L1B_P.py 35.7 KB
Newer Older
Daniel Scheffler's avatar
Daniel Scheffler committed
1
# -*- coding: utf-8 -*-
2
3
4
5
6
7
"""
Level 1B Processor:

Detection of global/local geometric displacements.
"""

Daniel Scheffler's avatar
Daniel Scheffler committed
8

9
import collections
10
import os
11
import socket
12
import time
13
import warnings
14
from datetime import datetime, timedelta
15
16

import numpy as np
17
from geopandas import GeoDataFrame
18
from shapely.geometry import box
19
import pytz
20
from typing import Union  # noqa F401  # flake8 issue
Daniel Scheffler's avatar
Daniel Scheffler committed
21

22
from arosics import COREG, DESHIFTER
23
from geoarray import GeoArray
24
25
26
27
28
29
from py_tools_ds.geo.coord_grid import is_coord_grid_equal
from py_tools_ds.geo.coord_calc import corner_coord_to_minmax
from py_tools_ds.geo.coord_trafo import reproject_shapelyGeometry, transform_any_prj
from py_tools_ds.geo.projection import prj_equal, EPSG2WKT, WKT2EPSG
from py_tools_ds.geo.vector.topology import get_overlap_polygon

30
from ..options.config import GMS_config as CFG
31
from ..model.gms_object import GMS_object
32
33
34
35
from .L1A_P import L1A_object
from ..misc import database_tools as DB_T
from ..misc import helper_functions as HLP_F
from ..misc import path_generator as PG
36
from ..misc.spatial_index_mediator import SpatialIndexMediator
37
from ..misc.definition_dicts import get_GMS_sensorcode, get_outFillZeroSaturated
38

39
__author__ = 'Daniel Scheffler'
40
41


42
class Scene_finder(object):
43
44
    """Scene_finder class to query the postgreSQL database to find a suitable reference scene for co-registration."""

45
46
    def __init__(self, src_boundsLonLat, src_AcqDate, src_prj, src_footprint_poly, sceneID_excluded=None,
                 min_overlap=20, min_cloudcov=0, max_cloudcov=20, plusminus_days=30, plusminus_years=10):
47
48
49
50
51
52
53
54
55
56
57
58
59
        """Initialize Scene_finder.

        :param src_boundsLonLat:
        :param src_AcqDate:
        :param src_prj:
        :param src_footprint_poly:
        :param sceneID_excluded:
        :param min_overlap:         minimum overlap of reference scene in percent
        :param min_cloudcov:        minimum cloud cover of reference scene in percent
        :param max_cloudcov:        maximum cloud cover of reference scene in percent
        :param plusminus_days:      maximum time interval between target and reference scene in days
        :param plusminus_years:     maximum time interval between target and reference scene in years
        """
60
61
62
        self.boundsLonLat = src_boundsLonLat
        self.src_AcqDate = src_AcqDate
        self.src_prj = src_prj
63
        self.src_footprint_poly = src_footprint_poly
64
        self.sceneID_excluded = sceneID_excluded
65
66
67
68
69
        self.min_overlap = min_overlap
        self.min_cloudcov = min_cloudcov
        self.max_cloudcov = max_cloudcov
        self.plusminus_days = plusminus_days
        self.plusminus_years = plusminus_years
70

71
        # get temporal constraints
72
        def add_years(dt, years): return dt.replace(dt.year + years) \
73
74
75
            if not (dt.month == 2 and dt.day == 29) else dt.replace(dt.year + years, 3, 1)
        self.timeStart = add_years(self.src_AcqDate, -plusminus_years)
        timeEnd = add_years(self.src_AcqDate, +plusminus_years)
76
77
        timeNow = datetime.utcnow().replace(tzinfo=pytz.UTC)
        self.timeEnd = timeEnd if timeEnd <= timeNow else timeNow
78

79
80
81
        self.possib_ref_scenes = None  # set by self.spatial_query()
        self.GDF_ref_scenes = GeoDataFrame()  # set by self.spatial_query()
        self.ref_scene = None
82

83
    def spatial_query(self, timeout=5):
84
85
86
87
        """Query the postgreSQL database to find possible reference scenes matching the specified criteria.

