gms_object.py 87.6 KB
Newer Older
1
2
3
4
5
# -*- coding: utf-8 -*-

import collections
import copy
import datetime
6
import functools
7
8
9
10
11
12
13
import glob
import json
import os
import re
import shutil
import sys
import warnings
14
import logging
15
from collections import OrderedDict
16
from itertools import chain
17
from typing import Iterable, List, Union, TYPE_CHECKING  # noqa F401  # flake8 issue
18
19
20

import numpy as np
import spectral
21
from spectral.io import envi
22
from numba import jit
23
from pandas import DataFrame, read_csv
24
from nested_dict import nested_dict
25

26
27
28
29
try:
    from osgeo import gdalnumeric
except ImportError:
    import gdalnumeric
30

31
from geoarray import GeoArray
32
from py_tools_ds.geo.coord_grid import is_coord_grid_equal
33
from py_tools_ds.geo.projection import EPSG2WKT
34
35
36
from py_tools_ds.geo.map_info import geotransform2mapinfo, mapinfo2geotransform
from py_tools_ds.geo.coord_calc import calc_FullDataset_corner_positions
from py_tools_ds.geo.coord_trafo import pixelToLatLon, pixelToMapYX
37
from sicor.options import get_options as get_ac_options
38

39
from ..misc.logging import GMS_logger as DatasetLogger
40
from ..model.mgrs_tile import MGRS_tile
41
from ..model.metadata import METADATA, get_dict_LayerOptTherm, metaDict_to_metaODict
42
43
44
from ..model.dataset import Dataset
from ..misc import path_generator as PG
from ..misc import database_tools as DB_T
45
from ..options.config import GMS_config as CFG
46
47
48
from ..algorithms import geoprocessing as GEOP
from ..io import input_reader as INP_R
from ..io import output_writer as OUT_W
49
50
from ..misc import helper_functions as HLP_F
from ..misc import definition_dicts as DEF_D
51

52
53
54
if TYPE_CHECKING:
    from ..algorithms.L1C_P import L1C_object  # noqa F401  # flake8 issue

55
__author__ = 'Daniel Scheffler'
56
57


58
class GMS_object(Dataset):
59
60
61
62
    # class attributes
    # NOTE: these attributes can be modified and seen by ALL GMS_object instances
    proc_status_all_GMSobjs = nested_dict()

63
64
65
66
    def __init__(self, pathImage=''):
        # get all attributes of base class "Dataset"
        super(GMS_object, self).__init__()

67
        # add private attributes
68
        self._dict_LayerOptTherm = None
69
70
        self._cloud_masking_algorithm = None
        self._meta_odict = None
71
        self._coreg_info = None
72

73
        self.job_ID = CFG.ID
74
        # FIXME not needed anymore?:
75
        # self.dataset_ID = int(DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes', ['datasetid'],
76
77
78
        #                                {'id': self.scene_ID})[0][0]) if self.scene_ID !=-9999 else -9999
        self.scenes_proc_ID = None  # set by Output writer after creation/update of db record in table scenes_proc
        self.mgrs_tiles_proc_ID = None  # set by Output writer after creation/update of db rec in table mgrs_tiles_proc
79
        self.MGRS_info = None
80
81

        # set pathes
82
83
84
85
        self.path_cloud_class_obj = ''

        # handle initialization arguments
        if pathImage:
86
87
            # run the setter for 'arr' of the base class 'Dataset' which creates an Instance of GeoArray
            self.arr = pathImage
88
89
90
91

    def __getstate__(self):
        """Defines how the attributes of GMS object are pickled."""

Daniel Scheffler's avatar
Bugfix    
Daniel Scheffler committed
92
        self.close_loggers()
93
        del self.pathGen  # path generator can only be used for the current processing level
94
95

        # delete arrays if their in-mem size is to big to be pickled
96
        # => (avoids MaybeEncodingError: Error sending result: '[<gms_preprocessing.algorithms.L2C_P.L2C_object
97
        #    object at 0x7fc44f6399e8>]'. Reason: 'error("'i' format requires -2147483648 <= number <= 2147483647",)')
98
        if self.proc_level == 'L2C' and CFG.inmem_serialization:
99
100
            # FIXME check by bandname
            if self.mask_nodata is not None and self.masks.bands > 1 and self.mask_clouds is not None:
101
                del self.masks
102

Daniel Scheffler's avatar
Bugfix    
Daniel Scheffler committed
103
104
        return self.__dict__

105
    def set_pathes(self):
106
107
108
109
110
111
        self.baseN = self.pathGen.get_baseN()
        self.path_procdata = self.pathGen.get_path_procdata()
        self.ExtractedFolder = self.pathGen.get_path_tempdir()
        self.path_logfile = self.pathGen.get_path_logfile()
        self.pathGen = PG.path_generator(self.__dict__)  # passes a logger in addition to previous attributes
        self.path_archive = self.pathGen.get_local_archive_path_baseN()
112

113
        if not CFG.inmem_serialization:
Daniel Scheffler's avatar
Daniel Scheffler committed
114
            self.path_InFilePreprocessor = os.path.join(self.ExtractedFolder, '%s%s_DN.bsq'
115
116
                                                        % (self.entity_ID,
                                                           ('_%s' % self.subsystem if self.subsystem else '')))
117
        else:  # keep data in memory
118
            self.path_InFilePreprocessor = None  # None: keeps all produced data in memory (numpy array attributes)
119
120
121
122
123
124

        self.path_MetaPreprocessor = self.path_archive

    def validate_pathes(self):
        if not os.path.isfile(self.path_archive) and not os.path.isdir(self.path_archive):
            self.logger.info("The %s dataset '%s' has not been processed earlier and no corresponding raw data archive"
125
                             "has been found at %s." % (self.sensor, self.entity_ID, self.path_archive))
126
            self.logger.info('Trying to download the dataset...')
127
            self.path_archive_valid = self._data_downloader(self.sensor, self.entity_ID)
128
129
130
        else:
            self.path_archive_valid = True

