L1B_P.py 37.5 KB
Newer Older
Daniel Scheffler's avatar
Daniel Scheffler committed
1
# -*- coding: utf-8 -*-
2
3
4
5
6
7
"""
Level 1B Processor:

Detection of global/local geometric displacements.
"""

Daniel Scheffler's avatar
Daniel Scheffler committed
8

9
import collections
10
import os
11
import time
12
import warnings
13
from datetime import datetime, timedelta
14
15

import numpy as np
16
from geopandas import GeoDataFrame
17
from shapely.geometry import box
18
import pytz
19
from typing import Union, TYPE_CHECKING  # noqa F401  # flake8 issue
Daniel Scheffler's avatar
Daniel Scheffler committed
20

21
from arosics import COREG, DESHIFTER
22
from geoarray import GeoArray
23
24
25
26
27
28
from py_tools_ds.geo.coord_grid import is_coord_grid_equal
from py_tools_ds.geo.coord_calc import corner_coord_to_minmax
from py_tools_ds.geo.coord_trafo import reproject_shapelyGeometry, transform_any_prj
from py_tools_ds.geo.projection import prj_equal, EPSG2WKT, WKT2EPSG
from py_tools_ds.geo.vector.topology import get_overlap_polygon

29
from ..options.config import GMS_config as CFG
30
from ..model.gms_object import GMS_object
31
32
33
34
from .L1A_P import L1A_object
from ..misc import database_tools as DB_T
from ..misc import helper_functions as HLP_F
from ..misc import path_generator as PG
35
from ..misc.logging import GMS_logger
36
from ..misc.spatial_index_mediator import SpatialIndexMediator
37
from ..misc.definition_dicts import get_GMS_sensorcode, get_outFillZeroSaturated
38

39
if TYPE_CHECKING:
Daniel Scheffler's avatar
Daniel Scheffler committed
40
41
    from shapely.geometry import Polygon  # noqa F401  # flake8 issue
    from logging import Logger  # noqa F401  # flake8 issue
42

43
__author__ = 'Daniel Scheffler'
44
45


46
class Scene_finder(object):
47
48
    """Scene_finder class to query the postgreSQL database to find a suitable reference scene for co-registration."""

49
    def __init__(self, src_boundsLonLat, src_AcqDate, src_prj, src_footprint_poly, sceneID_excluded=None,
50
                 min_overlap=20, min_cloudcov=0, max_cloudcov=20, plusminus_days=30, plusminus_years=10, logger=None):
51
        # type: (list, datetime, str, Polygon, int, int, int, int, int, int, Logger) -> None
52
53
54
55
56
57
58
59
60
61
62
63
64
        """Initialize Scene_finder.

        :param src_boundsLonLat:
        :param src_AcqDate:
        :param src_prj:
        :param src_footprint_poly:
        :param sceneID_excluded:
        :param min_overlap:         minimum overlap of reference scene in percent
        :param min_cloudcov:        minimum cloud cover of reference scene in percent
        :param max_cloudcov:        maximum cloud cover of reference scene in percent
        :param plusminus_days:      maximum time interval between target and reference scene in days
        :param plusminus_years:     maximum time interval between target and reference scene in years
        """
65
66
67
        self.boundsLonLat = src_boundsLonLat
        self.src_AcqDate = src_AcqDate
        self.src_prj = src_prj
68
        self.src_footprint_poly = src_footprint_poly
69
        self.sceneID_excluded = sceneID_excluded
70
71
72
73
74
        self.min_overlap = min_overlap
        self.min_cloudcov = min_cloudcov
        self.max_cloudcov = max_cloudcov
        self.plusminus_days = plusminus_days
        self.plusminus_years = plusminus_years
75
        self.logger = logger or GMS_logger('ReferenceSceneFinder')
76

77
        # get temporal constraints
78
        def add_years(dt, years): return dt.replace(dt.year + years) \
79
80
81
            if not (dt.month == 2 and dt.day == 29) else dt.replace(dt.year + years, 3, 1)
        self.timeStart = add_years(self.src_AcqDate, -plusminus_years)
        timeEnd = add_years(self.src_AcqDate, +plusminus_years)
82
83
        timeNow = datetime.utcnow().replace(tzinfo=pytz.UTC)
        self.timeEnd = timeEnd if timeEnd <= timeNow else timeNow
84

85
86
87
        self.possib_ref_scenes = None  # set by self.spatial_query()
        self.GDF_ref_scenes = GeoDataFrame()  # set by self.spatial_query()
        self.ref_scene = None
88

89
    def spatial_query(self, timeout=5):
90
91
92
93
        """Query the postgreSQL database to find possible reference scenes matching the specified criteria.