        :param timeout:     maximum query duration allowed (seconds)
        """
88
89
        for i in range(10):
            try:
90
91
92
                SpIM = SpatialIndexMediator(host=CFG.spatial_index_server_host,
                                            port=CFG.spatial_index_server_port,
                                            timeout=timeout)
93
                self.possib_ref_scenes = \
94
                    SpIM.getFullSceneDataForDataset(self.boundsLonLat, self.timeStart, self.timeEnd, self.min_cloudcov,
95
                                                    self.max_cloudcov, CFG.datasetid_spatial_ref,
96
                                                    refDate=self.src_AcqDate, maxDaysDelta=self.plusminus_days)
97
98
                break
            except socket.timeout:
99
                if i < 9:
100
101
102
                    continue
                else:
                    raise TimeoutError('Spatial query timed out 10 times!')
103
104
                    # TODO catch error when index server is not running:
                    # TODO ConnectionRefusedError: [Errno 111] Connection refused
105

106
107
108
        if self.possib_ref_scenes:
            # fill GeoDataFrame with possible ref scene parameters
            GDF = GeoDataFrame(self.possib_ref_scenes, columns=['object'])
109
110
111
112
            GDF['sceneid'] = list(GDF['object'].map(lambda scene: scene.sceneid))
            GDF['acquisitiondate'] = list(GDF['object'].map(lambda scene: scene.acquisitiondate))
            GDF['cloudcover'] = list(GDF['object'].map(lambda scene: scene.cloudcover))
            GDF['polyLonLat'] = list(GDF['object'].map(lambda scene: scene.polyLonLat))
113

114
115
            def LonLat2UTM(polyLL):
                return reproject_shapelyGeometry(polyLL, 4326, self.src_prj)
116

117
118
            GDF['polyUTM'] = list(GDF['polyLonLat'].map(LonLat2UTM))
            self.GDF_ref_scenes = GDF
119

120
121
122
    def _collect_refscene_metadata(self):
        """Collect some reference scene metadata needed for later filtering."""
        GDF = self.GDF_ref_scenes
123

124
125
126
127
128
129
130
131
132
133
134
        # get overlap parameter
        def get_OL_prms(poly): return get_overlap_polygon(poly, self.src_footprint_poly)

        GDF['overlapParams'] = list(GDF['polyLonLat'].map(get_OL_prms))
        GDF['overlap area'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap area']))
        GDF['overlap percentage'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap percentage']))
        GDF['overlap poly'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap poly']))
        del GDF['overlapParams']

        # get processing level of reference scenes
        procL = GeoDataFrame(
135
            DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes_proc', ['sceneid', 'proc_level'],
136
137
138
139
140
141
142
143
144
145
146
147
                                            {'sceneid': list(GDF.sceneid)}), columns=['sceneid', 'proc_level'])
        GDF = GDF.merge(procL, on='sceneid', how='left')
        GDF = GDF.where(GDF.notnull(), None)  # replace NaN values with None

        # get path of binary file
        def get_path_binary(GDF_row):
            return PG.path_generator(scene_ID=GDF_row['sceneid'], proc_level=GDF_row['proc_level']) \
                .get_path_imagedata() if GDF_row['proc_level'] else None
        GDF['path_ref'] = GDF.apply(lambda GDF_row: get_path_binary(GDF_row), axis=1)
        GDF['refDs_exists'] = list(GDF['path_ref'].map(lambda p: os.path.exists(p) if p else False))

        # check if a proper entity ID can be gathered from database
148
        eID = GeoDataFrame(DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes', ['id', 'entityid'],
149
150
151
152
153
154
155
156
157
                                                           {'id': list(GDF.sceneid)}), columns=['sceneid', 'entityid'])
        GDF = GDF.merge(eID, on='sceneid', how='left')
        self.GDF_ref_scenes = GDF.where(GDF.notnull(), None)

    def _filter_excluded_sceneID(self):
        """Filter reference scene with the same scene ID like the target scene."""
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
            self.GDF_ref_scenes = GDF.loc[GDF['sceneid'] != self.sceneID_excluded]
158

159
    def _filter_by_overlap(self):
160
        """Filter all scenes with less spatial overlap than self.min_overlap."""
161
162
163
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
            self.GDF_ref_scenes = GDF.loc[GDF['overlap percentage'] >= self.min_overlap]
164

165
    def _filter_by_proc_status(self):
166
        """Filter all scenes that have not been processed before according to proc. status (at least L1A is needed)."""
167
168
169
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
            self.GDF_ref_scenes = GDF[GDF['proc_level'].notnull()]
170

171
    def _filter_by_dataset_existance(self):
172
        """Filter all scenes where no processed data can be found on fileserver."""
173
174
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
175
            self.GDF_ref_scenes = GDF[GDF['refDs_exists']]
176

177
    def _filter_by_entity_ID_availability(self):
178
        """Filter all scenes where no proper entity ID can be found in the database (database errors)."""
179
180
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
181
            self.GDF_ref_scenes = GDF[GDF['entityid'].notnull()]
182