131
        if not CFG.inmem_serialization and self.ExtractedFolder and not os.path.isdir(self.ExtractedFolder):
132
133
134
135
136
137
138
            os.makedirs(self.ExtractedFolder)

        assert os.path.exists(self.path_archive), 'Invalid path to RAW data. File %s does not exist at %s.' \
                                                  % (os.path.basename(self.path_archive),
                                                     os.path.dirname(self.path_archive))
        assert isinstance(self.path_archive, str), 'Invalid path to RAW data. Got %s instead of string or unicode.' \
                                                   % type(self.path_archive)
139
        if not CFG.inmem_serialization and self.ExtractedFolder:
140
141
            assert os.path.exists(self.path_archive), \
                'Invalid path for temporary files. Directory %s does not exist.' % self.ExtractedFolder
142
143
144
145
146
147
148
149

    @property
    def logger(self):
        if self._loggers_disabled:
            return None
        if self._logger and self._logger.handlers[:]:
            return self._logger
        else:
150
            self._logger = DatasetLogger('log__' + self.baseN, fmt_suffix=self.scene_ID, path_logfile=self.path_logfile,
151
                                         log_level=CFG.log_level, append=True)
152
153
154
155
            return self._logger

    @logger.setter
    def logger(self, logger):
156
        assert isinstance(logger, logging.Logger) or logger in ['not set', None], \
157
            "GMS_obj.logger can not be set to %s." % logger
158
159

        # save prior logs
160
        # if logger is None and self._logger is not None:
161
        #    self.log += self.logger.captured_stream
162
163
        self._logger = logger

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    @property
    def proc_status(self):
        # type: () -> str
        """
        Get the processing status of the current GMS_object (subclass) instance for the current processing level.

        Possible values: 'initialized', 'running', 'finished', 'failed'
        """
        # NOTE: self.proc_status_all_GMSobjs is a class attribute (visible and modifyable from any other subsystem)
        return self.proc_status_all_GMSobjs[self.scene_ID][self.subsystem][self.proc_level]

    @proc_status.setter
    def proc_status(self, new_status):
        # type: (str) -> None
        self.proc_status_all_GMSobjs[self.scene_ID][self.subsystem][self.proc_level] = new_status

180
181
    @property
    def GMS_identifier(self):
182
183
        return collections.OrderedDict(zip(
            ['image_type', 'Satellite', 'Sensor', 'Subsystem', 'proc_level', 'dataset_ID', 'logger'],
184
185
            [self.image_type, self.satellite, self.sensor, self.subsystem, self.proc_level, self.dataset_ID,
             self.logger]))
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

    @property
    def MetaObj(self):
        if self._meta_odict:
            # if there is already a meta_odict -> create a new MetaObj from it (ensures synchronization!)
            self._MetaObj = METADATA(self.GMS_identifier).from_odict(self._meta_odict)
            del self.meta_odict
        elif not self._MetaObj:
            # if there is no meta_odict and no MetaObj -> create MetaObj by reading metadata from disk
            pass  # reading from disk should use L1A_P.L1A_object.import_metadata -> so just return None

        return self._MetaObj

    @MetaObj.setter
    def MetaObj(self, MetaObj):
        assert isinstance(MetaObj, METADATA), "'MetaObj' can only be set to an instance of METADATA class. " \
202
                                              "Got %s." % type(MetaObj)
203
204
205
        self._MetaObj = MetaObj

        # update meta_odict
206
        del self.meta_odict  # it is recreated if getter is used the next time
207
208
209

    @MetaObj.deleter
    def MetaObj(self):
210
211
212
213
214
        if hasattr(self, '_MetaObj') and self._MetaObj and hasattr(self._MetaObj, 'logger') and \
                self._MetaObj.logger not in [None, 'not set']:
            self._MetaObj.logger.close()
            self._MetaObj.logger = None

215
216
217
218
219
        self._MetaObj = None

    @property
    def meta_odict(self):
        if self._MetaObj:
220
            # if there is already a MetaObj -> create new meta_odict from it (ensures synchronization!)
221
222
223
224
            self._meta_odict = self._MetaObj.to_odict()
            del self.MetaObj
        elif not self._meta_odict:
            # if there is no MetaObj and no meta_odict -> use MetaObj getter to read metadata from disk
225
            pass  # reading from disk should use L1A_P.L1A_object.import_metadata -> so just return None
226
227
228
229
230
231
            self._meta_odict = None

        return self._meta_odict

    @meta_odict.setter
    def meta_odict(self, odict):
232
233
        assert isinstance(odict, (collections.OrderedDict, dict)), "'meta_odict' can only be set to an instance of " \
                                                                   "collections.OrderedDict. Got %s." % type(odict)
234
235
236
        self._meta_odict = odict

        # update MetaObj
237
        del self.MetaObj  # it is recreated if getter is used the next time
238
239
240
241
242

    @meta_odict.deleter
    def meta_odict(self):
        self._meta_odict = None

243
244
245
246
247
    @property
    def dict_LayerOptTherm(self):
        if self._dict_LayerOptTherm:
            return self._dict_LayerOptTherm
        elif self.LayerBandsAssignment:
248
            self._dict_LayerOptTherm = get_dict_LayerOptTherm(self.identifier, self.LayerBandsAssignment)
249
250
251
252
253
254
255
            return self._dict_LayerOptTherm
        else:
            return None

    @property
    def georef(self):
        """Returns True if the current dataset can serve as spatial reference."""
Daniel Scheffler's avatar
Daniel Scheffler committed
256

257
258
259
260
        return True if self.image_type == 'RSD' and re.search('OLI', self.sensor, re.I) else False

    @property
    def coreg_needed(self):
261
        if self._coreg_needed is None:
262
            self._coreg_needed = not (self.dataset_ID == CFG.datasetid_spatial_ref)
263
        return self._coreg_needed
264
265
266
267
268

    @coreg_needed.setter
    def coreg_needed(self, value):
        self._coreg_needed = value

269
270
271
272
273
274
275
276
277
278
279
280
281
282
    @property
    def coreg_info(self):
        if not self._coreg_info:
            self._coreg_info = {
                'corrected_shifts_px': {'x': 0, 'y': 0},
                'corrected_shifts_map': {'x': 0, 'y': 0},
                'original map info': self.meta_odict['map info'],
                'updated map info': None,
                'reference scene ID': None,
                'reference entity ID': None,
                'reference geotransform': None,
                # reference projection must be the own projection in order to avoid overwriting with a wrong EPSG
                'reference projection': self.meta_odict['coordinate system string'],
                'reference extent': {'rows': None, 'cols': None},
283
284
                'reference grid': [list(CFG.spatial_ref_gridx),
                                   list(CFG.spatial_ref_gridy)],
285
286
287
288
289
290
291
292
293
                'success': False
            }

        return self._coreg_info

    @coreg_info.setter
    def coreg_info(self, val):
        self._coreg_info = val

294
295
296
297
    @property
    def resamp_needed(self):
        if self._resamp_needed is None:
            gt = mapinfo2geotransform(self.meta_odict['map info'])
298
299
            self._resamp_needed = not is_coord_grid_equal(gt, CFG.spatial_ref_gridx,
                                                          CFG.spatial_ref_gridy)
300
301
302
303
304
305
306
307
        return self._resamp_needed

