gms_object.py 88.1 KB
Newer Older
1
2
3
4
5
# -*- coding: utf-8 -*-

import collections
import copy
import datetime
6
import functools
7
8
9
10
11
12
13
import glob
import json
import os
import re
import shutil
import sys
import warnings
14
import logging
15
from collections import OrderedDict
16
from itertools import chain
17
from typing import Iterable, List, Union, TYPE_CHECKING  # noqa F401  # flake8 issue
18
19
20

import numpy as np
import spectral
21
from spectral.io import envi
22
from numba import jit
23
from pandas import DataFrame, read_csv
24
from nested_dict import nested_dict
25

26
27
28
29
try:
    from osgeo import gdalnumeric
except ImportError:
    import gdalnumeric
30

31
from geoarray import GeoArray
32
from py_tools_ds.geo.coord_grid import is_coord_grid_equal
33
from py_tools_ds.geo.projection import EPSG2WKT
34
35
36
from py_tools_ds.geo.map_info import geotransform2mapinfo, mapinfo2geotransform
from py_tools_ds.geo.coord_calc import calc_FullDataset_corner_positions
from py_tools_ds.geo.coord_trafo import pixelToLatLon, pixelToMapYX
37
from sicor.options import get_options as get_ac_options
38

39
from ..misc.logging import GMS_logger as DatasetLogger
40
from ..model.mgrs_tile import MGRS_tile
41
from ..model.metadata import METADATA, get_dict_LayerOptTherm, metaDict_to_metaODict
42
43
44
from ..model.dataset import Dataset
from ..misc import path_generator as PG
from ..misc import database_tools as DB_T
45
from ..options.config import GMS_config as CFG
46
47
48
from ..algorithms import geoprocessing as GEOP
from ..io import input_reader as INP_R
from ..io import output_writer as OUT_W
49
50
from ..misc import helper_functions as HLP_F
from ..misc import definition_dicts as DEF_D
51

52
53
54
if TYPE_CHECKING:
    from ..algorithms.L1C_P import L1C_object  # noqa F401  # flake8 issue

55
__author__ = 'Daniel Scheffler'
56
57


58
class GMS_object(Dataset):
59
60
61
62
    # class attributes
    # NOTE: these attributes can be modified and seen by ALL GMS_object instances
    proc_status_all_GMSobjs = nested_dict()

63
64
65
66
    def __init__(self, pathImage=''):
        # get all attributes of base class "Dataset"
        super(GMS_object, self).__init__()

67
        # add private attributes
68
        self._dict_LayerOptTherm = None
69
70
        self._cloud_masking_algorithm = None
        self._meta_odict = None
71
        self._coreg_info = None
72

73
        self.job_ID = CFG.ID
74
        # FIXME not needed anymore?:
75
        # self.dataset_ID = int(DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes', ['datasetid'],
76
77
78
        #                                {'id': self.scene_ID})[0][0]) if self.scene_ID !=-9999 else -9999
        self.scenes_proc_ID = None  # set by Output writer after creation/update of db record in table scenes_proc
        self.mgrs_tiles_proc_ID = None  # set by Output writer after creation/update of db rec in table mgrs_tiles_proc
79
        self.MGRS_info = None
80
81

        # set pathes
82
83
84
85
        self.path_cloud_class_obj = ''

        # handle initialization arguments
        if pathImage:
86
87
            # run the setter for 'arr' of the base class 'Dataset' which creates an Instance of GeoArray
            self.arr = pathImage
88
89
90
91

    def __getstate__(self):
        """Defines how the attributes of GMS object are pickled."""

Daniel Scheffler's avatar
Bugfix    
Daniel Scheffler committed
92
        self.close_loggers()
93
        del self.pathGen  # path generator can only be used for the current processing level
94
95

        # delete arrays if their in-mem size is to big to be pickled
96
        # => (avoids MaybeEncodingError: Error sending result: '[<gms_preprocessing.algorithms.L2C_P.L2C_object
97
        #    object at 0x7fc44f6399e8>]'. Reason: 'error("'i' format requires -2147483648 <= number <= 2147483647",)')
98
        if self.proc_level == 'L2C' and CFG.inmem_serialization:
99
100
            # FIXME check by bandname
            if self.mask_nodata is not None and self.masks.bands > 1 and self.mask_clouds is not None:
101
                del self.masks
102

Daniel Scheffler's avatar
Bugfix    
Daniel Scheffler committed
103
104
        return self.__dict__

105
    def set_pathes(self):
106
107
108
109
110
111
        self.baseN = self.pathGen.get_baseN()
        self.path_procdata = self.pathGen.get_path_procdata()
        self.ExtractedFolder = self.pathGen.get_path_tempdir()
        self.path_logfile = self.pathGen.get_path_logfile()
        self.pathGen = PG.path_generator(self.__dict__)  # passes a logger in addition to previous attributes
        self.path_archive = self.pathGen.get_local_archive_path_baseN()
112

113
        if not CFG.inmem_serialization:
Daniel Scheffler's avatar
Daniel Scheffler committed
114
            self.path_InFilePreprocessor = os.path.join(self.ExtractedFolder, '%s%s_DN.bsq'
115
116
                                                        % (self.entity_ID,
                                                           ('_%s' % self.subsystem if self.subsystem else '')))
117
        else:  # keep data in memory
118
            self.path_InFilePreprocessor = None  # None: keeps all produced data in memory (numpy array attributes)
119
120
121
122
123
124

        self.path_MetaPreprocessor = self.path_archive

    def validate_pathes(self):
        if not os.path.isfile(self.path_archive) and not os.path.isdir(self.path_archive):
            self.logger.info("The %s dataset '%s' has not been processed earlier and no corresponding raw data archive"
125
                             "has been found at %s." % (self.sensor, self.entity_ID, self.path_archive))
126
            self.logger.info('Trying to download the dataset...')
127
            self.path_archive_valid = self._data_downloader(self.sensor, self.entity_ID)
128
129
130
        else:
            self.path_archive_valid = True

131
        if not CFG.inmem_serialization and self.ExtractedFolder and not os.path.isdir(self.ExtractedFolder):
132
133
134
135
136
137
138
            os.makedirs(self.ExtractedFolder)

        assert os.path.exists(self.path_archive), 'Invalid path to RAW data. File %s does not exist at %s.' \
                                                  % (os.path.basename(self.path_archive),
                                                     os.path.dirname(self.path_archive))
        assert isinstance(self.path_archive, str), 'Invalid path to RAW data. Got %s instead of string or unicode.' \
                                                   % type(self.path_archive)
139
        if not CFG.inmem_serialization and self.ExtractedFolder:
140
141
            assert os.path.exists(self.path_archive), \
                'Invalid path for temporary files. Directory %s does not exist.' % self.ExtractedFolder
142
143
144
145
146
147
148
149