183
    def _filter_by_projection(self):
184
        """Filter all scenes that have a different projection than the target image."""
185
        GDF = self.GDF_ref_scenes[self.GDF_ref_scenes.refDs_exists]
186
187
        if not GDF.empty:
            # compare projections of target and reference image
188
189
            GDF['prj_equal'] = \
                list(GDF['path_ref'].map(lambda path_ref: prj_equal(self.src_prj, GeoArray(path_ref).prj)))
190

191
            self.GDF_ref_scenes = GDF[GDF['prj_equal']]
192

193
194
    def choose_ref_scene(self):
        """Choose reference scene with minimum cloud cover and maximum overlap."""
195
196
197
        if self.possib_ref_scenes:
            # First, collect some relavant reference scene metadata
            self._collect_refscene_metadata()
198

199
200
201
202
203
204
205
            # Filter possible scenes by running all filter functions
            self._filter_excluded_sceneID()
            self._filter_by_overlap()
            self._filter_by_proc_status()
            self._filter_by_dataset_existance()
            self._filter_by_entity_ID_availability()
            self._filter_by_projection()
206

207
208
209
210
211
        # Choose the reference scene out of the filtered DataFrame
        if not self.GDF_ref_scenes.empty:
            GDF = self.GDF_ref_scenes
            GDF = GDF[GDF['cloudcover'] == GDF['cloudcover'].min()]
            GDF = GDF[GDF['overlap percentage'] == GDF['overlap percentage'].max()]
212

213
214
215
216
217
            if not GDF.empty:
                GDF_res = GDF.iloc[0]
                return ref_Scene(GDF_res)
        else:
            return None
218

219

220
221
class ref_Scene:
    def __init__(self, GDF_record):
222
223
224
        self.scene_ID = int(GDF_record['sceneid'])
        self.entity_ID = GDF_record['entityid']
        self.AcqDate = GDF_record['acquisitiondate']
225
226
        self.cloudcover = GDF_record['cloudcover']
        self.polyLonLat = GDF_record['polyLonLat']
227
        self.polyUTM = GDF_record['polyUTM']
228
        self.proc_level = GDF_record['proc_level']
229
        self.filePath = GDF_record['path_ref']
230
231
232
233
234


class L1B_object(L1A_object):
    def __init__(self, L1A_obj=None):

235
        super(L1B_object, self).__init__()
236
237
238

        # set defaults
        self._spatRef_available = None
239
240
        self.spatRef_scene = None  # set by self.get_spatial_reference_scene()
        self.deshift_results = collections.OrderedDict()
241
242
243
244
245
246

        if L1A_obj:
            # populate attributes
            [setattr(self, key, value) for key, value in L1A_obj.__dict__.items()]

        self.proc_level = 'L1B'
247
        self.proc_status = 'initialized'
248
249
250

    @property
    def spatRef_available(self):
251
        if self._spatRef_available is not None:
252
253
254
255
256
257
258
259
260
261
            return self._spatRef_available
        else:
            self.get_spatial_reference_scene()
            return self._spatRef_available

    @spatRef_available.setter
    def spatRef_available(self, spatRef_available):
        self._spatRef_available = spatRef_available

    def get_spatial_reference_scene(self):
262
        boundsLonLat = corner_coord_to_minmax(self.trueDataCornerLonLat)
263
        footprint_poly = HLP_F.CornerLonLat_to_shapelyPoly(self.trueDataCornerLonLat)
264
        RSF = Scene_finder(boundsLonLat, self.acq_datetime, self.meta_odict['coordinate system string'],
265
266
267
268
269
270
                           footprint_poly, self.scene_ID,
                           min_overlap=CFG.spatial_ref_min_overlap,
                           min_cloudcov=CFG.spatial_ref_min_cloudcov,
                           max_cloudcov=CFG.spatial_ref_max_cloudcov,
                           plusminus_days=CFG.spatial_ref_plusminus_days,
                           plusminus_years=CFG.spatial_ref_plusminus_years)
271
272
273
274
275
276
277

        # run spatial query
        self.logger.info('Querying database in order to find a suitable reference scene for co-registration.')
        RSF.spatial_query(timeout=5)
        if RSF.possib_ref_scenes:
            self.logger.info('Query result: %s reference scenes with matching metadata.' % len(RSF.possib_ref_scenes))

278
279
280
281
282
283
284
285
286
287
288
            # try to get a spatial reference scene by applying some filter criteria
            self.spatRef_scene = RSF.choose_ref_scene()  # type: Union[ref_Scene, None]
            if self.spatRef_scene:
                self.spatRef_available = True
                self.logger.info('Found a suitable reference image for coregistration: scene ID %s (entity ID %s).'
                                 % (self.spatRef_scene.scene_ID, self.spatRef_scene.entity_ID))
            else:
                self.spatRef_available = False
                self.logger.warning('No scene fulfills all requirements to serve as spatial reference for scene %s '
                                    '(entity ID %s). Coregistration impossible.' % (self.scene_ID, self.entity_ID))