    @resamp_needed.setter
    def resamp_needed(self, value):
        self._resamp_needed = value

    @property
    def masks(self):
308
        # if self.mask_nodata is not None and self.mask_clouds is not None and \
309
310
311
312
        #     self._masks is not None and self._masks.bands==1:

        #     self.build_combined_masks_array()

313
314
315
        return self._masks

    @masks.setter
316
    def masks(self, *geoArr_initArgs):
317
318
319
320
        """
        NOTE: This does not automatically update mask_nodata and mask_clouds BUT if mask_nodata and mask_clouds are
        None their getters will automatically synchronize!
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
321

322
        if geoArr_initArgs[0] is not None:
323
            self._masks = GeoArray(*geoArr_initArgs)
324
            self._masks.nodata = 0
325
326
            self._masks.gt = self.arr.gt
            self._masks.prj = self.arr.prj
327
328
        else:
            del self.masks
329

330
331
332
333
    @masks.deleter
    def masks(self):
        self._masks = None

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    @property
    def mask_clouds_confidence(self):
        return self._mask_clouds_confidence

    @mask_clouds_confidence.setter
    def mask_clouds_confidence(self, *geoArr_initArgs):
        if geoArr_initArgs[0] is not None:
            cnfArr = GeoArray(*geoArr_initArgs)

            assert cnfArr.shape == self.arr.shape[:2], \
                "The 'mask_clouds_confidence' GeoArray can only be instanced with an array of the same dimensions " \
                "like GMS_obj.arr. Got %s." % str(cnfArr.shape)

            if cnfArr._nodata is None:
                cnfArr.nodata = DEF_D.get_outFillZeroSaturated(cnfArr.dtype)[0]
            cnfArr.gt = self.arr.gt
            cnfArr.prj = self.arr.prj
351
            cnfArr.bandnames = ['confidence']
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387

            self._mask_clouds_confidence = cnfArr
        else:
            del self._mask_clouds_confidence

    @mask_clouds_confidence.deleter
    def mask_clouds_confidence(self):
        self._mask_clouds_confidence = None

    @property
    def ac_errors(self):
        """Returns an instance of GeoArray containing error information calculated by the atmospheric correction.

        :return:
        """

        return self._ac_errors  # FIXME should give a warning if None

    @ac_errors.setter
    def ac_errors(self, *geoArr_initArgs):
        if geoArr_initArgs[0] is not None:
            errArr = GeoArray(*geoArr_initArgs)

            if CFG.ac_bandwise_accuracy:
                assert errArr.shape == self.arr.shape, \
                    "The 'ac_errors' GeoArray can only be instanced with an array of the same dimensions like " \
                    "GMS_obj.arr. Got %s." % str(errArr.shape)
            else:
                assert errArr.shape[:2] == self.arr.shape[:2], \
                    "The 'ac_errors' GeoArray can only be instanced with an array of the same X/Y dimensions like " \
                    "GMS_obj.arr. Got %s." % str(errArr.shape)

            if errArr._nodata is None:
                errArr.nodata = DEF_D.get_outFillZeroSaturated(errArr.dtype)[0]
            errArr.gt = self.arr.gt
            errArr.prj = self.arr.prj
388
            errArr.bandnames = self.LBA2bandnames(self.LayerBandsAssignment) if errArr.ndim == 3 else ['median']
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

            self._ac_errors = errArr
        else:
            del self.ac_errors

    @ac_errors.deleter
    def ac_errors(self):
        self._ac_errors = None

    @property
    def spec_homo_errors(self):
        """Returns an instance of GeoArray containing error information calculated during spectral homogenization.

        :return:
        """

        return self._spec_homo_errors  # FIXME should give a warning if None

    @spec_homo_errors.setter
    def spec_homo_errors(self, *geoArr_initArgs):
        if geoArr_initArgs[0] is not None:
            errArr = GeoArray(*geoArr_initArgs)

            if CFG.spechomo_bandwise_accuracy:
                assert errArr.shape == self.arr.shape, \
                    "The 'spec_homo_errors' GeoArray can only be instanced with an array of the same dimensions like " \
                    "GMS_obj.arr. Got %s." % str(errArr.shape)
            else:
                assert errArr.shape[:2] == self.arr.shape[:2], \
                    "The 'spec_homo_errors' GeoArray can only be instanced with an array of the same X/Y dimensions " \
                    "like GMS_obj.arr. Got %s." % str(errArr.shape)

            if errArr._nodata is None:
                errArr.nodata = DEF_D.get_outFillZeroSaturated(errArr.dtype)[0]
            errArr.gt = self.arr.gt
            errArr.prj = self.arr.prj
425
            errArr.bandnames = self.LBA2bandnames(self.LayerBandsAssignment) if errArr.ndim == 3 else ['median']
426
427
428
429
430
431
432
433
434
435
436

            self._spec_homo_errors = errArr
        else:
            del self.spec_homo_errors

    @spec_homo_errors.deleter
    def spec_homo_errors(self):
        self._spec_homo_errors = None

    @property
    def accuracy_layers(self):
437
438
439
440
        if not self._accuracy_layers:
            if not self.proc_level.startswith('L2'):
                self.logger.warning('Attempt to get %s accuracy layers failed - they are a Level 2 feature only.'
                                    % self.proc_level)
441

442
443
444
445
            self.logger.info('Generating combined accuracy layers array..')
            try:
                from ..algorithms.L2C_P import AccuracyCube
                self._accuracy_layers = AccuracyCube(self)
446
447
448
449
450
451
452
453
454
455

            except ValueError as e:
                if str(e) == 'The given GMS_object contains no accuracy layers for combination.':
                    if CFG.ac_estimate_accuracy or CFG.spechomo_estimate_accuracy:
                        raise
                    else:
                        pass  # self._accuracy_layers keeps None
                else:
                    raise