        :param timeout:     maximum query duration allowed (seconds)
        """
94
95
96
97
98
99
100
101
102
103
        SpIM = SpatialIndexMediator(host=CFG.spatial_index_server_host, port=CFG.spatial_index_server_port,
                                    timeout=timeout, retries=10)
        self.possib_ref_scenes = SpIM.getFullSceneDataForDataset(envelope=self.boundsLonLat,
                                                                 timeStart=self.timeStart,
                                                                 timeEnd=self.timeEnd,
                                                                 minCloudCover=self.min_cloudcov,
                                                                 maxCloudCover=self.max_cloudcov,
                                                                 datasetid=CFG.datasetid_spatial_ref,
                                                                 refDate=self.src_AcqDate,
                                                                 maxDaysDelta=self.plusminus_days)
104

105
106
107
        if self.possib_ref_scenes:
            # fill GeoDataFrame with possible ref scene parameters
            GDF = GeoDataFrame(self.possib_ref_scenes, columns=['object'])
108
109
110
111
            GDF['sceneid'] = list(GDF['object'].map(lambda scene: scene.sceneid))
            GDF['acquisitiondate'] = list(GDF['object'].map(lambda scene: scene.acquisitiondate))
            GDF['cloudcover'] = list(GDF['object'].map(lambda scene: scene.cloudcover))
            GDF['polyLonLat'] = list(GDF['object'].map(lambda scene: scene.polyLonLat))
112

113
114
            def LonLat2UTM(polyLL):
                return reproject_shapelyGeometry(polyLL, 4326, self.src_prj)
115

116
117
            GDF['polyUTM'] = list(GDF['polyLonLat'].map(LonLat2UTM))
            self.GDF_ref_scenes = GDF
118

119
120
121
    def _collect_refscene_metadata(self):
        """Collect some reference scene metadata needed for later filtering."""
        GDF = self.GDF_ref_scenes
122

123
124
125
126
127
128
129
130
131
132
133
        # get overlap parameter
        def get_OL_prms(poly): return get_overlap_polygon(poly, self.src_footprint_poly)

        GDF['overlapParams'] = list(GDF['polyLonLat'].map(get_OL_prms))
        GDF['overlap area'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap area']))
        GDF['overlap percentage'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap percentage']))
        GDF['overlap poly'] = list(GDF['overlapParams'].map(lambda OL_prms: OL_prms['overlap poly']))
        del GDF['overlapParams']

        # get processing level of reference scenes
        procL = GeoDataFrame(
134
            DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes_proc', ['sceneid', 'proc_level'],
135
136
137
138
139
140
141
142
143
144
145
146
                                            {'sceneid': list(GDF.sceneid)}), columns=['sceneid', 'proc_level'])
        GDF = GDF.merge(procL, on='sceneid', how='left')
        GDF = GDF.where(GDF.notnull(), None)  # replace NaN values with None

        # get path of binary file
        def get_path_binary(GDF_row):
            return PG.path_generator(scene_ID=GDF_row['sceneid'], proc_level=GDF_row['proc_level']) \
                .get_path_imagedata() if GDF_row['proc_level'] else None
        GDF['path_ref'] = GDF.apply(lambda GDF_row: get_path_binary(GDF_row), axis=1)
        GDF['refDs_exists'] = list(GDF['path_ref'].map(lambda p: os.path.exists(p) if p else False))

        # check if a proper entity ID can be gathered from database
147
        eID = GeoDataFrame(DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes', ['id', 'entityid'],
148
149
150
151
152
153
154
155
                                                           {'id': list(GDF.sceneid)}), columns=['sceneid', 'entityid'])
        GDF = GDF.merge(eID, on='sceneid', how='left')
        self.GDF_ref_scenes = GDF.where(GDF.notnull(), None)

    def _filter_excluded_sceneID(self):
        """Filter reference scene with the same scene ID like the target scene."""
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
Daniel Scheffler's avatar
Daniel Scheffler committed
156
            self.logger.info('Same ID filter:  Excluding scene with the same ID like the target scene.')
157
            self.GDF_ref_scenes = GDF.loc[GDF['sceneid'] != self.sceneID_excluded]
158
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
159

160
    def _filter_by_overlap(self):
161
        """Filter all scenes with less spatial overlap than self.min_overlap."""
162
163
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
Daniel Scheffler's avatar
Daniel Scheffler committed
164
165
            self.logger.info('Overlap filter:  Excluding all scenes with less than %s percent spatial overlap.'
                             % self.min_overlap)
166
            self.GDF_ref_scenes = GDF.loc[GDF['overlap percentage'] >= self.min_overlap]
167
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
168

169
    def _filter_by_proc_status(self):
170
        """Filter all scenes that have not been processed before according to proc. status (at least L1A is needed)."""
171
172
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
Daniel Scheffler's avatar
Daniel Scheffler committed
173
174
            self.logger.info('Processing level filter:  Exclude all scenes that have not been processed before '
                             'according to processing status (at least L1A is needed).')
175
            self.GDF_ref_scenes = GDF[GDF['proc_level'].notnull()]
176
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
177