    @property
    def logger(self):
        if self._loggers_disabled:
            return None
        if self._logger and self._logger.handlers[:]:
            return self._logger
        else:
150
            self._logger = DatasetLogger('log__' + self.baseN, fmt_suffix=self.scene_ID, path_logfile=self.path_logfile,
151
                                         log_level=CFG.log_level, append=True)
152
153
154
155
            return self._logger

    @logger.setter
    def logger(self, logger):
156
        assert isinstance(logger, logging.Logger) or logger in ['not set', None], \
157
            "GMS_obj.logger can not be set to %s." % logger
158
159

        # save prior logs
160
        # if logger is None and self._logger is not None:
161
        #    self.log += self.logger.captured_stream
162
163
        self._logger = logger

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    @property
    def proc_status(self):
        # type: () -> str
        """
        Get the processing status of the current GMS_object (subclass) instance for the current processing level.

        Possible values: 'initialized', 'running', 'finished', 'failed'
        """
        # NOTE: self.proc_status_all_GMSobjs is a class attribute (visible and modifyable from any other subsystem)
        return self.proc_status_all_GMSobjs[self.scene_ID][self.subsystem][self.proc_level]

    @proc_status.setter
    def proc_status(self, new_status):
        # type: (str) -> None
        self.proc_status_all_GMSobjs[self.scene_ID][self.subsystem][self.proc_level] = new_status

180
181
    @property
    def GMS_identifier(self):
182
183
        return collections.OrderedDict(zip(
            ['image_type', 'Satellite', 'Sensor', 'Subsystem', 'proc_level', 'dataset_ID', 'logger'],
184
185
            [self.image_type, self.satellite, self.sensor, self.subsystem, self.proc_level, self.dataset_ID,
             self.logger]))
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

    @property
    def MetaObj(self):
        if self._meta_odict:
            # if there is already a meta_odict -> create a new MetaObj from it (ensures synchronization!)
            self._MetaObj = METADATA(self.GMS_identifier).from_odict(self._meta_odict)
            del self.meta_odict
        elif not self._MetaObj:
            # if there is no meta_odict and no MetaObj -> create MetaObj by reading metadata from disk
            pass  # reading from disk should use L1A_P.L1A_object.import_metadata -> so just return None

        return self._MetaObj

    @MetaObj.setter
    def MetaObj(self, MetaObj):
        assert isinstance(MetaObj, METADATA), "'MetaObj' can only be set to an instance of METADATA class. " \
202
                                              "Got %s." % type(MetaObj)
203
204
205
        self._MetaObj = MetaObj

        # update meta_odict
206
        del self.meta_odict  # it is recreated if getter is used the next time
207
208
209

    @MetaObj.deleter
    def MetaObj(self):
210
211
212
213
214
        if hasattr(self, '_MetaObj') and self._MetaObj and hasattr(self._MetaObj, 'logger') and \
                self._MetaObj.logger not in [None, 'not set']:
            self._MetaObj.logger.close()
            self._MetaObj.logger = None

215
216
217
218
219
        self._MetaObj = None

    @property
    def meta_odict(self):
        if self._MetaObj:
220
            # if there is already a MetaObj -> create new meta_odict from it (ensures synchronization!)
221
222
223
224
            self._meta_odict = self._MetaObj.to_odict()
            del self.MetaObj
        elif not self._meta_odict:
            # if there is no MetaObj and no meta_odict -> use MetaObj getter to read metadata from disk
225
            pass  # reading from disk should use L1A_P.L1A_object.import_metadata -> so just return None
226
227
228
229
230
231
            self._meta_odict = None

        return self._meta_odict

    @meta_odict.setter
    def meta_odict(self, odict):
232
233
        assert isinstance(odict, (collections.OrderedDict, dict)), "'meta_odict' can only be set to an instance of " \
                                                                   "collections.OrderedDict. Got %s." % type(odict)
234
235
236
        self._meta_odict = odict

        # update MetaObj
237
        del self.MetaObj  # it is recreated if getter is used the next time
238
239
240
241
242

    @meta_odict.deleter
    def meta_odict(self):
        self._meta_odict = None

243
244
245
246
247
    @property
    def dict_LayerOptTherm(self):
        if self._dict_LayerOptTherm:
            return self._dict_LayerOptTherm
        elif self.LayerBandsAssignment:
248
            self._dict_LayerOptTherm = get_dict_LayerOptTherm(self.identifier, self.LayerBandsAssignment)
249
250
251
252
253
254
255
            return self._dict_LayerOptTherm
        else:
            return None

    @property
    def georef(self):
        """Returns True if the current dataset can serve as spatial reference."""
Daniel Scheffler's avatar
Daniel Scheffler committed
256

257
258
259
260
        return True if self.image_type == 'RSD' and re.search('OLI', self.sensor, re.I) else False

    @property
    def coreg_needed(self):
261
        if self._coreg_needed is None:
262
            self._coreg_needed = not (self.dataset_ID == CFG.datasetid_spatial_ref)
263
        return self._coreg_needed
264
265
266
267
268

    @coreg_needed.setter
    def coreg_needed(self, value):
        self._coreg_needed = value

269
270
271
272
273
274
275
276
277
278
279
280
281
282
    @property
    def coreg_info(self):
        if not self._coreg_info:
            self._coreg_info = {
                'corrected_shifts_px': {'x': 0, 'y': 0},
                'corrected_shifts_map': {'x': 0, 'y': 0},
                'original map info': self.meta_odict['map info'],
                'updated map info': None,
                'reference scene ID': None,
                'reference entity ID': None,
                'reference geotransform': None,
                # reference projection must be the own projection in order to avoid overwriting with a wrong EPSG
                'reference projection': self.meta_odict['coordinate system string'],
                'reference extent': {'rows': None, 'cols': None},
283
284
                'reference grid': [list(CFG.spatial_ref_gridx),
                                   list(CFG.spatial_ref_gridy)],
285
286
287
288
289
290
291
292
293
                'success': False
            }

        return self._coreg_info

    @coreg_info.setter
    def coreg_info(self, val):
        self._coreg_info = val

294
295
296
297
    @property
    def resamp_needed(self):
        if self._resamp_needed is None:
            gt = mapinfo2geotransform(self.meta_odict['map info'])
298
299
            self._resamp_needed = not is_coord_grid_equal(gt, CFG.spatial_ref_gridx,
                                                          CFG.spatial_ref_gridy)
300
301
302
303
304
305
306
307
        return self._resamp_needed