456
457
            except Exception as e:
                raise RuntimeError('Failed to generate AccuracyCube!', e)
458

459
        return self._accuracy_layers
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

    @accuracy_layers.setter
    def accuracy_layers(self, geoArr_initArgs):
        if geoArr_initArgs[0] is not None:
            acc_lay = GeoArray(geoArr_initArgs)
            assert acc_lay.shape[:2] == self.arr.shape[:2],\
                "The 'accuracy_layers' GeoArray can only be instanced with an array of the same dimensions like " \
                "GMS_obj.arr. Got %s." % str(acc_lay.shape)

            if acc_lay._nodata is None:
                acc_lay.nodata = DEF_D.get_outFillZeroSaturated(acc_lay.dtype)[0]
            acc_lay.gt = self.arr.gt
            acc_lay.prj = self.arr.prj

            if not acc_lay.bandnames:
                raise ValueError

            self._accuracy_layers = acc_lay
        else:
            del self._accuracy_layers

481
482
483
484
    @accuracy_layers.deleter
    def accuracy_layers(self):
        self._accuracy_layers = None

485
486
487
488
489
490
491
492
493
494
495
    @property
    def accuracy_layers_meta(self):
        if self._accuracy_layers is not None:
            return {'map info': geotransform2mapinfo(self._accuracy_layers.gt, self._accuracy_layers.projection),
                    'coordinate system string': self._accuracy_layers.projection,
                    'bands': self._accuracy_layers.bands,
                    'band names': list(self._accuracy_layers.bandnames),
                    'data ignore value': self._accuracy_layers.nodata}
        else:
            return None

496
497
498
    @property
    def cloud_masking_algorithm(self):
        if not self._cloud_masking_algorithm:
499
            self._cloud_masking_algorithm = CFG.cloud_masking_algorithm[self.satellite]
500
501
        return self._cloud_masking_algorithm

502
503
    @property
    def ac_options(self):
504
        # type: () -> dict
505
        """
506
507
        Returns the options dictionary needed as input for atmospheric correction. If an empty dictionary is returned,
        atmospheric correction is not yet available for the current sensor and will later be skipped.
508
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
509

510
        if not self._ac_options:
511
            path_ac_options = CFG.path_custom_sicor_options or PG.get_path_ac_options(self.GMS_identifier)
512

513
            if path_ac_options and os.path.exists(path_ac_options):
514
515
                # don't validate because options contain pathes that do not exist on another server:
                opt_dict = get_ac_options(path_ac_options, validation=False)
516

Daniel Scheffler's avatar
Daniel Scheffler committed
517
                # update some file paths depending on the current environment
518
519
                opt_dict['DEM']['fn'] = CFG.path_dem_proc_srtm_90m
                opt_dict['ECMWF']['path_db'] = CFG.path_ECMWF_db
520
521
522
                opt_dict['S2Image'][
                    'S2_MSI_granule_path'] = None  # only a placeholder -> will always be None for GMS usage
                opt_dict['output'] = []  # outputs are not needed for GMS -> so
523
                opt_dict['report']['report_path'] = os.path.join(self.pathGen.get_path_procdata(), '[TYPE]')
524
                if 'uncertainties' in opt_dict:
525
526
527
528
                    if CFG.ac_estimate_accuracy:
                        opt_dict['uncertainties']['snr_model'] = PG.get_path_snr_model(self.GMS_identifier)
                    else:
                        del opt_dict['uncertainties']  # SICOR will not compute uncertainties if that key is missing
529

530
531
532
533
534
535
                # apply custom configuration
                opt_dict["logger"]['level'] = CFG.log_level
                opt_dict["ram"]['upper_limit'] = CFG.ac_max_ram_gb
                opt_dict["ram"]['unit'] = 'GB'
                opt_dict["AC"]['fill_nonclear_areas'] = CFG.ac_fillnonclear_areas
                opt_dict["AC"]['clear_area_labels'] = CFG.ac_clear_area_labels
536
                # opt_dict['AC']['n_cores'] = CFG.CPUs if CFG.allow_subMultiprocessing else 1
537

538
                self._ac_options = opt_dict
539
540
541
            else:
                self.logger.warning('There is no options file available for atmospheric correction. '
                                    'Atmospheric correction must be skipped.')
542

543
544
        return self._ac_options

545
    def get_copied_dict_and_props(self, remove_privates=False):
546
        # type: (bool) -> dict
547
        """Returns a copy of the current object dictionary including the current values of all object properties."""
548
549
550

        # loggers must be closed
        self.close_GMS_loggers()
551
552
        # this disables automatic recreation of loggers (otherwise loggers are created by using getattr()):
        self._loggers_disabled = True
553
554
555
556
557

        out_dict = self.__dict__.copy()

        # add properties
        property_names = [p for p in dir(self.__class__) if isinstance(getattr(self.__class__, p), property)]
558
        [out_dict.update({propK: copy.copy(getattr(self, propK))}) for propK in property_names]
559
560
561
562
563
564
565
566
567

        # remove private attributes
        if remove_privates:
            out_dict = {k: v for k, v in out_dict.items() if not k.startswith('_')}

        self._loggers_disabled = False  # enables automatic recreation of loggers

        return out_dict

568
569
    def attributes2dict(self, remove_privates=False):
        # type: (bool) -> dict
570
        """Returns a copy of the current object dictionary including the current values of all object properties."""
571
572
573

        # loggers must be closed
        self.close_GMS_loggers()
574
575
        # this disables automatic recreation of loggers (otherwise loggers are created by using getattr()):
        self._loggers_disabled = True
576
577
578
579

        out_dict = self.__dict__.copy()

        # add some selected property values
580
581
        for i in ['GMS_identifier', 'LayerBandsAssignment', 'coreg_needed', 'coreg_info', 'resamp_needed',
                  'dict_LayerOptTherm', 'georef', 'meta_odict']:
582
            out_dict[i] = getattr(self, i)
583
584
585
586
587

        # remove private attributes
        if remove_privates:
            out_dict = {k: v for k, v in out_dict.items() if not k.startswith('_')}

588
        self._loggers_disabled = False  # enables automatic recreation of loggers
589
590
        return out_dict

591
    def _data_downloader(self, sensor, entity_ID):
592
593
594
595
        self.logger.info('Data downloader started.')
        success = False
        " > download source code for Landsat here < "
        if not success:
596
597
            self.logger.critical(
                "Download for %s dataset '%s' failed. No further processing possible." % (sensor, entity_ID))
598
            raise RuntimeError('Archive download failed.')
599
600
        return success

601
602
603
604
605
    def from_disk(self, tuple_GMS_subset):
        """Fills an already instanced GMS object with data from disk. Excludes array attributes in Python mode.