178
    def _filter_by_dataset_existance(self):
179
        """Filter all scenes where no processed data can be found on fileserver."""
180
181
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
Daniel Scheffler's avatar
Daniel Scheffler committed
182
            self.logger.info('Existance filter:  Excluding all scenes where no processed data have been found.')
183
            self.GDF_ref_scenes = GDF[GDF['refDs_exists']]
184
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
185

186
    def _filter_by_entity_ID_availability(self):
187
        """Filter all scenes where no proper entity ID can be found in the database (database errors)."""
188
189
        GDF = self.GDF_ref_scenes
        if not GDF.empty:
Daniel Scheffler's avatar
Daniel Scheffler committed
190
191
            self.logger.info('DB validity filter:  Exclude all scenes where no proper entity ID can be found in the '
                             'database (database errors).')
192
            self.GDF_ref_scenes = GDF[GDF['entityid'].notnull()]
193
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
194

195
    def _filter_by_projection(self):
196
        """Filter all scenes that have a different projection than the target image."""
197
        GDF = self.GDF_ref_scenes[self.GDF_ref_scenes.refDs_exists]
198
199
        if not GDF.empty:
            # compare projections of target and reference image
200
201
            GDF['prj_equal'] = \
                list(GDF['path_ref'].map(lambda path_ref: prj_equal(self.src_prj, GeoArray(path_ref).prj)))
202

Daniel Scheffler's avatar
Daniel Scheffler committed
203
204
            self.logger.info('Projection filter:  Exclude all scenes that have a different projection than the target '
                             'image.')
205
            self.GDF_ref_scenes = GDF[GDF['prj_equal']]
206
            self.logger.info('%s scenes => %s scenes' % (len(GDF), len(self.GDF_ref_scenes)))
207

208
209
    def choose_ref_scene(self):
        """Choose reference scene with minimum cloud cover and maximum overlap."""
210
211
212
        if self.possib_ref_scenes:
            # First, collect some relavant reference scene metadata
            self._collect_refscene_metadata()
213

214
215
216
217
218
219
220
            # Filter possible scenes by running all filter functions
            self._filter_excluded_sceneID()
            self._filter_by_overlap()
            self._filter_by_proc_status()
            self._filter_by_dataset_existance()
            self._filter_by_entity_ID_availability()
            self._filter_by_projection()
221

222
223
224
225
226
        # Choose the reference scene out of the filtered DataFrame
        if not self.GDF_ref_scenes.empty:
            GDF = self.GDF_ref_scenes
            GDF = GDF[GDF['cloudcover'] == GDF['cloudcover'].min()]
            GDF = GDF[GDF['overlap percentage'] == GDF['overlap percentage'].max()]
227

228
229
230
231
232
            if not GDF.empty:
                GDF_res = GDF.iloc[0]
                return ref_Scene(GDF_res)
        else:
            return None
233

234

235
236
class ref_Scene:
    def __init__(self, GDF_record):
237
238
239
        self.scene_ID = int(GDF_record['sceneid'])
        self.entity_ID = GDF_record['entityid']
        self.AcqDate = GDF_record['acquisitiondate']
240
241
        self.cloudcover = GDF_record['cloudcover']
        self.polyLonLat = GDF_record['polyLonLat']
242
        self.polyUTM = GDF_record['polyUTM']
243
        self.proc_level = GDF_record['proc_level']
244
        self.filePath = GDF_record['path_ref']
245
246
247
248
249


class L1B_object(L1A_object):
    def __init__(self, L1A_obj=None):

250
        super(L1B_object, self).__init__()
251
252
253

        # set defaults
        self._spatRef_available = None
254
255
        self.spatRef_scene = None  # set by self.get_spatial_reference_scene()
        self.deshift_results = collections.OrderedDict()
256
257
258
259
260
261

        if L1A_obj:
            # populate attributes
            [setattr(self, key, value) for key, value in L1A_obj.__dict__.items()]

        self.proc_level = 'L1B'
262
        self.proc_status = 'initialized'
263
264
265

    @property
    def spatRef_available(self):
266
        if self._spatRef_available is not None:
267
268
269
270
271
272
273
274
275
276
            return self._spatRef_available
        else:
            self.get_spatial_reference_scene()
            return self._spatRef_available

    @spatRef_available.setter
    def spatRef_available(self, spatRef_available):
        self._spatRef_available = spatRef_available

    def get_spatial_reference_scene(self):
277
        boundsLonLat = corner_coord_to_minmax(self.trueDataCornerLonLat)
278
        footprint_poly = HLP_F.CornerLonLat_to_shapelyPoly(self.trueDataCornerLonLat)
279
        RSF = Scene_finder(boundsLonLat, self.acq_datetime, self.meta_odict['coordinate system string'],
280
281
282
283
284
                           footprint_poly, self.scene_ID,
                           min_overlap=CFG.spatial_ref_min_overlap,
                           min_cloudcov=CFG.spatial_ref_min_cloudcov,
                           max_cloudcov=CFG.spatial_ref_max_cloudcov,
                           plusminus_days=CFG.spatial_ref_plusminus_days,
285
286
                           plusminus_years=CFG.spatial_ref_plusminus_years,
                           logger=self.logger)
287
288
289
290
291
292
293