    @resamp_needed.setter
    def resamp_needed(self, value):
        self._resamp_needed = value

    @property
    def masks(self):
308
        # if self.mask_nodata is not None and self.mask_clouds is not None and \
309
310
311
312
        #     self._masks is not None and self._masks.bands==1:

        #     self.build_combined_masks_array()

313
314
315
        return self._masks

    @masks.setter
316
    def masks(self, *geoArr_initArgs):
317
318
319
320
        """
        NOTE: This does not automatically update mask_nodata and mask_clouds BUT if mask_nodata and mask_clouds are
        None their getters will automatically synchronize!
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
321

322
        if geoArr_initArgs[0] is not None:
323
            self._masks = GeoArray(*geoArr_initArgs)
324
            self._masks.nodata = 0
325
326
            self._masks.gt = self.arr.gt
            self._masks.prj = self.arr.prj
327
328
        else:
            del self.masks
329

330
331
332
333
    @masks.deleter
    def masks(self):
        self._masks = None

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    @property
    def mask_clouds_confidence(self):
        return self._mask_clouds_confidence

    @mask_clouds_confidence.setter
    def mask_clouds_confidence(self, *geoArr_initArgs):
        if geoArr_initArgs[0] is not None:
            cnfArr = GeoArray(*geoArr_initArgs)

            assert cnfArr.shape == self.arr.shape[:2], \
                "The 'mask_clouds_confidence' GeoArray can only be instanced with an array of the same dimensions " \
                "like GMS_obj.arr. Got %s." % str(cnfArr.shape)

            if cnfArr._nodata is None:
                cnfArr.nodata = DEF_D.get_outFillZeroSaturated(cnfArr.dtype)[0]
            cnfArr.gt = self.arr.gt
            cnfArr.prj = self.arr.prj
            cnfArr.bandnames = ['Confidence of cloud mask']

            self._mask_clouds_confidence = cnfArr
        else:
            del self._mask_clouds_confidence

    @mask_clouds_confidence.deleter
    def mask_clouds_confidence(self):
        self._mask_clouds_confidence = None

    @property
    def ac_errors(self):
        """Returns an instance of GeoArray containing error information calculated by the atmospheric correction.

        :return:
        """

        return self._ac_errors  # FIXME should give a warning if None

    @ac_errors.setter
    def ac_errors(self, *geoArr_initArgs):
        if geoArr_initArgs[0] is not None:
            errArr = GeoArray(*geoArr_initArgs)

            if CFG.ac_bandwise_accuracy:
                assert errArr.shape == self.arr.shape, \
                    "The 'ac_errors' GeoArray can only be instanced with an array of the same dimensions like " \
                    "GMS_obj.arr. Got %s." % str(errArr.shape)
            else:
                assert errArr.shape[:2] == self.arr.shape[:2], \
                    "The 'ac_errors' GeoArray can only be instanced with an array of the same X/Y dimensions like " \
                    "GMS_obj.arr. Got %s." % str(errArr.shape)

            if errArr._nodata is None:
                errArr.nodata = DEF_D.get_outFillZeroSaturated(errArr.dtype)[0]
            errArr.gt = self.arr.gt
            errArr.prj = self.arr.prj
            errArr.bandnames = \
                ['AC errors %s' % bN for bN in self.LBA2bandnames(self.LayerBandsAssignment)]\
                if CFG.ac_bandwise_accuracy else ['median AC errors']

            self._ac_errors = errArr
        else:
            del self.ac_errors

    @ac_errors.deleter
    def ac_errors(self):
        self._ac_errors = None

    @property
    def spec_homo_errors(self):
        """Returns an instance of GeoArray containing error information calculated during spectral homogenization.

        :return:
        """

        return self._spec_homo_errors  # FIXME should give a warning if None

    @spec_homo_errors.setter
    def spec_homo_errors(self, *geoArr_initArgs):
        if geoArr_initArgs[0] is not None:
            errArr = GeoArray(*geoArr_initArgs)

            if CFG.spechomo_bandwise_accuracy:
                assert errArr.shape == self.arr.shape, \
                    "The 'spec_homo_errors' GeoArray can only be instanced with an array of the same dimensions like " \
                    "GMS_obj.arr. Got %s." % str(errArr.shape)
            else:
                assert errArr.shape[:2] == self.arr.shape[:2], \
                    "The 'spec_homo_errors' GeoArray can only be instanced with an array of the same X/Y dimensions " \
                    "like GMS_obj.arr. Got %s." % str(errArr.shape)

            if errArr._nodata is None:
                errArr.nodata = DEF_D.get_outFillZeroSaturated(errArr.dtype)[0]
            errArr.gt = self.arr.gt
            errArr.prj = self.arr.prj
            errArr.bandnames = \
                ['SpecHomo errors %s' % bN for bN in self.LBA2bandnames(self.LayerBandsAssignment)] \
                if CFG.spechomo_bandwise_accuracy else ['median SpecHomo errors']

            self._spec_homo_errors = errArr
        else:
            del self.spec_homo_errors

    @spec_homo_errors.deleter
    def spec_homo_errors(self):
        self._spec_homo_errors = None

    @property
    def accuracy_layers(self):
        errs = OrderedDict((band, getattr(self, band)) for band in DEF_D.bandslist_all_errors)
        errs_data = OrderedDict((band, err) for band, err in errs.items() if isinstance(err, (np.ndarray, GeoArray)))
        bandNames = list(chain.from_iterable([err_data.bandnames for err_data in errs_data.values()]))

        if errs_data:
            if self._accuracy_layers is not None and list(self._accuracy_layers.bandnames.keys()) == bandNames:
                return self._accuracy_layers

            else:
                self.logger.info('Generating combined accuracy layers array..')