        :param tuple_GMS_subset:    <tuple> e.g. ('/path/gms_file.gms', ['cube', None])
        """
606

607
        path_GMS_file = tuple_GMS_subset[0]
608
        GMSfileDict = INP_R.GMSfile2dict(path_GMS_file)
609
610

        # copy all attributes from GMS file (private attributes are not touched since they are not included in GMS file)
611
        self.meta_odict = GMSfileDict['meta_odict']  # set that first in order to make some getters and setters work
612
613
        for key, value in GMSfileDict.items():
            if key in ['GMS_identifier', 'georef', 'dict_LayerOptTherm']:
614
                continue  # properties that should better be created on the fly
615
616
            try:
                setattr(self, key, value)
617
618
            except Exception:
                raise AttributeError("Can't set attribute %s." % key)
619

620
        self.acq_datetime = datetime.datetime.strptime(self.acq_datetime, '%Y-%m-%d %H:%M:%S.%f%z')
621
622
        self.arr_shape, self.arr_pos = tuple_GMS_subset[1]

623
624
625
        self.arr = self.pathGen.get_path_imagedata()
        # self.mask_nodata and self.mask_clouds are auto-synchronized via self.masks (see their getters):
        self.masks = self.pathGen.get_path_maskdata()
626

627
628
        return copy.copy(self)

629
    def from_sensor_subsystems(self, list_GMS_objs):
630
631
        # type: (List[GMS_object]) -> GMS_object
        # TODO convert to classmethod
632
633
634
635
636
637
        """Merge separate GMS objects belonging to the same scene-ID into ONE GMS object.

        :param list_GMS_objs:   <list> of GMS objects covering the same geographic area but representing different
                                sensor subsystems (e.g. 3 GMS_objects for Sentinel-2 10m/20m/60m bands)
        """

638
        # assertions
639
640
        assert len(list_GMS_objs) > 1, "'GMS_object.from_sensor_subsystems()' expects multiple input GMS objects. " \
                                       "Got %d." % len(list_GMS_objs)
641
        assert all([is_coord_grid_equal(list_GMS_objs[0].arr.gt, *obj.arr.xygrid_specs) for obj in list_GMS_objs[1:]]),\
642
643
644
            "The input GMS objects must have the same pixel grid. Received: %s" \
            % np.array([obj.arr.xygrid_specs for obj in list_GMS_objs])
        assert len(list(set([GMS_obj.proc_level for GMS_obj in list_GMS_objs]))) == 1, \
645
646
647
            "The input GMS objects for GMS_object.from_sensor_subsystems() must have the same processing level."
        subsystems = [GMS_obj.subsystem for GMS_obj in list_GMS_objs]
        assert len(subsystems) == len(list(set(subsystems))), \
648
            "The input 'list_GMS_objs' contains duplicates: %s" % subsystems
649

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
        ##################
        # merge logfiles #
        ##################

        # read all logs into DataFrame, sort it by the first column
        [GMS_obj.close_GMS_loggers() for GMS_obj in list_GMS_objs]  # close the loggers of the input objects
        paths_inLogs = [GMS_obj.pathGen.get_path_logfile() for GMS_obj in list_GMS_objs]
        allLogs_df = DataFrame()
        for log in paths_inLogs:
            df = read_csv(log, sep='\n', delimiter=':   ', header=None,
                          engine='python')  # engine suppresses a pandas warning
            allLogs_df = allLogs_df.append(
                df)  # FIXME this will log e.g. atm. corr 3 times for S2A -> use captured streams instead?

        allLogs_df = allLogs_df.sort_values(0)

        # set common metadata, needed for logfile
        self.baseN = list_GMS_objs[0].pathGen.get_baseN(merged_subsystems=True)
        self.path_logfile = list_GMS_objs[0].pathGen.get_path_logfile(merged_subsystems=True)
        self.scene_ID = list_GMS_objs[0].scene_ID

        # write the merged logfile and flush previous logger
        np.savetxt(self.path_logfile, np.array(allLogs_df), delimiter=':   ', fmt="%s")
        self.close_GMS_loggers()

675
        # log
676
677
        self.logger.info('Merging the subsystems %s to a single GMS object...'
                         % ', '.join([GMS_obj.subsystem for GMS_obj in list_GMS_objs]))
678
679

        # find the common extent. NOTE: boundsMap is expected in the order [xmin,xmax,ymin,ymax]
680
681
        geoExtents = np.array([GMS_obj.arr.box.boundsMap for GMS_obj in list_GMS_objs])
        common_extent = (min(geoExtents[:, 0]), max(geoExtents[:, 1]), min(geoExtents[:, 2]), max(geoExtents[:, 3]))
682

683
684
685
686
        ##################
        # MERGE METADATA #
        ##################

687
688
689
        # copy all attributes from the first input GMS file (private attributes are not touched)
        for key, value in list_GMS_objs[0].__dict__.copy().items():
            if key in ['GMS_identifier', 'georef', 'dict_LayerOptTherm']:
690
                continue  # properties that should better be created on the fly
691
692
            elif key in ['baseN', 'path_logfile', 'scene_ID', 'subsystem']:
                continue  # either previously set with common values or not needed for merged GMS_object
693
694
            try:
                setattr(self, key, value)
695
696
            except Exception:
                raise AttributeError("Can't set attribute %s." % key)
697

698
        # update LayerBandsAssignment and get full list of output bandnames
699
        from .metadata import get_LayerBandsAssignment
700
701
        # use identifier of first input GMS object for getting LBA (respects current proc_level):
        gms_idf = list_GMS_objs[0].GMS_identifier
702
        self.LayerBandsAssignment = get_LayerBandsAssignment(gms_idf, return_fullLBA=True)
703
        bandnames = ['B%s' % i if len(i) == 2 else 'B0%s' % i for i in self.LayerBandsAssignment]
704
705
706