289
        else:
290
            self.logger.warning('Spatial query returned no matches. Coregistration impossible.')
291
            self.spatRef_available = False
292
293

    def _get_reference_image_params_pgSQL(self):
294
        # TODO implement earlier version of this function as a backup for SpatialIndexMediator
295
296
        """postgreSQL query: get IDs of overlapping scenes and select most suitable scene_ID
            (with respect to DGM, cloud cover"""
297
298
        warnings.warn('_get_reference_image_params_pgSQL is deprecated an will not work anymore.', DeprecationWarning)

299
300
        # vorab-check anhand wolkenmaske, welche region von im2shift überhaupt für shift-corr tauglich ist
        # -> diese region als argument in postgresql abfrage
301
        # scene_ID            = 14536400 # LE71510322000093SGS00 im2shift
302

303
        # set query conditions
304
305
        min_overlap = 20  # %
        max_cloudcov = 20  # %
306
        plusminus_days = 30
307
308
        AcqDate = self.im2shift_objDict['acquisition_date']
        date_minmax = [AcqDate - timedelta(days=plusminus_days), AcqDate + timedelta(days=plusminus_days)]
309
        dataset_cond = 'datasetid=%s' % CFG.datasetid_spatial_ref
310
311
312
313
314
        cloudcov_cond = 'cloudcover < %s' % max_cloudcov
        # FIXME cloudcover noch nicht für alle scenes im proc_level METADATA verfügbar
        dayrange_cond = "(EXTRACT(MONTH FROM scenes.acquisitiondate), EXTRACT(DAY FROM scenes.acquisitiondate)) " \
                        "BETWEEN (%s, %s) AND (%s, %s)" \
                        % (date_minmax[0].month, date_minmax[0].day, date_minmax[1].month, date_minmax[1].day)
315
316
        # TODO weitere Kriterien einbauen!

317
318
        def query_scenes(condlist):
            return DB_T.get_overlapping_scenes_from_postgreSQLdb(
319
                CFG.conn_database,
320
321
322
323
324
                table='scenes',
                tgt_corners_lonlat=self.trueDataCornerLonLat,
                conditions=condlist,
                add_cmds='ORDER BY scenes.cloudcover ASC',
                timeout=30000)
325
326
        conds_descImportance = [dataset_cond, cloudcov_cond, dayrange_cond]

327
        self.logger.info('Querying database in order to find a suitable reference scene for co-registration.')
328

329
        count, filt_overlap_scenes = 0, []
330
        while not filt_overlap_scenes:
331
332
333
334
            if count == 0:
                # search within already processed scenes
                # das ist nur Ergebnis aus scenes_proc
                # -> dort liegt nur eine referenz, wenn die szene schon bei CFG.job-Beginn in Datensatzliste drin war
335
                res = DB_T.get_overlapping_scenes_from_postgreSQLdb(
336
                    CFG.conn_database,
337
                    tgt_corners_lonlat=self.trueDataCornerLonLat,
338
                    conditions=['datasetid=%s' % CFG.datasetid_spatial_ref],
339
340
                    add_cmds='ORDER BY scenes.cloudcover ASC',
                    timeout=25000)
341
                filt_overlap_scenes = self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], 20.)
342

343
            else:
344
345
346
                # search within complete scenes table using less filter criteria with each run
                # TODO: Daniels Index einbauen, sonst  bei wachsender Tabellengröße evtl. irgendwann zu langsam
                res = query_scenes(conds_descImportance)
347
                filt_overlap_scenes = self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], min_overlap)
348

349
                if len(conds_descImportance) > 1:  # FIXME anderer Referenzsensor?
350
351
352
353
                    del conds_descImportance[-1]
                else:  # reduce min_overlap to 10 percent if there are overlapping scenes
                    if res:
                        min_overlap = 10
354
355
                        filt_overlap_scenes = \
                            self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], min_overlap)
356
357

                    # raise warnings if no match found
358
                    if not filt_overlap_scenes:
359
360
                        if not res:
                            warnings.warn('No reference scene found for %s (scene ID %s). Coregistration of this scene '
361
                                          'failed.' % (self.baseN, self.scene_ID))
362
363
364
                        else:
                            warnings.warn('Reference scenes for %s (scene ID %s) have been found but none has more '
                                          'than %s percent overlap. Coregistration of this scene failed.'
365
                                          % (self.baseN, self.scene_ID, min_overlap))
366
                        break
367
            count += 1
368
369
370
371

        if filt_overlap_scenes:
            ref_available = False
            for count, sc in enumerate(filt_overlap_scenes):
372
                if count == 2:  # FIXME Abbuch schon bei 3. Szene?
373
                    warnings.warn('No reference scene for %s (scene ID %s) available. '
374
                                  'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
375
376
377
                    break