452
453
454
455
456
457
458
                if 'ac_errors' in errs_data and self.proc_level == 'L1C' and not CFG.ac_bandwise_accuracy:
                    errs_data['ac_errors'] = GeoArray(np.median(errs_data['ac_errors'], axis=2),
                                                      geotransform=errs_data['ac_errors'].geotransform,
                                                      projection=errs_data['ac_errors'].projection,
                                                      bandnames=['median AC errors']
                                                      )

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
                # set accuracy_layers
                self._accuracy_layers = GeoArray(np.array(np.dstack(errs_data.values()), dtype='int16'),
                                                 geotransform=list(errs_data.values())[0].geotransform,
                                                 projection=list(errs_data.values())[0].projection,
                                                 bandnames=bandNames,
                                                 nodata=DEF_D.get_outFillZeroSaturated('int16')[0])

                return self._accuracy_layers

    @accuracy_layers.setter
    def accuracy_layers(self, geoArr_initArgs):
        if geoArr_initArgs[0] is not None:
            acc_lay = GeoArray(geoArr_initArgs)
            assert acc_lay.shape[:2] == self.arr.shape[:2],\
                "The 'accuracy_layers' GeoArray can only be instanced with an array of the same dimensions like " \
                "GMS_obj.arr. Got %s." % str(acc_lay.shape)

            if acc_lay._nodata is None:
                acc_lay.nodata = DEF_D.get_outFillZeroSaturated(acc_lay.dtype)[0]
            acc_lay.gt = self.arr.gt
            acc_lay.prj = self.arr.prj

            if not acc_lay.bandnames:
                raise ValueError

            self._accuracy_layers = acc_lay
        else:
            del self._accuracy_layers

    @property
    def accuracy_layers_meta(self):
        if self._accuracy_layers is not None:
            return {'map info': geotransform2mapinfo(self._accuracy_layers.gt, self._accuracy_layers.projection),
                    'coordinate system string': self._accuracy_layers.projection,
                    'bands': self._accuracy_layers.bands,
                    'band names': list(self._accuracy_layers.bandnames),
                    'data ignore value': self._accuracy_layers.nodata}
        else:
            return None

499
500
501
    @property
    def cloud_masking_algorithm(self):
        if not self._cloud_masking_algorithm:
502
            self._cloud_masking_algorithm = CFG.cloud_masking_algorithm[self.satellite]
503
504
        return self._cloud_masking_algorithm

505
506
    @property
    def ac_options(self):
507
        # type: () -> dict
508
        """
509
510
        Returns the options dictionary needed as input for atmospheric correction. If an empty dictionary is returned,
        atmospheric correction is not yet available for the current sensor and will later be skipped.
511
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
512

513
        if not self._ac_options:
514
            path_ac_options = CFG.path_custom_sicor_options or PG.get_path_ac_options(self.GMS_identifier)
515

516
            if path_ac_options and os.path.exists(path_ac_options):
517
518
                # don't validate because options contain pathes that do not exist on another server:
                opt_dict = get_ac_options(path_ac_options, validation=False)
519

Daniel Scheffler's avatar
Daniel Scheffler committed
520
                # update some file paths depending on the current environment
521
522
                opt_dict['DEM']['fn'] = CFG.path_dem_proc_srtm_90m
                opt_dict['ECMWF']['path_db'] = CFG.path_ECMWF_db
523
524
525
                opt_dict['S2Image'][
                    'S2_MSI_granule_path'] = None  # only a placeholder -> will always be None for GMS usage
                opt_dict['output'] = []  # outputs are not needed for GMS -> so
526
                opt_dict['report']['report_path'] = os.path.join(self.pathGen.get_path_procdata(), '[TYPE]')
527
                if 'uncertainties' in opt_dict:
528
529
530
531
                    if CFG.ac_estimate_accuracy:
                        opt_dict['uncertainties']['snr_model'] = PG.get_path_snr_model(self.GMS_identifier)
                    else:
                        del opt_dict['uncertainties']  # SICOR will not compute uncertainties if that key is missing
532

533
534
535
536
537
538
                # apply custom configuration
                opt_dict["logger"]['level'] = CFG.log_level
                opt_dict["ram"]['upper_limit'] = CFG.ac_max_ram_gb
                opt_dict["ram"]['unit'] = 'GB'
                opt_dict["AC"]['fill_nonclear_areas'] = CFG.ac_fillnonclear_areas
                opt_dict["AC"]['clear_area_labels'] = CFG.ac_clear_area_labels
539
                # opt_dict['AC']['n_cores'] = CFG.CPUs if CFG.allow_subMultiprocessing else 1
540

541
                self._ac_options = opt_dict
542
543
544
            else:
                self.logger.warning('There is no options file available for atmospheric correction. '
                                    'Atmospheric correction must be skipped.')
545

546
547
        return self._ac_options

548
    def get_copied_dict_and_props(self, remove_privates=False):
549
        # type: (bool) -> dict
550
        """Returns a copy of the current object dictionary including the current values of all object properties."""
551
552
553

        # loggers must be closed
        self.close_GMS_loggers()
554
555
        # this disables automatic recreation of loggers (otherwise loggers are created by using getattr()):
        self._loggers_disabled = True
556
557
558
559
560

        out_dict = self.__dict__.copy()

        # add properties
        property_names = [p for p in dir(self.__class__) if isinstance(getattr(self.__class__, p), property)]
561
        [out_dict.update({propK: copy.copy(getattr(self, propK))}) for propK in property_names]
562
563
564
565
566
567
568
569
570

        # remove private attributes
        if remove_privates:
            out_dict = {k: v for k, v in out_dict.items() if not k.startswith('_')}

        self._loggers_disabled = False  # enables automatic recreation of loggers

        return out_dict

571
572
    def attributes2dict(self, remove_privates=False):
        # type: (bool) -> dict
573
        """Returns a copy of the current object dictionary including the current values of all object properties."""
574
575
576

        # loggers must be closed
        self.close_GMS_loggers()
577
578
        # this disables automatic recreation of loggers (otherwise loggers are created by using getattr()):
        self._loggers_disabled = True
579
580
581
582

        out_dict = self.__dict__.copy()

        # add some selected property values
583
584
        for i in ['GMS_identifier', 'LayerBandsAssignment', 'coreg_needed', 'coreg_info', 'resamp_needed',
                  'dict_LayerOptTherm', 'georef', 'meta_odict']:
585
            out_dict[i] = getattr(self, i)
586
587
588
589
590

        # remove private attributes
        if remove_privates:
            out_dict = {k: v for k, v in out_dict.items() if not k.startswith('_')}

591
        self._loggers_disabled = False  # enables automatic recreation of loggers
592
593
        return out_dict

594
    def _data_downloader(self, sensor, entity_ID):
595
596
597
598
        self.logger.info('Data downloader started.')
        success = False
        " > download source code for Landsat here < "
        if not success:
599
600
            self.logger.critical(
                "Download for %s dataset '%s' failed. No further processing possible." % (sensor, entity_ID))
601
            raise RuntimeError('Archive download failed.')
602
603
        return success

604
605
606
607
608
    def from_disk(self, tuple_GMS_subset):
        """Fills an already instanced GMS object with data from disk. Excludes array attributes in Python mode.