        # run spatial query
        self.logger.info('Querying database in order to find a suitable reference scene for co-registration.')
        RSF.spatial_query(timeout=5)
        if RSF.possib_ref_scenes:
            self.logger.info('Query result: %s reference scenes with matching metadata.' % len(RSF.possib_ref_scenes))

294
295
296
297
298
299
300
301
302
303
304
            # try to get a spatial reference scene by applying some filter criteria
            self.spatRef_scene = RSF.choose_ref_scene()  # type: Union[ref_Scene, None]
            if self.spatRef_scene:
                self.spatRef_available = True
                self.logger.info('Found a suitable reference image for coregistration: scene ID %s (entity ID %s).'
                                 % (self.spatRef_scene.scene_ID, self.spatRef_scene.entity_ID))
            else:
                self.spatRef_available = False
                self.logger.warning('No scene fulfills all requirements to serve as spatial reference for scene %s '
                                    '(entity ID %s). Coregistration impossible.' % (self.scene_ID, self.entity_ID))

305
        else:
306
            self.logger.warning('Spatial query returned no matches. Coregistration impossible.')
307
            self.spatRef_available = False
308
309

    def _get_reference_image_params_pgSQL(self):
310
        # TODO implement earlier version of this function as a backup for SpatialIndexMediator
311
312
        """postgreSQL query: get IDs of overlapping scenes and select most suitable scene_ID
            (with respect to DGM, cloud cover"""
313
314
        warnings.warn('_get_reference_image_params_pgSQL is deprecated an will not work anymore.', DeprecationWarning)

315
316
        # vorab-check anhand wolkenmaske, welche region von im2shift überhaupt für shift-corr tauglich ist
        # -> diese region als argument in postgresql abfrage
317
        # scene_ID            = 14536400 # LE71510322000093SGS00 im2shift
318

319
        # set query conditions
320
321
        min_overlap = 20  # %
        max_cloudcov = 20  # %
322
        plusminus_days = 30
323
324
        AcqDate = self.im2shift_objDict['acquisition_date']
        date_minmax = [AcqDate - timedelta(days=plusminus_days), AcqDate + timedelta(days=plusminus_days)]
325
        dataset_cond = 'datasetid=%s' % CFG.datasetid_spatial_ref
326
327
328
329
330
        cloudcov_cond = 'cloudcover < %s' % max_cloudcov
        # FIXME cloudcover noch nicht für alle scenes im proc_level METADATA verfügbar
        dayrange_cond = "(EXTRACT(MONTH FROM scenes.acquisitiondate), EXTRACT(DAY FROM scenes.acquisitiondate)) " \
                        "BETWEEN (%s, %s) AND (%s, %s)" \
                        % (date_minmax[0].month, date_minmax[0].day, date_minmax[1].month, date_minmax[1].day)
331
332
        # TODO weitere Kriterien einbauen!

333
334
        def query_scenes(condlist):
            return DB_T.get_overlapping_scenes_from_postgreSQLdb(
335
                CFG.conn_database,
336
337
338
339
340
                table='scenes',
                tgt_corners_lonlat=self.trueDataCornerLonLat,
                conditions=condlist,
                add_cmds='ORDER BY scenes.cloudcover ASC',
                timeout=30000)
341
342
        conds_descImportance = [dataset_cond, cloudcov_cond, dayrange_cond]

343
        self.logger.info('Querying database in order to find a suitable reference scene for co-registration.')
344

345
        count, filt_overlap_scenes = 0, []
346
        while not filt_overlap_scenes:
347
348
349
350
            if count == 0:
                # search within already processed scenes
                # das ist nur Ergebnis aus scenes_proc
                # -> dort liegt nur eine referenz, wenn die szene schon bei CFG.job-Beginn in Datensatzliste drin war
351
                res = DB_T.get_overlapping_scenes_from_postgreSQLdb(
352
                    CFG.conn_database,
353
                    tgt_corners_lonlat=self.trueDataCornerLonLat,
354
                    conditions=['datasetid=%s' % CFG.datasetid_spatial_ref],
355
356
                    add_cmds='ORDER BY scenes.cloudcover ASC',
                    timeout=25000)
357
                filt_overlap_scenes = self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], 20.)
358

359
            else:
360
361
362
                # search within complete scenes table using less filter criteria with each run
                # TODO: Daniels Index einbauen, sonst  bei wachsender Tabellengröße evtl. irgendwann zu langsam
                res = query_scenes(conds_descImportance)
363
                filt_overlap_scenes = self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], min_overlap)
364

365
                if len(conds_descImportance) > 1:  # FIXME anderer Referenzsensor?
366
367
368
369
                    del conds_descImportance[-1]
                else:  # reduce min_overlap to 10 percent if there are overlapping scenes
                    if res:
                        min_overlap = 10
370
371
                        filt_overlap_scenes = \
                            self._sceneIDList_to_filt_overlap_scenes([i[0] for i in res[:50]], min_overlap)
372
373