        # update layer-dependent metadata with respect to remaining input GMS objects
        self.meta_odict.update({
707
708
709
710
            'band names': [('Band %s' % i) for i in self.LayerBandsAssignment],
            'LayerBandsAssignment': self.LayerBandsAssignment,
            'Subsystem': '',
            'PhysUnit': self.meta_odict['PhysUnit'],  # TODO can contain val_optical / val_thermal
711
712
        })
        self.subsystem = ''
713
714
        del self.pathGen  # must be refreshed because subsystem is now ''
        self.close_GMS_loggers()  # must also be refreshed because it depends on pathGen
715

716
717
        for attrN in ['SolIrradiance', 'CWL', 'FWHM', 'Offsets', 'OffsetsRef', 'Gains', 'GainsRef',
                      'ThermalConstK1', 'ThermalConstK2', 'ViewingAngle_arrProv', 'IncidenceAngle_arrProv']:
718
719
720
721
722
723
724

            # combine values from separate subsystems to a single value
            attrDic_fullLBA = {}
            for GMS_obj in list_GMS_objs:
                attr_val = getattr(GMS_obj.MetaObj, attrN)
                if isinstance(attr_val, list):
                    attrDic_fullLBA.update(dict(zip(GMS_obj.LayerBandsAssignment, attr_val)))
725
                elif isinstance(attr_val, (dict, collections.OrderedDict)):
726
727
728
729
730
731
732
                    attrDic_fullLBA.update(attr_val)
                else:
                    raise ValueError(attrN)

            # update the attribute in self.MetaObj
            if attrDic_fullLBA:
                val2set = [attrDic_fullLBA[bN] for bN in self.LayerBandsAssignment] \
733
                    if isinstance(getattr(list_GMS_objs[0].MetaObj, attrN), list) else attrDic_fullLBA
734
735
                setattr(self.MetaObj, attrN, val2set)

736
737
738
        ####################
        # MERGE ARRAY DATA #
        ####################
739

740
        # overwrite array data with merged arrays, clipped to common_extent and reordered according to FullLayerBandsAss
741
742
743
        for attrname in ['arr', 'ac_errors', 'dem', 'mask_nodata', 'mask_clouds', 'mask_clouds_confidence', 'masks']:

            # get current attribute of each subsystem without running property getters
744
            all_arrays = [getattr(GMS_obj, '_%s' % attrname) for GMS_obj in list_GMS_objs]
745
746
747
748
749
750
751
752
753

            # get the same geographical extent for each input GMS object
            if len(set(tuple(ext) for ext in geoExtents.tolist())) > 1:
                # in case of different extents
                geoArrs_same_extent = []

                for geoArr in all_arrays:

                    if geoArr is not None:
754
                        # FIXME mask_clouds_confidence is no GeoArray until here
755
                        # FIXME -> has no nodata value -> calculation throughs warning
756
757
                        geoArr_same_extent = \
                            GeoArray(*geoArr.get_mapPos(
758
759
760
761
                                mapBounds=np.array(common_extent)[[0, 2, 1, 3]],  # pass (xmin, ymin, xmax, ymax)
                                mapBounds_prj=geoArr.prj),
                                     bandnames=list(geoArr.bandnames.keys()),
                                     nodata=geoArr.nodata)
762
763
                        geoArrs_same_extent.append(geoArr_same_extent)
                    else:
764
765
                        # e.g. in case of cloud mask that is only appended to the GMS object with the same
                        # spatial resolution)
766
767
768
769
770
771
                        geoArrs_same_extent.append(None)

            else:
                # skip get_mapPos() if all input GMS objects have the same extent
                geoArrs_same_extent = all_arrays

772
773
            # validate output GeoArrays #
            #############################
774

775
776
            if len([gA for gA in geoArrs_same_extent if gA is not None]) > 1:
                equal_bounds = all([geoArrs_same_extent[0].box.boundsMap == gA.box.boundsMap
777
                                    for gA in geoArrs_same_extent[1:]])
778
779
                equal_epsg = all([geoArrs_same_extent[0].epsg == gA.epsg for gA in geoArrs_same_extent[1:]])
                equal_xydims = all([geoArrs_same_extent[0].shape[:2] == gA.shape[:2] for gA in geoArrs_same_extent[1:]])
780
781
782
783
784
                if not all([equal_bounds, equal_epsg, equal_xydims]):
                    raise RuntimeError('Something went wrong during getting the same geographical extent for all the '
                                       'input GMS objects. The extents, projections or pixel dimensions of the '
                                       'calculated input GMS objects are not equal.')

785
786
            # set output arrays #
            #####################
787

788
789
            # handle those arrays where bands have to be reordered according to FullLayerBandsAssignment
            if attrname in ['arr', 'ac_errors'] and list(set(geoArrs_same_extent)) != [None]:
790
791
                # check that each desired band name for the current attribute is provided by one of the input
                # GMS objects
792
793
                available_bandNs = list(chain.from_iterable([list(gA.bandnames) for gA in geoArrs_same_extent]))
                for bN in bandnames:
794
                    if bN not in available_bandNs:
795
                        raise ValueError("The given input GMS objects (subsystems) do not provide a bandname '%s' for "
796
797
                                         "the attribute '%s'. Available band names amongst all input GMS objects are: "
                                         "%s" % (bN, attrname, str(available_bandNs)))
798
799

                # merge arrays
800
801
                def get_band(bandN):
                    return [gA[bandN] for gA in geoArrs_same_extent if gA and bandN in gA.bandnames][0]
802
803
                full_geoArr = GeoArray(np.dstack((get_band(bandN) for bandN in bandnames)),
                                       geoArrs_same_extent[0].gt, geoArrs_same_extent[0].prj,
804
805
                                       bandnames=bandnames,
                                       nodata=geoArrs_same_extent[0].nodata)
806
807
                setattr(self, attrname, full_geoArr)

808
            # handle the remaining arrays
809
810
811
            else:
                # masks, dem, mask_nodata, mask_clouds, mask_clouds_confidence
                if attrname == 'dem':
812
813
                    # use the DEM of the first input object
                    # (if the grid is the same, the DEMs should be the same anyway)
814
                    self.dem = geoArrs_same_extent[0]
815

816
817
818
                elif attrname == 'mask_nodata':
                    # must not be merged -> self.arr is already merged, so just recalculate it (np.all)
                    self.mask_nodata = self.calc_mask_nodata(overwrite=True)
819