        :param tuple_GMS_subset:    <tuple> e.g. ('/path/gms_file.gms', ['cube', None])
        """
609

610
        path_GMS_file = tuple_GMS_subset[0]
611
        GMSfileDict = INP_R.GMSfile2dict(path_GMS_file)
612
613

        # copy all attributes from GMS file (private attributes are not touched since they are not included in GMS file)
614
        self.meta_odict = GMSfileDict['meta_odict']  # set that first in order to make some getters and setters work
615
616
        for key, value in GMSfileDict.items():
            if key in ['GMS_identifier', 'georef', 'dict_LayerOptTherm']:
617
                continue  # properties that should better be created on the fly
618
619
            try:
                setattr(self, key, value)
620
621
            except Exception:
                raise AttributeError("Can't set attribute %s." % key)
622

623
        self.acq_datetime = datetime.datetime.strptime(self.acq_datetime, '%Y-%m-%d %H:%M:%S.%f%z')
624
625
        self.arr_shape, self.arr_pos = tuple_GMS_subset[1]

626
627
628
        self.arr = self.pathGen.get_path_imagedata()
        # self.mask_nodata and self.mask_clouds are auto-synchronized via self.masks (see their getters):
        self.masks = self.pathGen.get_path_maskdata()
629

630
631
        return copy.copy(self)

632
    def from_sensor_subsystems(self, list_GMS_objs):
633
634
        # type: (List[GMS_object]) -> GMS_object
        # TODO convert to classmethod
635
636
637
638
639
640
        """Merge separate GMS objects belonging to the same scene-ID into ONE GMS object.

        :param list_GMS_objs:   <list> of GMS objects covering the same geographic area but representing different
                                sensor subsystems (e.g. 3 GMS_objects for Sentinel-2 10m/20m/60m bands)
        """

641
        # assertions
642
643
        assert len(list_GMS_objs) > 1, "'GMS_object.from_sensor_subsystems()' expects multiple input GMS objects. " \
                                       "Got %d." % len(list_GMS_objs)
644
        assert all([is_coord_grid_equal(list_GMS_objs[0].arr.gt, *obj.arr.xygrid_specs) for obj in list_GMS_objs[1:]]),\
645
646
647
            "The input GMS objects must have the same pixel grid. Received: %s" \
            % np.array([obj.arr.xygrid_specs for obj in list_GMS_objs])
        assert len(list(set([GMS_obj.proc_level for GMS_obj in list_GMS_objs]))) == 1, \
648
649
650
            "The input GMS objects for GMS_object.from_sensor_subsystems() must have the same processing level."
        subsystems = [GMS_obj.subsystem for GMS_obj in list_GMS_objs]
        assert len(subsystems) == len(list(set(subsystems))), \
651
            "The input 'list_GMS_objs' contains duplicates: %s" % subsystems
652

653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
        ##################
        # merge logfiles #
        ##################

        # read all logs into DataFrame, sort it by the first column
        [GMS_obj.close_GMS_loggers() for GMS_obj in list_GMS_objs]  # close the loggers of the input objects
        paths_inLogs = [GMS_obj.pathGen.get_path_logfile() for GMS_obj in list_GMS_objs]
        allLogs_df = DataFrame()
        for log in paths_inLogs:
            df = read_csv(log, sep='\n', delimiter=':   ', header=None,
                          engine='python')  # engine suppresses a pandas warning
            allLogs_df = allLogs_df.append(
                df)  # FIXME this will log e.g. atm. corr 3 times for S2A -> use captured streams instead?

        allLogs_df = allLogs_df.sort_values(0)

        # set common metadata, needed for logfile
        self.baseN = list_GMS_objs[0].pathGen.get_baseN(merged_subsystems=True)
        self.path_logfile = list_GMS_objs[0].pathGen.get_path_logfile(merged_subsystems=True)
        self.scene_ID = list_GMS_objs[0].scene_ID

        # write the merged logfile and flush previous logger
        np.savetxt(self.path_logfile, np.array(allLogs_df), delimiter=':   ', fmt="%s")
        self.close_GMS_loggers()

678
        # log
679
680
        self.logger.info('Merging the subsystems %s to a single GMS object...'
                         % ', '.join([GMS_obj.subsystem for GMS_obj in list_GMS_objs]))
681
682

        # find the common extent. NOTE: boundsMap is expected in the order [xmin,xmax,ymin,ymax]
683
684
        geoExtents = np.array([GMS_obj.arr.box.boundsMap for GMS_obj in list_GMS_objs])
        common_extent = (min(geoExtents[:, 0]), max(geoExtents[:, 1]), min(geoExtents[:, 2]), max(geoExtents[:, 3]))
685

686
687
688
689
        ##################
        # MERGE METADATA #
        ##################

690
691
692
        # copy all attributes from the first input GMS file (private attributes are not touched)
        for key, value in list_GMS_objs[0].__dict__.copy().items():
            if key in ['GMS_identifier', 'georef', 'dict_LayerOptTherm']:
693
                continue  # properties that should better be created on the fly
694
695
            elif key in ['baseN', 'path_logfile', 'scene_ID', 'subsystem']:
                continue  # either previously set with common values or not needed for merged GMS_object
696
697
            try:
                setattr(self, key, value)
698
699
            except Exception:
                raise AttributeError("Can't set attribute %s." % key)
700

701
        # update LayerBandsAssignment and get full list of output bandnames
702
        from .metadata import get_LayerBandsAssignment
703
704
        # use identifier of first input GMS object for getting LBA (respects current proc_level):
        gms_idf = list_GMS_objs[0].GMS_identifier
705
        self.LayerBandsAssignment = get_LayerBandsAssignment(gms_idf, return_fullLBA=True)
706
        bandnames = ['B%s' % i if len(i) == 2 else 'B0%s' % i for i in self.LayerBandsAssignment]
707
708
709

        # update layer-dependent metadata with respect to remaining input GMS objects
        self.meta_odict.update({
710
711
712
713
            'band names': [('Band %s' % i) for i in self.LayerBandsAssignment],
            'LayerBandsAssignment': self.LayerBandsAssignment,
            'Subsystem': '',
            'PhysUnit': self.meta_odict['PhysUnit'],  # TODO can contain val_optical / val_thermal
714
715
        })
        self.subsystem = ''
716
717
        del self.pathGen  # must be refreshed because subsystem is now ''
        self.close_GMS_loggers()  # must also be refreshed because it depends on pathGen
718