                    # raise warnings if no match found
374
                    if not filt_overlap_scenes:
375
376
                        if not res:
                            warnings.warn('No reference scene found for %s (scene ID %s). Coregistration of this scene '
377
                                          'failed.' % (self.baseN, self.scene_ID))
378
379
380
                        else:
                            warnings.warn('Reference scenes for %s (scene ID %s) have been found but none has more '
                                          'than %s percent overlap. Coregistration of this scene failed.'
381
                                          % (self.baseN, self.scene_ID, min_overlap))
382
                        break
383
            count += 1
384
385
386
387

        if filt_overlap_scenes:
            ref_available = False
            for count, sc in enumerate(filt_overlap_scenes):
388
                if count == 2:  # FIXME Abbuch schon bei 3. Szene?
389
                    warnings.warn('No reference scene for %s (scene ID %s) available. '
390
                                  'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
391
392
393
                    break

                # start download of scene data not available and start L1A processing
394
                def dl_cmd(scene_ID): print('%s %s %s' % (
395
396
                    CFG.java_commands['keyword'].strip(),  # FIXME CFG.java_commands is deprecated
                    CFG.java_commands["value_download"].strip(), scene_ID))
397

398
                path = PG.path_generator(scene_ID=sc['scene_ID']).get_path_imagedata()
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
399

400
401
402
403
404
405
406
407
                if not os.path.exists(path):
                    # add scene 2 download to scenes_jobs.missing_scenes

                    # print JAVA download command
                    t_dl_start = time.time()
                    dl_cmd(sc['scene_ID'])

                    # check if scene is downloading
408
409
                    download_start_timeout = 5  # seconds
                    # set timout for external processing
410
                    # -> DEPRECATED BECAUSE CREATION OF EXTERNAL CFG WITHIN CFG IS NOT ALLOWED
411
                    processing_timeout = 5  # seconds # FIXME increase timeout if processing is really started
412
413
414
                    proc_level = None
                    while True:
                        proc_level_chk = DB_T.get_info_from_postgreSQLdb(
415
                            CFG.conn_database, 'scenes', ['proc_level'], {'id': sc['scene_ID']})[0][0]
416
                        if proc_level != proc_level_chk:
417
                            print('Reference scene %s, current processing level: %s' % (sc['scene_ID'], proc_level_chk))
418
                        proc_level = proc_level_chk
419
420
                        if proc_level_chk in ['SCHEDULED', 'METADATA'] and \
                           time.time() - t_dl_start >= download_start_timeout:
421
                            warnings.warn('Download of reference scene %s (entity ID %s) timed out. '
422
                                          'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
423
424
                            break
                        if proc_level_chk == 'L1A':
425
426
427
428
                            ref_available = True
                            break
                        elif proc_level_chk == 'DOWNLOADED' and time.time() - t_dl_start >= processing_timeout:
                            # proc_level='DOWNLOADED' but scene has not been processed
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
429
430
431
                            warnings.warn('L1A processing of reference scene %s (entity ID %s) timed out. '
                                          'Coregistration of this scene failed.' % (self.baseN, self.scene_ID))
                            break
432
                            # DB_T.set_info_in_postgreSQLdb(CFG.conn_database,'scenes',
433
                            #                             {'proc_level':'METADATA'},{'id':sc['scene_ID']})
Daniel Scheffler's avatar
GEOP:    
Daniel Scheffler committed
434

435
436
437
438
439
440
441
                        time.sleep(5)
                else:
                    ref_available = True

                if not ref_available:
                    continue
                else:
442
443
                    self.path_imref = path
                    self.imref_scene_ID = sc['scene_ID']
444
                    self.imref_footprint_poly = sc['scene poly']
445
446
447
448
                    self.overlap_poly = sc['overlap poly']
                    self.overlap_percentage = sc['overlap percentage']
                    self.overlap_area = sc['overlap area']

449
                    query_res = DB_T.get_info_from_postgreSQLdb(CFG.conn_database, 'scenes', ['entityid'],
450
451
452
                                                                {'id': self.imref_scene_ID}, records2fetch=1)
                    assert query_res != [], 'No entity-ID found for scene number %s' % self.imref_scene_ID
                    self.imref_entity_ID = query_res[0][0]  # [('LC81510322013152LGN00',)]
453
                    break
454
        self.logger.close()
455

456
    def _sceneIDList_to_filt_overlap_scenes(self, sceneIDList, min_overlap):
457
458
459
        """find reference scenes that cover at least 20% of the scene with the given ID
        ONLY FIRST 50 scenes are considered"""

460
461
462
        # t0 = time.time()
        dict_sceneID_poly = [{'scene_ID': ID, 'scene poly': HLP_F.scene_ID_to_shapelyPolygon(ID)}
                             for ID in sceneIDList]  # always returns LonLot polygons
463
464

