObj.filter_layerdependent_metadata()
898
                inObj.meta_odict = inObj.MetaObj.to_odict()  # actually auto-updated by getter
899

900
                # join SURFACE REFLECTANCE as 3D int16 array, scaled to scale factor from config
901
902
                # FIXME AC output nodata values = 0 -> new nodata areas but mask not updated
                oF_refl, oZ_refl, oS_refl = get_outFillZeroSaturated(inObj.arr.dtype)
903
                surf_refl = np.dstack((self.results.data_ac[bandN] for bandN in ac_bandNs))
904
                surf_refl *= CFG.scale_factor_BOARef  # scale using scale factor (output is float16)
905
906
                # FIXME really set AC nodata values to GMS outZero?
                surf_refl[nodata] = oZ_refl  # overwrite AC nodata values with GMS outZero
Daniel Scheffler's avatar
Daniel Scheffler committed
907
                # apply the original nodata mask (indicating background values)
908
                surf_refl[np.array(inObj.mask_nodata).astype(np.int8) == 0] = oF_refl
909

Daniel Scheffler's avatar
Daniel Scheffler committed
910
                if self.results.bad_data_value is np.nan:
911
                    surf_refl[np.isnan(surf_refl)] = oF_refl
Daniel Scheffler's avatar
Daniel Scheffler committed
912
                else:
Daniel Scheffler's avatar
Daniel Scheffler committed
913
914
                    surf_refl[
                        surf_refl == self.results.bad_data_value] = oF_refl  # FIXME meaningful to set AC nans to -9999?
915
916
917

                # overwrite LayerBandsAssignment and use inObj.arr setter to generate a GeoArray
                inObj.LayerBandsAssignment = out_LBA
918
                inObj.arr = surf_refl.astype(inObj.arr.dtype)  # -> int16 (also converts NaNs to 0 if needed
919

920
921
922
        else:
            self.logger.warning('Atmospheric correction did not return a result for the input array. '
                                'Thus the output keeps NOT atmospherically corrected.')
923

924
925
926
927
928
929
930
931
932
933
934
    def _join_data_errors(self):
        """
        Join ERRORS ARRAY as 3D int8 or int16 BOA reflectance array, scaled to scale factor from config.
        """

        if self.results.data_errors is not None:
            for inObj in self.inObjs:
                nodata = self.results.nodata[inObj.arr.xgsd]  # 2D mask with True outside of image coverage
                ac_bandNs = [bandN for bandN in inObj.arr.bandnames if bandN in self.results.data_ac.keys()]

                ac_errors = np.dstack((self.results.data_errors[bandN] for bandN in ac_bandNs))
935
936
                ac_errors *= CFG.ac_scale_factor_errors  # scale using scale factor (output is float16)
                out_dtype = np.int8 if CFG.ac_scale_factor_errors <= 255 else np.int16
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
                ac_errors[nodata] = get_outFillZeroSaturated(out_dtype)[0]
                ac_errors = ac_errors.astype(out_dtype)
                inObj.ac_errors = ac_errors  # setter generates a GeoArray with the same bandnames like inObj.arr
                # TODO how to handle nans?
        else:
            self.logger.warning("Atmospheric correction did not provide a 'data_errors' array. Maybe due to "
                                "missing SNR model? GMS_object.ac_errors kept None.")

    def _join_mask_clouds(self):
        """
        Join CLOUD MASK as 2D uint8 array.
        NOTE: mask_clouds has also methods 'export_mask_rgb()', 'export_confidence_to_jpeg2000()', ...
        """

        if self.results.mask_clouds.mask_array is not None:
            mask_clouds_ac = self.results.mask_clouds.mask_array  # uint8 2D array
953

954
955
            joined = False
            for inObj in self.inObjs:
956
957
                # delete all previous cloud masks
                del inObj.mask_clouds
958
959
960
961

                # append mask_clouds only to the input GMS object with the same dimensions
                if inObj.arr.shape[:2] == mask_clouds_ac.shape:
                    inObj.mask_clouds = mask_clouds_ac
962
963
                    inObj.mask_clouds.legend = self.results.mask_clouds.mask_legend  # dict(value=string, string=value))
                    # FIXME legend is not used later
964
965

                    # set cloud mask nodata value
966
                    tgt_nodata = get_outFillZeroSaturated(mask_clouds_ac.dtype)[0]
967
968
                    ac_out_nodata = self.ac_input['options']['cld_mask']['nodata_value_mask']
                    if tgt_nodata not in self.results.mask_clouds.mask_legend.keys():
969
                        inObj.mask_clouds[inObj.mask_clouds[:] == ac_out_nodata] = tgt_nodata
970
971
972
973
                        mask_clouds_nodata = tgt_nodata
                    else:
                        warnings.warn('The cloud mask from AC output already uses the desired nodata value %s for the '
                                      'class %s. Using AC output nodata value %s.'
974
                                      % (tgt_nodata, self.results.mask_clouds.mask_legend[tgt_nodata], ac_out_nodata))
975
976
977
978
                        mask_clouds_nodata = ac_out_nodata

                    inObj.mask_clouds.nodata = mask_clouds_nodata

979
                    joined = True
980

981
982
983
984
            if not joined:
                self.logger.warning('Cloud mask has not been appended to one of the AC inputs because there was no'
                                    'input GMS object with the same dimensions.')

985
        else:
986
987
            self.logger.warning("Atmospheric correction did not provide a 'mask_clouds.mask_array' array. "
                                "GMS_object.mask_clouds kept None.")
988

989
990
991
992
993
994
995
996
    def _join_mask_confidence_array(self):
        """
        Join confidence array for mask_clouds.
        """

        if self.results.mask_clouds.mask_confidence_array is not None:
            cfd_arr = self.results.mask_clouds.mask_confidence_array  # float32 2D array, scaled [0-1, nodata 255]
            cfd_arr[cfd_arr == self.ac_input['options']['cld_mask']['nodata_value_mask']] = -1
997
998
            cfd_arr = (cfd_arr * CFG.scale_factor_BOARef).astype(np.int16)
            cfd_arr[cfd_arr == -CFG.scale_factor_BOARef] = get_outFillZeroSaturated(cfd_arr.dtype)[0]
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

            joined = False
            for inObj in self.inObjs:

                # append mask_clouds only to the input GMS object with the same dimensions
                if inObj.arr.shape[:2] == cfd_arr.shape:
                    # set cloud mask confidence array
                    inObj.mask_clouds_confidence = GeoArray(cfd_arr, inObj.arr.gt, inObj.arr.prj,
                                                            nodata=get_outFillZeroSaturated(cfd_arr.dtype)[0])
                    joined = True
1009

1010
1011
1012
            if not joined:
                self.logger.warning('Cloud mask confidence array has not been appended to one of the AC inputs because '
                                    'there was no input GMS object with the same dimensions.')
1013

1014
1015
        else:
            self.logger.warning("Atmospheric correction did not provide a 'mask_confidence_array' array for "
1016
                                "attribute 'mask_clouds. GMS_object.mask_clouds_confidence kept None.")