                # start download of scene data not available and start L1A processing
378
                def dl_cmd(scene_ID): print('%s %s %s' % (
379
380
                    CFG.java_commands['keyword'].strip(),  # FIXME CFG.java_commands is deprecated
                    CFG.java_commands["value_download"].strip(), scene_ID))
381

382
                path = PG.path_generator(scene_ID=sc['scene_ID']).get_path_imagedata()
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
383

384
385
386
387
388
389
390
391
                if not os.path.exists(path):
                    # add scene 2 download to scenes_jobs.missing_scenes

                    # print JAVA download command
                    t_dl_start = time.time()
                    dl_cmd(sc['scene_ID'])

                    # check if scene is downloading
392
393
                    download_start_timeout = 5  # seconds
                    # set timout for external processing
394
                    # -> DEPRECATED BECAUSE CREATION OF EXTERNAL CFG WITHIN CFG IS NOT ALLOWED
395
                    processing_timeout = 5  # seconds # FIXME increase timeout if processing is really started
396
397
398
                    proc_level = None
                    while True:
                        proc_level_chk = DB_T.get_info_from_postgreSQLdb(
399
                            CFG.conn_database, 'scenes', ['proc_level'], {'id': sc['scene_ID']})[0][0]
400
                        if proc_level != proc_level_chk:
401
                            print('Reference scene %s, current processing level: %s' % (sc['scene_ID'], proc_level_chk))
402
                        proc_level = proc_level_chk
403
404
                        if proc_level_chk in ['SCHEDULED', 'METADATA'] and \
                           time.time() - t_dl_start >= download_start_timeout:
405
                            warnings.warn('Download of reference scene %s (entity ID %s) timed out. '
406
                                          'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
407
408
                            break
                        if proc_level_chk == 'L1A':
409
410
411
412
                            ref_available = True
                            break
                        elif proc_level_chk == 'DOWNLOADED' and time.time() - t_dl_start >= processing_timeout:
                            # proc_level='DOWNLOADED' but scene has not been processed
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
413
414
415
                            warnings.warn('L1A processing of reference scene %s (entity ID %s) timed out. '
                                          'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
                            break
416
                            # DB_T.set_info_in_postgreSQLdb(CFG.conn_database,'scenes',
417
                            #                             {'proc_level':'METADATA'},{'id':sc['scene_ID']})
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
418

419
420
421
422
423
424
425
                        time.sleep(5)
                else:
                    ref_available = True

                if not ref_available:
                    continue
                else:
426
427
                    self.path_imref = path
                    self.imref_scene_ID = sc['scene_ID']
428
                    self.imref_footprint_poly = sc['scene poly']
429
430
431
432
                    self.overlap_poly = sc['overlap poly']
                    self.overlap_percentage = sc['overlap percentage']
                    self.overlap_area = sc['overlap area']

433
                    query_res = DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes', ['entityid'],
434
435
436
                                                                {'id': self.imref_scene_ID}, records2fetch=1)
                    assert query_res != [], 'No entity-ID found for scene number %s' % self.imref_scene_ID
                    self.imref_entity_ID = query_res[0][0]  # [('LC81510322013152LGN00',)]
437
                    break
438
        self.logger.close()
439

440
    def _sceneIDList_to_filt_overlap_scenes(self, sceneIDList, min_overlap):
441
442
443
        """find reference scenes that cover at least 20% of the scene with the given ID
        ONLY FIRST 50 scenes are considered"""

444
445
446
        # t0 = time.time()
        dict_sceneID_poly = [{'scene_ID': ID, 'scene poly': HLP_F.scene_ID_to_shapelyPolygon(ID)}
                             for ID in sceneIDList]  # always returns LonLot polygons
447
448

        # get overlap polygons and their parameters. result: [{overlap poly, overlap percentage, overlap area}]
449
450
        for dic in dict_sceneID_poly:  # input: dicts {scene_ID, ref_poly}
            dict_overlap_poly_params = get_overlap_polygon(dic['scene poly'], self.arr.footprint_poly)
451
            dic.update(dict_overlap_poly_params)  # adds {overlap poly, overlap percentage, overlap area}
452
        # print('polygon creation time', time.time()-t0)
453
454
455
456
457
458
459
460