        # get overlap polygons and their parameters. result: [{overlap poly, overlap percentage, overlap area}]
465
466
        for dic in dict_sceneID_poly:  # input: dicts {scene_ID, ref_poly}
            dict_overlap_poly_params = get_overlap_polygon(dic['scene poly'], self.arr.footprint_poly)
467
            dic.update(dict_overlap_poly_params)  # adds {overlap poly, overlap percentage, overlap area}
468
        # print('polygon creation time', time.time()-t0)
469
470
471
472
473
474
475
476

        # filter those scene_IDs out where overlap percentage is below 20%
        if min_overlap:
            filt_overlap_scenes = [scene for scene in dict_sceneID_poly if scene['overlap percentage'] >= min_overlap]
        else:
            filt_overlap_scenes = dict_sceneID_poly

        return filt_overlap_scenes
477

478
    def get_opt_bands4matching(self, target_cwlPos_nm=550):
479
480
481
482
        """Automatically determines the optimal bands used für fourier shift theorem matching

        :param target_cwlPos_nm:   the desired wavelength used for matching
        """
483
484
        # get GMS_object for reference scene
        path_gmsFile = PG.path_generator(scene_ID=self.spatRef_scene.scene_ID).get_path_gmsfile()
485
        ref_obj = GMS_object.from_disk((path_gmsFile, ['cube', None]))
486

487
        # get spectral characteristics
488
489
        ref_cwl, shift_cwl = [[float(i) for i in GMS_obj.meta_odict['wavelength']] for GMS_obj in [ref_obj, self]]
        ref_fwhm, shift_fwhm = [[float(i) for i in GMS_obj.meta_odict['bandwidths']] for GMS_obj in [ref_obj, self]]
490
491

        # exclude cirrus/oxygen band of Landsat-8/Sentinel-2
492
        shift_bbl, ref_bbl = [False] * len(shift_cwl), [False] * len(ref_cwl)  # bad band lists
493
494
495
496
497
498
499
        for GMS_obj, s_r, bbl in zip([self, ref_obj], ['shift', 'ref'], [shift_bbl, ref_bbl]):
            GMS_obj.GMS_identifier['logger'] = None  # set a dummy value in order to avoid Exception
            sensorcode = get_GMS_sensorcode(GMS_obj.GMS_identifier)
            if sensorcode in ['LDCM', 'S2A', 'S2B'] and '9' in GMS_obj.LayerBandsAssignment:
                bbl[GMS_obj.LayerBandsAssignment.index('9')] = True
            if sensorcode in ['S2A', 'S2B'] and '10' in GMS_obj.LayerBandsAssignment:
                bbl[GMS_obj.LayerBandsAssignment.index('10')] = True
500

501
        # cwl_overlap = (max(min(shift_cwl),min(ref_cwl)),  min(max(shift_cwl),max(ref_cwl))) # -> (min wvl, max wvl)
502
        # find matching band of reference image for each band of image to be shifted
503
504
505
506
        match_dic = collections.OrderedDict()
        for idx, cwl, fwhm in zip(range(len(shift_cwl)), shift_cwl, shift_fwhm):
            if shift_bbl[idx]:
                continue  # skip cwl if it is declared as bad band above
507
508
509

            def is_inside(r_cwl, s_cwl, s_fwhm): return s_cwl - s_fwhm / 2 < r_cwl < s_cwl + s_fwhm / 2

510
511
            matching_r_cwls = [r_cwl for i, r_cwl in enumerate(ref_cwl) if
                               is_inside(r_cwl, cwl, fwhm) and not ref_bbl[i]]
512
513
            if matching_r_cwls:
                match_dic[cwl] = matching_r_cwls[0] if len(matching_r_cwls) else \
514
                    matching_r_cwls[np.abs(np.array(matching_r_cwls) - cwl).argmin()]
515
516
517
518
519

        # set bands4 match based on the above results
        poss_cwls = [cwl for cwl in shift_cwl if cwl in match_dic]
        if poss_cwls:
            if not target_cwlPos_nm:
520
521
522
523
524
525
526
                shift_band4match = shift_cwl.index(poss_cwls[0]) + 1  # first possible shift band
                ref_band4match = ref_cwl.index(match_dic[poss_cwls[0]]) + 1  # matching reference band
            else:  # target_cwlPos is given
                closestWvl_to_target = poss_cwls[np.abs(np.array(poss_cwls) - target_cwlPos_nm).argmin()]
                shift_band4match = shift_cwl.index(closestWvl_to_target) + 1  # the shift band closest to target
                ref_band4match = ref_cwl.index(match_dic[closestWvl_to_target]) + 1  # matching ref
        else:  # all reference bands are outside of shift-cwl +- fwhm/2
527
528
            self.logger.warning('Optimal bands for matching could not be automatically determined. '
                                'Choosing first band of each image.')
529
530
            shift_band4match = 1
            ref_band4match = 1
531

532
        self.logger.info(
533
            'Target band for matching:    %s (%snm)' % (shift_band4match, shift_cwl[shift_band4match - 1]))
534
535
        self.logger.info(
            'Reference band for matching: %s (%snm)' % (ref_band4match, ref_cwl[ref_band4match - 1]))
536
537
538

        return ref_band4match, shift_band4match

539
    def compute_global_shifts(self):
540
541
542
543
544
        spatIdxSrv_status = os.environ['GMS_SPAT_IDX_SRV_STATUS'] if 'GMS_SPAT_IDX_SRV_STATUS' in os.environ else True

        if spatIdxSrv_status == 'unavailable':
            self.logger.warning('Coregistration skipped due to unavailable Spatial Index Mediator Server!"')