820
821
822
                elif attrname == 'mask_clouds':
                    # possibly only present in ONE subsystem (set by atm. Corr.)
                    mask_clouds = [msk for msk in geoArrs_same_extent if msk is not None]
823
824
                    if len(mask_clouds) > 1:
                        raise ValueError('Expected mask clouds in only one subsystem. Got %s.' % len(mask_clouds))
825
                    self.mask_clouds = mask_clouds[0] if mask_clouds else None
826

827
828
829
                elif attrname == 'mask_clouds_confidence':
                    # possibly only present in ONE subsystem (set by atm. Corr.)
                    mask_clouds_conf = [msk for msk in geoArrs_same_extent if msk is not None]
830
831
832
                    if len(mask_clouds_conf) > 1:
                        raise ValueError(
                            'Expected mask_clouds_conf in only one subsystem. Got %s.' % len(mask_clouds_conf))
833
                    self.mask_clouds_confidence = mask_clouds_conf[0] if mask_clouds_conf else None
834

835
                elif attrname == 'masks':
836
837
838
839
840
841
842
843
                    # self.mask_nodata and self.mask_clouds will already be set here -> so just recreate it from there
                    self.masks = None

        # recreate self.masks
        self.build_combined_masks_array()

        # update array-dependent metadata
        self.meta_odict.update({
844
845
            'samples': self.arr.cols, 'lines': self.arr.rows, 'bands': self.arr.bands,
            'map info': geotransform2mapinfo(self.arr.gt, self.arr.prj), 'coordinate system string': self.arr.prj, })
846
847

        # set shape of full array
848
        self.shape_fullArr = self.arr.shape
849
850
851

        return copy.copy(self)

852
853
854
855
856
857
    def from_tiles(self, list_GMS_tiles):
        # type: (list) -> self
        """Merge separate GMS objects with different spatial coverage but belonging to the same scene-ID to ONE GMS object.

        :param list_GMS_tiles: <list> of GMS objects that have been created by cut_GMS_obj_into_blocks()
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
858

859
860
861
862
863
        if 'IMapUnorderedIterator' in str(type(list_GMS_tiles)):
            list_GMS_tiles = list(list_GMS_tiles)

        # copy all attributes except of array attributes
        tile1 = list_GMS_tiles[0]
864
865
        [setattr(self, i, getattr(tile1, i)) for i in tile1.__dict__
         if not callable(getattr(tile1, i)) and not isinstance(getattr(tile1, i), (np.ndarray, GeoArray))]
866
867

        # MERGE ARRAY-ATTRIBUTES
868
        list_arraynames = [i for i in tile1.__dict__ if not callable(getattr(tile1, i)) and
869
                           isinstance(getattr(tile1, i), (np.ndarray, GeoArray))]
870
871
        list_arraynames = ['_arr'] + [i for i in list_arraynames if
                                      i != '_arr']  # list must start with _arr, otherwise setters will not work
872
873
874
875

        for arrname in list_arraynames:
            samplearray = getattr(tile1, arrname)
            assert isinstance(samplearray, (np.ndarray, GeoArray)), \
876
                'Received a %s object for attribute %s. Expected a numpy array or an instance of GeoArray.' \
877
                % (type(samplearray), arrname)
878
879
            is_3d = samplearray.ndim == 3
            bands = (samplearray.shape[2],) if is_3d else ()  # dynamic -> works for arr, cld_arr,...
880
881
882
883
            target_shape = tuple(self.shape_fullArr[:2]) + bands
            target_dtype = samplearray.dtype
            merged_array = self._numba_array_merger(list_GMS_tiles, arrname, target_shape, target_dtype)

884
885
            setattr(self, arrname if not arrname.startswith('_') else arrname[1:],
                    merged_array)  # use setters if possible
886
887
888
889
            # NOTE: this asserts that each attribute starting with '_' has also a property with a setter!

        # UPDATE ARRAY-DEPENDENT ATTRIBUTES
        self.arr_shape = 'cube'
890
        self.arr_pos = None
891
892
893

        # update MetaObj attributes
        self.meta_odict.update({
894
895
            'samples': self.arr.cols, 'lines': self.arr.rows, 'bands': self.arr.bands,
            'map info': geotransform2mapinfo(self.arr.gt, self.arr.prj), 'coordinate system string': self.arr.prj, })
896
897
898
899

        # calculate data_corners_imXY (mask_nodata is always an array here because get_mapPos always returns an array)
        corners_imYX = calc_FullDataset_corner_positions(
            self.mask_nodata, assert_four_corners=False, algorithm='shapely')
900
        self.trueDataCornerPos = [(YX[1], YX[0]) for YX in corners_imYX]  # [UL, UR, LL, LR]
901
902
903
904
905
906

        # calculate trueDataCornerLonLat
        data_corners_LatLon = pixelToLatLon(self.trueDataCornerPos, geotransform=self.arr.gt, projection=self.arr.prj)
        self.trueDataCornerLonLat = [(YX[1], YX[0]) for YX in data_corners_LatLon]

        # calculate trueDataCornerUTM
907
908
        data_corners_utmYX = pixelToMapYX(self.trueDataCornerPos, geotransform=self.arr.gt,
                                          projection=self.arr.prj)  # FIXME asserts gt in UTM coordinates
909
910
911
912
        self.trueDataCornerUTM = [(YX[1], YX[0]) for YX in data_corners_utmYX]

        return copy.copy(self)

913
914
915
    @staticmethod
    @jit
    def _numba_array_merger(list_GMS_tiles, arrname2merge, target_shape, target_dtype):
Daniel Scheffler's avatar
Daniel Scheffler committed
916
        # type: (list, str, tuple, np.dtype) -> np.ndarray
917
918
919
920
921
922
923
924
925
        """
        private function, e.g. called by merge_GMS_tiles_to_GMS_obj() in order to fasten array merging

        :param list_GMS_tiles:
        :param arrname2merge:
        :param target_shape:
        :param target_dtype:
        :return:
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
926

927
928
929
930
931
932
933
        out_arr = np.empty(target_shape, dtype=target_dtype)
        for idx, tile in enumerate(list_GMS_tiles):
            rowStart, rowEnd = tile.arr_pos[0]
            colStart, colEnd = tile.arr_pos[1]
            out_arr[rowStart:rowEnd + 1, colStart:colEnd + 1] = getattr(tile, arrname2merge)
        return out_arr

Daniel Scheffler's avatar
Daniel Scheffler committed
934
    def log_for_fullArr_or_firstTile(self, log_msg, subset=None):
935
936
937
938
939
940
941
        """Send a message to the logger only if full array or the first tile is currently processed.
        This function can be called when processing any tile but log message will only be sent from first tile.