719
720
        for attrN in ['SolIrradiance', 'CWL', 'FWHM', 'Offsets', 'OffsetsRef', 'Gains', 'GainsRef',
                      'ThermalConstK1', 'ThermalConstK2', 'ViewingAngle_arrProv', 'IncidenceAngle_arrProv']:
721
722
723
724
725
726
727

            # combine values from separate subsystems to a single value
            attrDic_fullLBA = {}
            for GMS_obj in list_GMS_objs:
                attr_val = getattr(GMS_obj.MetaObj, attrN)
                if isinstance(attr_val, list):
                    attrDic_fullLBA.update(dict(zip(GMS_obj.LayerBandsAssignment, attr_val)))
728
                elif isinstance(attr_val, (dict, collections.OrderedDict)):
729
730
731
732
733
734
735
                    attrDic_fullLBA.update(attr_val)
                else:
                    raise ValueError(attrN)

            # update the attribute in self.MetaObj
            if attrDic_fullLBA:
                val2set = [attrDic_fullLBA[bN] for bN in self.LayerBandsAssignment] \
736
                    if isinstance(getattr(list_GMS_objs[0].MetaObj, attrN), list) else attrDic_fullLBA
737
738
                setattr(self.MetaObj, attrN, val2set)

739
740
741
        ####################
        # MERGE ARRAY DATA #
        ####################
742

743
        # overwrite array data with merged arrays, clipped to common_extent and reordered according to FullLayerBandsAss
744
745
746
        for attrname in ['arr', 'ac_errors', 'dem', 'mask_nodata', 'mask_clouds', 'mask_clouds_confidence', 'masks']:

            # get current attribute of each subsystem without running property getters
747
            all_arrays = [getattr(GMS_obj, '_%s' % attrname) for GMS_obj in list_GMS_objs]
748
749
750
751
752
753
754
755
756

            # get the same geographical extent for each input GMS object
            if len(set(tuple(ext) for ext in geoExtents.tolist())) > 1:
                # in case of different extents
                geoArrs_same_extent = []

                for geoArr in all_arrays:

                    if geoArr is not None:
757
                        # FIXME mask_clouds_confidence is no GeoArray until here
758
                        # FIXME -> has no nodata value -> calculation throughs warning
759
760
                        geoArr_same_extent = \
                            GeoArray(*geoArr.get_mapPos(
761
762
763
764
                                mapBounds=np.array(common_extent)[[0, 2, 1, 3]],  # pass (xmin, ymin, xmax, ymax)
                                mapBounds_prj=geoArr.prj),
                                     bandnames=list(geoArr.bandnames.keys()),
                                     nodata=geoArr.nodata)
765
766
                        geoArrs_same_extent.append(geoArr_same_extent)
                    else:
767
768
                        # e.g. in case of cloud mask that is only appended to the GMS object with the same
                        # spatial resolution)
769
770
771
772
773
774
                        geoArrs_same_extent.append(None)

            else:
                # skip get_mapPos() if all input GMS objects have the same extent
                geoArrs_same_extent = all_arrays

775
776
            # validate output GeoArrays #
            #############################
777

778
779
            if len([gA for gA in geoArrs_same_extent if gA is not None]) > 1:
                equal_bounds = all([geoArrs_same_extent[0].box.boundsMap == gA.box.boundsMap
780
                                    for gA in geoArrs_same_extent[1:]])
781
782
                equal_epsg = all([geoArrs_same_extent[0].epsg == gA.epsg for gA in geoArrs_same_extent[1:]])
                equal_xydims = all([geoArrs_same_extent[0].shape[:2] == gA.shape[:2] for gA in geoArrs_same_extent[1:]])
783
784
785
786
787
                if not all([equal_bounds, equal_epsg, equal_xydims]):
                    raise RuntimeError('Something went wrong during getting the same geographical extent for all the '
                                       'input GMS objects. The extents, projections or pixel dimensions of the '
                                       'calculated input GMS objects are not equal.')

788
789
            # set output arrays #
            #####################
790

791
792
            # handle those arrays where bands have to be reordered according to FullLayerBandsAssignment
            if attrname in ['arr', 'ac_errors'] and list(set(geoArrs_same_extent)) != [None]:
793
794
                # check that each desired band name for the current attribute is provided by one of the input
                # GMS objects
795
796
                available_bandNs = list(chain.from_iterable([list(gA.bandnames) for gA in geoArrs_same_extent]))
                for bN in bandnames:
797
                    if bN not in available_bandNs:
798
                        raise ValueError("The given input GMS objects (subsystems) do not provide a bandname '%s' for "
799
800
                                         "the attribute '%s'. Available band names amongst all input GMS objects are: "
                                         "%s" % (bN, attrname, str(available_bandNs)))
801
802

                # merge arrays
803
804
                def get_band(bandN):
                    return [gA[bandN] for gA in geoArrs_same_extent if gA and bandN in gA.bandnames][0]
805
806
                full_geoArr = GeoArray(np.dstack((get_band(bandN) for bandN in bandnames)),
                                       geoArrs_same_extent[0].gt, geoArrs_same_extent[0].prj,
807
808
                                       bandnames=bandnames,
                                       nodata=geoArrs_same_extent[0].nodata)
809
810
                setattr(self, attrname, full_geoArr)

811
            # handle the remaining arrays
812
813
814
            else:
                # masks, dem, mask_nodata, mask_clouds, mask_clouds_confidence
                if attrname == 'dem':
815
816
                    # use the DEM of the first input object
                    # (if the grid is the same, the DEMs should be the same anyway)
817
                    self.dem = geoArrs_same_extent[0]
818

819
820
821
                elif attrname == 'mask_nodata':
                    # must not be merged -> self.arr is already merged, so just recalculate it (np.all)
                    self.mask_nodata = self.calc_mask_nodata(overwrite=True)
822

823
824
825
                elif attrname == 'mask_clouds':
                    # possibly only present in ONE subsystem (set by atm. Corr.)
                    mask_clouds = [msk for msk in geoArrs_same_extent if msk is not None]
826
827
                    if len(mask_clouds) > 1:
                        raise ValueError('Expected mask clouds in only one subsystem. Got %s.' % len(mask_clouds))
828
                    self.mask_clouds = mask_clouds[0] if mask_clouds else None
829