545
        elif CFG.skip_coreg:
546
            self.logger.warning('Coregistration skipped according to user configuration.')
547

548
        elif self.coreg_needed and self.spatRef_available:
549
550
            geoArr_ref = GeoArray(self.spatRef_scene.filePath)
            geoArr_shift = GeoArray(self.arr)
551
            r_b4match, s_b4match = self.get_opt_bands4matching(target_cwlPos_nm=CFG.coreg_band_wavelength_for_matching)
552
553
554
555
556
            coreg_kwargs = dict(
                r_b4match=r_b4match,
                s_b4match=s_b4match,
                align_grids=True,  # FIXME not needed here
                match_gsd=True,  # FIXME not needed here
557
                max_shift=CFG.coreg_max_shift_allowed,
Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
558
                ws=CFG.coreg_window_size,
559
560
561
562
563
564
565
566
567
                data_corners_ref=[[x, y] for x, y in self.spatRef_scene.polyUTM.convex_hull.exterior.coords],
                data_corners_tgt=[transform_any_prj(EPSG2WKT(4326), self.meta_odict['coordinate system string'], x, y)
                                  for x, y in HLP_F.reorder_CornerLonLat(self.trueDataCornerLonLat)],
                nodata=(get_outFillZeroSaturated(geoArr_ref.dtype)[0],
                        get_outFillZeroSaturated(geoArr_shift.dtype)[0]),
                ignore_errors=True,
                v=False,
                q=True
            )
568
569
570
571

            COREG_obj = COREG(geoArr_ref, geoArr_shift, **coreg_kwargs)
            COREG_obj.calculate_spatial_shifts()

572
573
574
575
            self.coreg_info.update(
                COREG_obj.coreg_info)  # no clipping to trueCornerLonLat until here -> only shift correction
            self.coreg_info.update({'reference scene ID': self.spatRef_scene.scene_ID})
            self.coreg_info.update({'reference entity ID': self.spatRef_scene.entity_ID})
576
            self.coreg_info.update({'shift_reliability': COREG_obj.shift_reliability})
577
578

            if COREG_obj.success:
579
                self.coreg_info['success'] = True
580
                self.logger.info("Calculated map shifts (X,Y): %s / %s"
581
582
                                 % (COREG_obj.x_shift_map,
                                    COREG_obj.y_shift_map))  # FIXME direkt in calculate_spatial_shifts loggen
583
                self.logger.info("Reliability of calculated shift: %.1f percent" % COREG_obj.shift_reliability)
584

585
586
587
            else:
                # TODO add database entry with error hint
                [self.logger.error('ERROR during coregistration of scene %s (entity ID %s):\n%s'
588
                                   % (self.scene_ID, self.entity_ID, err)) for err in COREG_obj.tracked_errors]
589

590
        else:
591
            if self.coreg_needed:
592
593
                self.logger.warning('Coregistration skipped because no suitable reference scene is available or '
                                    'spatial query failed.')
594
595
            else:
                self.logger.info('Coregistration of scene %s (entity ID %s) skipped because target dataset ID equals '
596
597
                                 'reference dataset ID.' % (self.scene_ID, self.entity_ID))

598
599
    def correct_spatial_shifts(self, cliptoextent=True, clipextent=None, clipextent_prj=None, v=False):
        # type: (bool, list, any, bool) -> None
600
        """Corrects the spatial shifts calculated by self.compute_global_shifts().
601
602
603
604
605
606
607
608
609

        :param cliptoextent:    whether to clip the output to the given extent
        :param clipextent:      list of XY-coordinate tuples giving the target extent (if not given and cliptoextent is
                                True, the 'trueDataCornerLonLat' attribute of the GMS object is used
        :param clipextent_prj:  WKT projection string or EPSG code of the projection for the coordinates in clipextent
        :param v:
        :return:
        """

610
611
        # cliptoextent is automatically True if an extent is given
        cliptoextent = cliptoextent if not clipextent else True
612

613
614
        if cliptoextent or self.resamp_needed or (self.coreg_needed and self.coreg_info['success']):