        # filter those scene_IDs out where overlap percentage is below 20%
        if min_overlap:
            filt_overlap_scenes = [scene for scene in dict_sceneID_poly if scene['overlap percentage'] >= min_overlap]
        else:
            filt_overlap_scenes = dict_sceneID_poly

        return filt_overlap_scenes
461

462
463
464
465
466
467
    def get_opt_bands4matching(self, target_cwlPos_nm=550, v=False):
        """Automatically determines the optimal bands used für fourier shift theorem matching

        :param target_cwlPos_nm:   the desired wavelength used for matching
        :param v:                  verbose mode
        """
468
469
470
471
        # get GMS_object for reference scene
        path_gmsFile = PG.path_generator(scene_ID=self.spatRef_scene.scene_ID).get_path_gmsfile()
        ref_obj = GMS_object().from_disk((path_gmsFile, ['cube', None]))

472
        # get spectral characteristics
473
474
        ref_cwl, shift_cwl = [[float(i) for i in GMS_obj.meta_odict['wavelength']] for GMS_obj in [ref_obj, self]]
        ref_fwhm, shift_fwhm = [[float(i) for i in GMS_obj.meta_odict['bandwidths']] for GMS_obj in [ref_obj, self]]
475
476

        # exclude cirrus/oxygen band of Landsat-8/Sentinel-2
477
        shift_bbl, ref_bbl = [False] * len(shift_cwl), [False] * len(ref_cwl)  # bad band lists
478
479
480
481
482
483
484
        for GMS_obj, s_r, bbl in zip([self, ref_obj], ['shift', 'ref'], [shift_bbl, ref_bbl]):
            GMS_obj.GMS_identifier['logger'] = None  # set a dummy value in order to avoid Exception
            sensorcode = get_GMS_sensorcode(GMS_obj.GMS_identifier)
            if sensorcode in ['LDCM', 'S2A', 'S2B'] and '9' in GMS_obj.LayerBandsAssignment:
                bbl[GMS_obj.LayerBandsAssignment.index('9')] = True
            if sensorcode in ['S2A', 'S2B'] and '10' in GMS_obj.LayerBandsAssignment:
                bbl[GMS_obj.LayerBandsAssignment.index('10')] = True
485

486
        # cwl_overlap = (max(min(shift_cwl),min(ref_cwl)),  min(max(shift_cwl),max(ref_cwl))) # -> (min wvl, max wvl)
487
        # find matching band of reference image for each band of image to be shifted
488
489
490
491
        match_dic = collections.OrderedDict()
        for idx, cwl, fwhm in zip(range(len(shift_cwl)), shift_cwl, shift_fwhm):
            if shift_bbl[idx]:
                continue  # skip cwl if it is declared as bad band above
492
493
494

            def is_inside(r_cwl, s_cwl, s_fwhm): return s_cwl - s_fwhm / 2 < r_cwl < s_cwl + s_fwhm / 2

495
496
            matching_r_cwls = [r_cwl for i, r_cwl in enumerate(ref_cwl) if
                               is_inside(r_cwl, cwl, fwhm) and not ref_bbl[i]]
497
498
            if matching_r_cwls:
                match_dic[cwl] = matching_r_cwls[0] if len(matching_r_cwls) else \
499
                    matching_r_cwls[np.abs(np.array(matching_r_cwls) - cwl).argmin()]
500
501
502
503
504

        # set bands4 match based on the above results
        poss_cwls = [cwl for cwl in shift_cwl if cwl in match_dic]
        if poss_cwls:
            if not target_cwlPos_nm:
505
506
507
508
509
510
511
                shift_band4match = shift_cwl.index(poss_cwls[0]) + 1  # first possible shift band
                ref_band4match = ref_cwl.index(match_dic[poss_cwls[0]]) + 1  # matching reference band
            else:  # target_cwlPos is given
                closestWvl_to_target = poss_cwls[np.abs(np.array(poss_cwls) - target_cwlPos_nm).argmin()]
                shift_band4match = shift_cwl.index(closestWvl_to_target) + 1  # the shift band closest to target
                ref_band4match = ref_cwl.index(match_dic[closestWvl_to_target]) + 1  # matching ref
        else:  # all reference bands are outside of shift-cwl +- fwhm/2
512
513
            warnings.warn('Optimal bands for matching could not be automatically determined. Choosing first band of'
                          'each image.')
514
515
            shift_band4match = 1
            ref_band4match = 1
516

517
518
519
        if v:
            print('Shift band for matching:     %s (%snm)' % (shift_band4match, shift_cwl[shift_band4match - 1]))
            print('Reference band for matching: %s (%snm)' % (ref_band4match, ref_cwl[ref_band4match - 1]))
520
521
522

        return ref_band4match, shift_band4match

523
    def compute_global_shifts(self):
524
525
526
527
528
        spatIdxSrv_status = os.environ['GMS_SPAT_IDX_SRV_STATUS'] if 'GMS_SPAT_IDX_SRV_STATUS' in os.environ else True

        if spatIdxSrv_status == 'unavailable':
            self.logger.warning('Coregistration skipped due to unavailable Spatial Index Mediator Server!"')