        :param log_msg:  the log message to be logged
        :param subset:   subset argument as sent to e.g. DN2TOARadRefTemp that indicates which tile is to be processed.
                         Not needed if self.arr_pos is not None.
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
942

943
944
945
946
        if subset is None and \
            (self.arr_shape == 'cube' or self.arr_pos is None or [self.arr_pos[0][0], self.arr_pos[1][0]] == [0, 0]) or\
                subset == ['cube', None] or (subset and [subset[1][0][0], subset[1][1][0]] == [0, 0]) or \
                hasattr(self, 'logAtThisTile') and getattr(self, 'logAtThisTile'):  # cube or 1st tile
Daniel Scheffler's avatar
Daniel Scheffler committed
947
            self.logger.info(log_msg)
948
949
950
951
        else:
            pass

    def apply_nodata_mask_to_ObjAttr(self, attrname, out_nodata_val=None):
952
        # type: (str,int) -> None
953
        """Applies self.mask_nodata to the specified array attribute by setting all values where mask_nodata is 0 to the
954
955
956
957
958
959
960
        given nodata value.

        :param attrname:         The attribute to apply the nodata mask to. Must be an array attribute or
                                 a string path to a previously saved ENVI-file.
        :param out_nodata_val:   set the values of the given attribute to this value.
        """

961
        assert hasattr(self, attrname)
962

963
        if getattr(self, attrname) is not None:
964

965
966
967
            if isinstance(getattr(self, attrname), str):
                update_spec_vals = True if attrname == 'arr' else False
                self.apply_nodata_mask_to_saved_ENVIfile(getattr(self, attrname), out_nodata_val, update_spec_vals)
968
            else:
969
                assert isinstance(getattr(self, attrname), (np.ndarray, GeoArray)), \
970
                    'L1A_obj.%s must be a numpy array or an instance of GeoArray. Got type %s.' \
971
972
                    % (attrname, type(getattr(self, attrname)))
                assert hasattr(self, 'mask_nodata') and self.mask_nodata is not None
973

974
                self.log_for_fullArr_or_firstTile('Applying nodata mask to L1A_object.%s...' % attrname)
975

976
                nodata_val = out_nodata_val if out_nodata_val else \
977
                    DEF_D.get_outFillZeroSaturated(getattr(self, attrname).dtype)[0]
978
                getattr(self, attrname)[self.mask_nodata.astype(np.int8) == 0] = nodata_val
979

980
981
                if attrname == 'arr':
                    self.MetaObj.spec_vals['fill'] = nodata_val
982
983
984
985
986
987

    def build_combined_masks_array(self):
        # type: () -> dict
        """Generates self.masks attribute (unsigned integer 8bit) from by concatenating all masks included in GMS obj.
        The corresponding metadata is assigned to L1A_obj.masks_meta. Empty mask attributes are skipped."""

988
        arrays2combine = [aN for aN in ['mask_nodata', 'mask_clouds']
989
                          if hasattr(self, aN) and isinstance(getattr(self, aN), (GeoArray, np.ndarray))]
990
991
        if arrays2combine:
            self.log_for_fullArr_or_firstTile('Combining masks...')
992
993

            def get_data(arrName): return getattr(self, arrName).astype(np.uint8)[:, :, None]
994
995

            for aN in arrays2combine:
996
                if False in np.equal(getattr(self, aN), getattr(self, aN).astype(np.uint8)):
997
998
999
                    warnings.warn('Some pixel values of attribute %s changed during data type '
                                  'conversion within build_combined_masks_array().')

1000
            # set self.masks
1001
1002
1003
            self.masks = get_data(arrays2combine[0]) if len(arrays2combine) == 1 else \
                np.concatenate([get_data(aN) for aN in arrays2combine], axis=2)
            self.masks.bandnames = arrays2combine  # set band names of GeoArray (allows later indexing by band name)
1004

1005
            # set self.masks_meta
1006
            nodataVal = DEF_D.get_outFillZeroSaturated(self.masks.dtype)[0]
1007
            self.masks_meta = {'map info': self.MetaObj.map_info, 'coordinate system string': self.MetaObj.projection,
1008
1009
                               'bands': len(arrays2combine), 'band names': arrays2combine,
                               'data ignore value': nodataVal}
1010
1011

            return {'desc': 'masks', 'row_start': 0, 'row_end': self.shape_fullArr[0],
1012
                    'col_start': 0, 'col_end': self.shape_fullArr[1], 'data': self.masks}  # usually not needed
1013
1014

    def apply_nodata_mask_to_saved_ENVIfile(self, path_saved_ENVIhdr, custom_nodata_val=None, update_spec_vals=False):
1015
        # type: (str,int,bool) -> None
1016
1017
        """Applies self.mask_nodata to a saved ENVI file with the same X/Y dimensions like self.mask_nodata by setting all
         values where mask_nodata is 0 to the given nodata value.
1018
1019
1020
1021
1022
1023
1024
1025

        :param path_saved_ENVIhdr:  <str> The path of the ENVI file to apply the nodata mask to.
        :param custom_nodata_val:   <int> set the values of the given attribute to this value.
        :param update_spec_vals:    <bool> whether to update self.MetaObj.spec_vals['fill']
        """

        self.log_for_fullArr_or_firstTile('Applying nodata mask to saved ENVI file...')
        assert os.path.isfile(path_saved_ENVIhdr)
1026
1027
1028
        assert hasattr(self, 'mask_nodata') and self.mask_nodata is not None
        if not path_saved_ENVIhdr.endswith('.hdr') and os.path.isfile(os.path.splitext(path_saved_ENVIhdr)[0] + '.hdr'):
            path_saved_ENVIhdr = os.path.splitext(path_saved_ENVIhdr)[0] + '.hdr'
1029
        if custom_nodata_val is None:
1030
            dtype_IDL = int(INP_R.read_ENVIhdr_to_dict(path_saved_ENVIhdr)['data type'])
1031
            nodata_val = DEF_D.get_outFillZeroSaturated(DEF_D.dtype_lib_IDL_Python[dtype_IDL])[0]
1032
1033
        else:
            nodata_val = custom_nodata_val
1034
        FileObj = spectral.open_image(path_saved_ENVIhdr)