615
            # get target bounds # TODO implement boxObj call instead here
616
            if not clipextent:
617
618
                trueDataCornerUTM = [transform_any_prj(EPSG2WKT(4326), self.MetaObj.projection, x, y)
                                     for x, y in self.trueDataCornerLonLat]
619
                xmin, xmax, ymin, ymax = corner_coord_to_minmax(trueDataCornerUTM)
620
                mapBounds = box(xmin, ymin, xmax, ymax).bounds
621
622
623
624
625
626
627
628
            else:
                assert clipextent_prj, \
                    "'clipextent_prj' must be given together with 'clipextent'. Received only 'clipextent'."
                clipextent_UTM = clipextent if prj_equal(self.MetaObj.projection, clipextent_prj) else \
                    [transform_any_prj(clipextent_prj, self.MetaObj.projection, x, y) for x, y in clipextent]
                xmin, xmax, ymin, ymax = corner_coord_to_minmax(clipextent_UTM)
                mapBounds = box(xmin, ymin, xmax, ymax).bounds

629
            # correct shifts and clip to extent
630
631
            # ensure self.masks exists (does not exist in case of inmem_serialization mode because
            # then self.fill_from_disk() is skipped)
632
633
634
            if not hasattr(self, 'masks') or self.masks is None:
                self.build_combined_masks_array()  # creates self.masks and self.masks_meta

635
636
637
            # exclude self.mask_nodata, self.mask_clouds from warping
            del self.mask_nodata, self.mask_clouds

638
639
640
            attributes2deshift = [attrname for attrname in
                                  ['arr', 'masks', 'dem', 'ac_errors', 'mask_clouds_confidence']
                                  if getattr(self, '_%s' % attrname) is not None]
641
            for attrname in attributes2deshift:
642
                geoArr = getattr(self, attrname)
643
644

                # do some logging
645
646
                if self.coreg_needed:
                    if self.coreg_info['success']:
647
648
                        self.logger.info("Correcting spatial shifts for attribute '%s'..." % attrname)
                    elif cliptoextent and is_coord_grid_equal(
649
                         geoArr.gt, CFG.spatial_ref_gridx, CFG.spatial_ref_gridy):
650
                        self.logger.info("Attribute '%s' has only been clipped to it's extent because no valid "
651
652
                                         "shifts have been detected and the pixel grid equals the target grid."
                                         % attrname)
653
654
                    elif self.resamp_needed:
                        self.logger.info("Resampling attribute '%s' to target grid..." % attrname)
655
656
657
658
                elif self.resamp_needed:
                    self.logger.info("Resampling attribute '%s' to target grid..." % attrname)

                # correct shifts
659
                DS = DESHIFTER(geoArr, self.coreg_info,
660
                               target_xyGrid=[CFG.spatial_ref_gridx, CFG.spatial_ref_gridy],
661
662
663
                               cliptoextent=cliptoextent,
                               clipextent=mapBounds,
                               align_grids=True,
664
                               resamp_alg='nearest' if attrname == 'masks' else CFG.spatial_resamp_alg,
665
                               CPUs=None if CFG.allow_subMultiprocessing else 1,
666
667
668
                               progress=True if v else False,
                               q=True,
                               v=v)
669
670
671
                DS.correct_shifts()

                # update coreg_info
672
673
                if attrname == 'arr':
                    self.coreg_info['is shifted'] = DS.is_shifted
674
                    self.coreg_info['is resampled'] = DS.is_resampled
675

676
                # update geoinformations and array shape related attributes
677
678
679
                self.logger.info("Updating geoinformations of '%s' attribute..." % attrname)
                if attrname == 'arr':
                    self.meta_odict['map info'] = DS.updated_map_info
680
                    self.meta_odict['coordinate system string'] = EPSG2WKT(WKT2EPSG(DS.updated_projection))
681
                    self.shape_fullArr = DS.arr_shifted.shape
682
683
                    self.meta_odict['lines'], self.meta_odict['samples'] = DS.arr_shifted.shape[:2]
                else:
684
685
                    self.masks_meta['map info'] = DS.updated_map_info
                    self.masks_meta['coordinate system string'] = EPSG2WKT(WKT2EPSG(DS.updated_projection))
686
687
                    self.masks_meta['lines'], self.masks_meta['samples'] = DS.arr_shifted.shape[:2]

688
689
                    # NOTE: mask_nodata and mask_clouds are updated later by L2A_map mapper function (module pipeline)

690
                # update the GeoArray instance without loosing its inherent metadata (nodata, ...)
691
692
693
                geoArr.arr, geoArr.gt, geoArr.prj = \
                    DS.GeoArray_shifted.arr, DS.GeoArray_shifted.gt, DS.GeoArray_shifted.prj
                # setattr(self,attrname, DS.GeoArray_shifted) # NOTE: don't set array earlier because setter will also
694
695
                #                                            # update arr.gt/.prj/.nodata from meta_odict

696
            self.resamp_needed = False
697
            self.coreg_needed = False
698

699
700
            # recreate self.masks_nodata and self.mask_clouds from self.masks
            self.mask_nodata = self.mask_nodata
701
702
            self.mask_clouds = self.mask_clouds
            # FIXME move functionality of self.masks only to output writer and remove self.masks completely