529
        elif CFG.skip_coreg:
530
            self.logger.warning('Coregistration skipped according to user configuration.')
531

532
        elif self.coreg_needed and self.spatRef_available:
533
534
            geoArr_ref = GeoArray(self.spatRef_scene.filePath)
            geoArr_shift = GeoArray(self.arr)
535
            r_b4match, s_b4match = self.get_opt_bands4matching(target_cwlPos_nm=CFG.coreg_band_wavelength_for_matching,
536
                                                               v=False)
537
538
539
540
541
            coreg_kwargs = dict(
                r_b4match=r_b4match,
                s_b4match=s_b4match,
                align_grids=True,  # FIXME not needed here
                match_gsd=True,  # FIXME not needed here
542
                max_shift=CFG.coreg_max_shift_allowed,
Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
543
                ws=CFG.coreg_window_size,
544
545
546
547
548
549
550
551
552
                data_corners_ref=[[x, y] for x, y in self.spatRef_scene.polyUTM.convex_hull.exterior.coords],
                data_corners_tgt=[transform_any_prj(EPSG2WKT(4326), self.meta_odict['coordinate system string'], x, y)
                                  for x, y in HLP_F.reorder_CornerLonLat(self.trueDataCornerLonLat)],
                nodata=(get_outFillZeroSaturated(geoArr_ref.dtype)[0],
                        get_outFillZeroSaturated(geoArr_shift.dtype)[0]),
                ignore_errors=True,
                v=False,
                q=True
            )
553
554
555
556

            COREG_obj = COREG(geoArr_ref, geoArr_shift, **coreg_kwargs)
            COREG_obj.calculate_spatial_shifts()

557
558
559
560
            self.coreg_info.update(
                COREG_obj.coreg_info)  # no clipping to trueCornerLonLat until here -> only shift correction
            self.coreg_info.update({'reference scene ID': self.spatRef_scene.scene_ID})
            self.coreg_info.update({'reference entity ID': self.spatRef_scene.entity_ID})
561
562

            if COREG_obj.success:
563
                self.coreg_info['success'] = True
564
                self.logger.info("Calculated map shifts (X,Y): %s / %s"
565
566
                                 % (COREG_obj.x_shift_map,
                                    COREG_obj.y_shift_map))  # FIXME direkt in calculate_spatial_shifts loggen
567

568
569
570
            else:
                # TODO add database entry with error hint
                [self.logger.error('ERROR during coregistration of scene %s (entity ID %s):\n%s'
571
                                   % (self.scene_ID, self.entity_ID, err)) for err in COREG_obj.tracked_errors]
572

573
        else:
574
            if self.coreg_needed:
575
576
                self.logger.warning('Coregistration skipped because no suitable reference scene is available or '
                                    'spatial query failed.')
577
578
            else:
                self.logger.info('Coregistration of scene %s (entity ID %s) skipped because target dataset ID equals '
579
580
                                 'reference dataset ID.' % (self.scene_ID, self.entity_ID))

581
582
    def correct_spatial_shifts(self, cliptoextent=True, clipextent=None, clipextent_prj=None, v=False):
        # type: (bool, list, any, bool) -> None
583
        """Corrects the spatial shifts calculated by self.compute_global_shifts().
584
585
586
587
588
589
590
591
592

        :param cliptoextent:    whether to clip the output to the given extent
        :param clipextent:      list of XY-coordinate tuples giving the target extent (if not given and cliptoextent is
                                True, the 'trueDataCornerLonLat' attribute of the GMS object is used
        :param clipextent_prj:  WKT projection string or EPSG code of the projection for the coordinates in clipextent
        :param v:
        :return:
        """

593
594
        # cliptoextent is automatically True if an extent is given
        cliptoextent = cliptoextent if not clipextent else True
595

596
597
        if cliptoextent or self.resamp_needed or (self.coreg_needed and self.coreg_info['success']):

598
            # get target bounds # TODO implement boxObj call instead here
599
            if not clipextent:
600
601
                trueDataCornerUTM = [transform_any_prj(EPSG2WKT(4326), self.MetaObj.projection, x, y)
                                     for x, y in self.trueDataCornerLonLat]
602
                xmin, xmax, ymin, ymax = corner_coord_to_minmax(trueDataCornerUTM)
603
                mapBounds = box(xmin, ymin, xmax, ymax).bounds
604
605
606
607
608
609
610
611
            else:
                assert clipextent_prj, \
                    "'clipextent_prj' must be given together with 'clipextent'. Received only 'clipextent'."
                clipextent_UTM = clipextent if prj_equal(self.MetaObj.projection, clipextent_prj) else \
                    [transform_any_prj(clipextent_prj, self.MetaObj.projection, x, y) for x, y in clipextent]
                xmin, xmax, ymin, ymax = corner_coord_to_minmax(clipextent_UTM)
                mapBounds = box(xmin, ymin, xmax, ymax).bounds