830
831
832
                elif attrname == 'mask_clouds_confidence':
                    # possibly only present in ONE subsystem (set by atm. Corr.)
                    mask_clouds_conf = [msk for msk in geoArrs_same_extent if msk is not None]
833
834
835
                    if len(mask_clouds_conf) > 1:
                        raise ValueError(
                            'Expected mask_clouds_conf in only one subsystem. Got %s.' % len(mask_clouds_conf))
836
                    self.mask_clouds_confidence = mask_clouds_conf[0] if mask_clouds_conf else None
837

838
                elif attrname == 'masks':
839
840
841
842
843
844
845
846
                    # self.mask_nodata and self.mask_clouds will already be set here -> so just recreate it from there
                    self.masks = None

        # recreate self.masks
        self.build_combined_masks_array()

        # update array-dependent metadata
        self.meta_odict.update({
847
848
            'samples': self.arr.cols, 'lines': self.arr.rows, 'bands': self.arr.bands,
            'map info': geotransform2mapinfo(self.arr.gt, self.arr.prj), 'coordinate system string': self.arr.prj, })
849
850

        # set shape of full array
851
        self.shape_fullArr = self.arr.shape
852
853
854

        return copy.copy(self)

855
856
857
858
859
860
    def from_tiles(self, list_GMS_tiles):
        # type: (list) -> self
        """Merge separate GMS objects with different spatial coverage but belonging to the same scene-ID to ONE GMS object.

        :param list_GMS_tiles: <list> of GMS objects that have been created by cut_GMS_obj_into_blocks()
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
861

862
863
864
865
866
        if 'IMapUnorderedIterator' in str(type(list_GMS_tiles)):
            list_GMS_tiles = list(list_GMS_tiles)

        # copy all attributes except of array attributes
        tile1 = list_GMS_tiles[0]
867
868
        [setattr(self, i, getattr(tile1, i)) for i in tile1.__dict__
         if not callable(getattr(tile1, i)) and not isinstance(getattr(tile1, i), (np.ndarray, GeoArray))]
869
870

        # MERGE ARRAY-ATTRIBUTES
871
        list_arraynames = [i for i in tile1.__dict__ if not callable(getattr(tile1, i)) and
872
                           isinstance(getattr(tile1, i), (np.ndarray, GeoArray))]
873
874
        list_arraynames = ['_arr'] + [i for i in list_arraynames if
                                      i != '_arr']  # list must start with _arr, otherwise setters will not work
875
876
877
878

        for arrname in list_arraynames:
            samplearray = getattr(tile1, arrname)
            assert isinstance(samplearray, (np.ndarray, GeoArray)), \
879
                'Received a %s object for attribute %s. Expected a numpy array or an instance of GeoArray.' \
880
                % (type(samplearray), arrname)
881
882
            is_3d = samplearray.ndim == 3
            bands = (samplearray.shape[2],) if is_3d else ()  # dynamic -> works for arr, cld_arr,...
883
884
885
886
            target_shape = tuple(self.shape_fullArr[:2]) + bands
            target_dtype = samplearray.dtype
            merged_array = self._numba_array_merger(list_GMS_tiles, arrname, target_shape, target_dtype)

887
888
            setattr(self, arrname if not arrname.startswith('_') else arrname[1:],
                    merged_array)  # use setters if possible
889
890
891
892
            # NOTE: this asserts that each attribute starting with '_' has also a property with a setter!

        # UPDATE ARRAY-DEPENDENT ATTRIBUTES
        self.arr_shape = 'cube'
893
        self.arr_pos = None
894
895
896

        # update MetaObj attributes
        self.meta_odict.update({
897
898
            'samples': self.arr.cols, 'lines': self.arr.rows, 'bands': self.arr.bands,
            'map info': geotransform2mapinfo(self.arr.gt, self.arr.prj), 'coordinate system string': self.arr.prj, })
899
900
901
902

        # calculate data_corners_imXY (mask_nodata is always an array here because get_mapPos always returns an array)
        corners_imYX = calc_FullDataset_corner_positions(
            self.mask_nodata, assert_four_corners=False, algorithm='shapely')
903
        self.trueDataCornerPos = [(YX[1], YX[0]) for YX in corners_imYX]  # [UL, UR, LL, LR]
904
905
906
907
908
909

        # calculate trueDataCornerLonLat
        data_corners_LatLon = pixelToLatLon(self.trueDataCornerPos, geotransform=self.arr.gt, projection=self.arr.prj)
        self.trueDataCornerLonLat = [(YX[1], YX[0]) for YX in data_corners_LatLon]

        # calculate trueDataCornerUTM
910
911
        data_corners_utmYX = pixelToMapYX(self.trueDataCornerPos, geotransform=self.arr.gt,
                                          projection=self.arr.prj)  # FIXME asserts gt in UTM coordinates
912
913
914
915
        self.trueDataCornerUTM = [(YX[1], YX[0]) for YX in data_corners_utmYX]

        return copy.copy(self)

916
917
918
    @staticmethod
    @jit
    def _numba_array_merger(list_GMS_tiles, arrname2merge, target_shape, target_dtype):
Daniel Scheffler's avatar
Daniel Scheffler committed
919
        # type: (list, str, tuple, np.dtype) -> np.ndarray
920
921
922
923
924
925
926
927
928
        """
        private function, e.g. called by merge_GMS_tiles_to_GMS_obj() in order to fasten array merging

        :param list_GMS_tiles:
        :param arrname2merge:
        :param target_shape:
        :param target_dtype:
        :return:
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
929

930
931
932
933
934
935
936
        out_arr = np.empty(target_shape, dtype=target_dtype)
        for idx, tile in enumerate(list_GMS_tiles):
            rowStart, rowEnd = tile.arr_pos[0]
            colStart, colEnd = tile.arr_pos[1]
            out_arr[rowStart:rowEnd + 1, colStart:colEnd + 1] = getattr(tile, arrname2merge)
        return out_arr

Daniel Scheffler's avatar
Daniel Scheffler committed
937
    def log_for_fullArr_or_firstTile(self, log_msg, subset=None):
938
939
940
941
942
943
944
        """Send a message to the logger only if full array or the first tile is currently processed.
        This function can be called when processing any tile but log message will only be sent from first tile.