612
            # correct shifts and clip to extent
613
614
            # ensure self.masks exists (does not exist in case of inmem_serialization mode because
            # then self.fill_from_disk() is skipped)
615
616
617
            if not hasattr(self, 'masks') or self.masks is None:
                self.build_combined_masks_array()  # creates self.masks and self.masks_meta

618
619
620
            # exclude self.mask_nodata, self.mask_clouds from warping
            del self.mask_nodata, self.mask_clouds

621
622
623
            attributes2deshift = [attrname for attrname in
                                  ['arr', 'masks', 'dem', 'ac_errors', 'mask_clouds_confidence']
                                  if getattr(self, '_%s' % attrname) is not None]
624
            for attrname in attributes2deshift:
625
                geoArr = getattr(self, attrname)
626
627

                # do some logging
628
629
                if self.coreg_needed:
                    if self.coreg_info['success']:
630
631
                        self.logger.info("Correcting spatial shifts for attribute '%s'..." % attrname)
                    elif cliptoextent and is_coord_grid_equal(
632
                         geoArr.gt, CFG.spatial_ref_gridx, CFG.spatial_ref_gridy):
633
                        self.logger.info("Attribute '%s' has only been clipped to it's extent because no valid "
634
635
                                         "shifts have been detected and the pixel grid equals the target grid."
                                         % attrname)
636
637
                    elif self.resamp_needed:
                        self.logger.info("Resampling attribute '%s' to target grid..." % attrname)
638
639
640
641
                elif self.resamp_needed:
                    self.logger.info("Resampling attribute '%s' to target grid..." % attrname)

                # correct shifts
642
                DS = DESHIFTER(geoArr, self.coreg_info,
643
                               target_xyGrid=[CFG.spatial_ref_gridx, CFG.spatial_ref_gridy],
644
645
646
                               cliptoextent=cliptoextent,
                               clipextent=mapBounds,
                               align_grids=True,
647
                               resamp_alg='nearest' if attrname == 'masks' else CFG.spatial_resamp_alg,
648
                               CPUs=None if CFG.allow_subMultiprocessing else 1,
649
650
651
                               progress=True if v else False,
                               q=True,
                               v=v)
652
653
654
                DS.correct_shifts()

                # update coreg_info
655
656
                if attrname == 'arr':
                    self.coreg_info['is shifted'] = DS.is_shifted
657
                    self.coreg_info['is resampled'] = DS.is_resampled
658

659
                # update geoinformations and array shape related attributes
660
661
662
                self.logger.info("Updating geoinformations of '%s' attribute..." % attrname)
                if attrname == 'arr':
                    self.meta_odict['map info'] = DS.updated_map_info
663
                    self.meta_odict['coordinate system string'] = EPSG2WKT(WKT2EPSG(DS.updated_projection))
664
                    self.shape_fullArr = DS.arr_shifted.shape
665
666
                    self.meta_odict['lines'], self.meta_odict['samples'] = DS.arr_shifted.shape[:2]
                else:
667
668
                    self.masks_meta['map info'] = DS.updated_map_info
                    self.masks_meta['coordinate system string'] = EPSG2WKT(WKT2EPSG(DS.updated_projection))
669
670
                    self.masks_meta['lines'], self.masks_meta['samples'] = DS.arr_shifted.shape[:2]

671
672
                    # NOTE: mask_nodata and mask_clouds are updated later by L2A_map mapper function (module pipeline)

673
                # update the GeoArray instance without loosing its inherent metadata (nodata, ...)
674
675
676
                geoArr.arr, geoArr.gt, geoArr.prj = \
                    DS.GeoArray_shifted.arr, DS.GeoArray_shifted.gt, DS.GeoArray_shifted.prj
                # setattr(self,attrname, DS.GeoArray_shifted) # NOTE: don't set array earlier because setter will also
677
678
                #                                            # update arr.gt/.prj/.nodata from meta_odict

679
            self.resamp_needed = False
680
            self.coreg_needed = False
681

682
683
            # recreate self.masks_nodata and self.mask_clouds from self.masks
            self.mask_nodata = self.mask_nodata
684
685
            self.mask_clouds = self.mask_clouds
            # FIXME move functionality of self.masks only to output writer and remove self.masks completely