        :param log_msg:  the log message to be logged
        :param subset:   subset argument as sent to e.g. DN2TOARadRefTemp that indicates which tile is to be processed.
                         Not needed if self.arr_pos is not None.
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
945

946
947
948
949
        if subset is None and \
            (self.arr_shape == 'cube' or self.arr_pos is None or [self.arr_pos[0][0], self.arr_pos[1][0]] == [0, 0]) or\
                subset == ['cube', None] or (subset and [subset[1][0][0], subset[1][1][0]] == [0, 0]) or \
                hasattr(self, 'logAtThisTile') and getattr(self, 'logAtThisTile'):  # cube or 1st tile
Daniel Scheffler's avatar
Daniel Scheffler committed
950
            self.logger.info(log_msg)
951
952
953
954
        else:
            pass

    def apply_nodata_mask_to_ObjAttr(self, attrname, out_nodata_val=None):
955
        # type: (str,int) -> None
956
        """Applies self.mask_nodata to the specified array attribute by setting all values where mask_nodata is 0 to the
957
958
959
960
961
962
963
        given nodata value.

        :param attrname:         The attribute to apply the nodata mask to. Must be an array attribute or
                                 a string path to a previously saved ENVI-file.
        :param out_nodata_val:   set the values of the given attribute to this value.
        """

964
        assert hasattr(self, attrname)
965

966
        if getattr(self, attrname) is not None:
967

968
969
970
            if isinstance(getattr(self, attrname), str):
                update_spec_vals = True if attrname == 'arr' else False
                self.apply_nodata_mask_to_saved_ENVIfile(getattr(self, attrname), out_nodata_val, update_spec_vals)
971
            else:
972
                assert isinstance(getattr(self, attrname), (np.ndarray, GeoArray)), \
973
                    'L1A_obj.%s must be a numpy array or an instance of GeoArray. Got type %s.' \
974
975
                    % (attrname, type(getattr(self, attrname)))
                assert hasattr(self, 'mask_nodata') and self.mask_nodata is not None
976

977
                self.log_for_fullArr_or_firstTile('Applying nodata mask to L1A_object.%s...' % attrname)
978

979
                nodata_val = out_nodata_val if out_nodata_val else \
980
                    DEF_D.get_outFillZeroSaturated(getattr(self, attrname).dtype)[0]
981
                getattr(self, attrname)[self.mask_nodata.astype(np.int8) == 0] = nodata_val
982

983
984
                if attrname == 'arr':
                    self.MetaObj.spec_vals['fill'] = nodata_val
985
986
987
988
989
990

    def build_combined_masks_array(self):
        # type: () -> dict
        """Generates self.masks attribute (unsigned integer 8bit) from by concatenating all masks included in GMS obj.
        The corresponding metadata is assigned to L1A_obj.masks_meta. Empty mask attributes are skipped."""

991
        arrays2combine = [aN for aN in ['mask_nodata', 'mask_clouds']
992
                          if hasattr(self, aN) and isinstance(getattr(self, aN), (GeoArray, np.ndarray))]
993
994
        if arrays2combine:
            self.log_for_fullArr_or_firstTile('Combining masks...')
995
996

            def get_data(arrName): return getattr(self, arrName).astype(np.uint8)[:, :, None]
997
998

            for aN in arrays2combine:
999
                if False in np.equal(getattr(self, aN), getattr(self, aN).astype(np.uint8)):
1000
1001
1002
                    warnings.warn('Some pixel values of attribute %s changed during data type '
                                  'conversion within build_combined_masks_array().')

1003
            # set self.masks
1004
1005
1006
            self.masks = get_data(arrays2combine[0]) if len(arrays2combine) == 1 else \
                np.concatenate([get_data(aN) for aN in arrays2combine], axis=2)
            self.masks.bandnames = arrays2combine  # set band names of GeoArray (allows later indexing by band name)
1007

1008
            # set self.masks_meta
1009
            nodataVal = DEF_D.get_outFillZeroSaturated(self.masks.dtype)[0]
1010
            self.masks_meta = {'map info': self.MetaObj.map_info, 'coordinate system string': self.MetaObj.projection,
1011
1012
                               'bands': len(arrays2combine), 'band names': arrays2combine,
                               'data ignore value': nodataVal}
1013
1014

            return {'desc': 'masks', 'row_start': 0, 'row_end': self.shape_fullArr[0],
1015
                    'col_start': 0, 'col_end': self.shape_fullArr[1], 'data': self.masks}  # usually not needed
1016
1017

    def apply_nodata_mask_to_saved_ENVIfile(self, path_saved_ENVIhdr, custom_nodata_val=None, update_spec_vals=False):
1018
        # type: (str,int,bool) -> None
1019
1020
        """Applies self.mask_nodata to a saved ENVI file with the same X/Y dimensions like self.mask_nodata by setting all
         values where mask_nodata is 0 to the given nodata value.
1021
1022
1023
1024
1025
1026
1027
1028

        :param path_saved_ENVIhdr:  <str> The path of the ENVI file to apply the nodata mask to.
        :param custom_nodata_val:   <int> set the values of the given attribute to this value.
        :param update_spec_vals:    <bool> whether to update self.MetaObj.spec_vals['fill']
        """

        self.log_for_fullArr_or_firstTile('Applying nodata mask to saved ENVI file...')
        assert os.path.isfile(path_saved_ENVIhdr)
1029
1030
1031
        assert hasattr(self, 'mask_nodata') and self.mask_nodata is not None
        if not path_saved_ENVIhdr.endswith('.hdr') and os.path.isfile(os.path.splitext(path_saved_ENVIhdr)[0] + '.hdr'):
            path_saved_ENVIhdr = os.path.splitext(path_saved_ENVIhdr)[0] + '.hdr'
1032
        if custom_nodata_val is None:
1033
            dtype_IDL = int(INP_R.read_ENVIhdr_to_dict(path_saved_ENVIhdr)['data type'])
1034
            nodata_val = DEF_D.get_outFillZeroSaturated(DEF_D.dtype_lib_IDL_Python[dtype_IDL])[0]
1035
1036
        else:
            nodata_val = custom_nodata_val
1037
        FileObj = spectral.open_image(path_saved_ENVIhdr)
1038
        File_memmap = FileObj.open_memmap(writable=True)
1039
        File_memmap[self.mask_nodata == 0] = nodata_val
1040
1041
        if update_spec_vals:
            self.MetaObj.spec_vals['fill'] = nodata_val
1042
1043

    def combine_tiles_to_ObjAttr(self, tiles, target_attr):
1044
        # type: (list,str) -> None
1045
        """Combines tiles, e.g. produced by L1A_P.L1A_object.DN2TOARadRefTemp() to a single attribute.
1046
        If CFG.inmem_serialization is False, the produced attribute is additionally written to disk.
1047
1048
1049
1050
1051

        :param tiles:           <list> a list of dictionaries with the keys 'desc', 'data', 'row_start','row_end',
                                'col_start' and 'col_end'
        :param target_attr:     <str> the name of the attribute to be produced
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
1052