process_controller.py 37.1 KB
Newer Older
1
2
# -*- coding: utf-8 -*-

3
from __future__ import (division, print_function, unicode_literals, absolute_import)
4
5
6

import numpy as np
from pandas import DataFrame
7
8
9
10
import datetime
import os
import time
from itertools import chain
11
import signal
12
import re
Daniel Scheffler's avatar
Daniel Scheffler committed
13
from typing import TYPE_CHECKING
14

15
16
from ..io import output_writer as OUT_W
from ..io import input_reader as INP_R
17
18
19
20
21
from ..misc import database_tools as DB_T
from ..misc import helper_functions as HLP_F
from ..misc.path_generator import path_generator
from ..misc.logging import GMS_logger, shutdown_loggers
from ..algorithms import L1A_P, L1B_P, L1C_P, L2A_P, L2B_P, L2C_P
22
from ..model.metadata import get_LayerBandsAssignment
23
24
from ..model.gms_object import failed_GMS_object
from .pipeline import (L1A_map, L1A_map_1, L1A_map_2, L1A_map_3, L1B_map, L1C_map,
25
                       L2A_map, L2B_map, L2C_map)
26
from ..options.config import set_config, GMS_config
27
from .multiproc import MAP
28
from ..misc.definition_dicts import proc_chain, db_jobs_statistics_def
29

30
31
from py_tools_ds.numeric.array import get_array_tilebounds

32
if TYPE_CHECKING:
Daniel Scheffler's avatar
Daniel Scheffler committed
33
    from collections import OrderedDict  # noqa F401  # flake8 issue
34
35
36
37


__author__ = 'Daniel Scheffler'

38
39

class process_controller(object):
40
    def __init__(self, job_ID, **config_kwargs):
41
        """gms_preprocessing process controller
42

43
44
        :param job_ID:          job ID belonging to a valid database record within table 'jobs'
        :param config_kwargs:   keyword arguments to be passed to gms_preprocessing.set_config()
45
46
47
        """

        # assertions
48
49
        if not isinstance(job_ID, int):
            raise ValueError("'job_ID' must be an integer value. Got %s." % type(job_ID))
50

51
52
53
54
55
56
        # set GMS configuration
        config_kwargs.update(dict(reset_status=True))
        set_config(job_ID, **config_kwargs)
        self.config = GMS_config  # type: GMS_config

        # defaults
57
        self._logger = None
58
        self._DB_job_record = None
59
        self.profiler = None
60
61
62
63
64

        self.failed_objects = []
        self.L1A_newObjects = []
        self.L1B_newObjects = []
        self.L1C_newObjects = []
65
        self.L2A_tiles = []
66
67
68
69
        self.L2B_newObjects = []
        self.L2C_newObjects = []

        self.summary_detailed = None
70
        self.summary_quick = None
71

72
73
        # check if process_controller is executed by debugger
        # isdebugging = 1 if True in [frame[1].endswith("pydevd.py") for frame in inspect.stack()] else False
74
        # if isdebugging:  # override the existing settings in order to get write access everywhere
75
76
        #    pass

77
        # called_from_iPyNb = 1 if 'ipykernel/__main__.py' in sys.argv[0] else 0
78

79
        self.logger.info('Process Controller initialized for job ID %s (comment: %s).'
80
                         % (self.config.ID, self.DB_job_record.comment))
81

82
        if self.config.delete_old_output:
83
84
            self.logger.info('Deleting previously processed data...')
            self.DB_job_record.delete_procdata_of_entire_job(force=True)
85

86
87
88
89
90
    @property
    def logger(self):
        if self._logger and self._logger.handlers[:]:
            return self._logger
        else:
91
92
93
            self._logger = GMS_logger('log__%s' % self.config.ID,
                                      path_logfile=os.path.join(self.config.path_job_logs, '%s.log' % self.config.ID),
                                      log_level=self.config.log_level, append=False)
94
95
96
97
98
99
100
101
102
103
104
105
106
            return self._logger

    @logger.setter
    def logger(self, logger):
        self._logger = logger

    @logger.deleter
    def logger(self):
        if self._logger not in [None, 'not set']:
            self.logger.close()
            self.logger = None

    @property
107
108
109
110
    def DB_job_record(self):
        if self._DB_job_record:
            return self._DB_job_record
        else:
111
112
            self._DB_job_record = DB_T.GMS_JOB(self.config.conn_database)
            self._DB_job_record.from_job_ID(self.config.ID)
113
            return self._DB_job_record
114

115
116
117
    @DB_job_record.setter
    def DB_job_record(self, value):
        self._DB_job_record = value
118

119
120
121
    @property
    def sceneids_failed(self):
        return [obj.scene_ID for obj in self.failed_objects]
122

Daniel Scheffler's avatar
Daniel Scheffler committed
123
    def add_local_availability(self, datasets):
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
124
        # type: (list) -> list
125
        # TODO revise this function
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        for dataset in datasets:
            # query the database and get the last written processing level and LayerBandsAssignment
            DB_match = DB_T.get_info_from_postgreSQLdb(
                GMS_config.conn_database, 'scenes_proc', ['proc_level', 'layer_bands_assignment'],
                dict(sceneid=dataset['scene_ID']))

            # get the corresponding logfile
            path_logfile = path_generator(
                dataset).get_path_logfile()  # FIXME this always returns the logfile for the subsystem.

            # FIXME -> merged logfiles (L2A+) are ignored
            # FIXME -> for subsystems the highest start procL is L2A

            def get_AllWrittenProcL_dueLog(path_log):  # TODO replace this by database query + os.path.exists
                """Returns all processing level that have been successfully written according to logfile."""

                if not os.path.exists(path_log):
                    self.logger.info("No logfile named '%s' found for %s at %s. Dataset has to be reprocessed."
                                     % (os.path.basename(path_log), dataset['entity_ID'], os.path.dirname(path_log)))
                    AllWrittenProcL_dueLog = []
Daniel Scheffler's avatar
Daniel Scheffler committed
146
                else:
Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
                    logfile = open(path_log, 'r').read()
                    AllWrittenProcL_dueLog = re.findall(":*(\S*\s*) data successfully saved.", logfile, re.I)
                    if not AllWrittenProcL_dueLog:  # AllWrittenProcL_dueLog = []
                        self.logger.info('%s: According to logfile no completely processed data exist at any '
                                         'processing level. Dataset has to be reprocessed.' % dataset['entity_ID'])
                    else:
                        AllWrittenProcL_dueLog = HLP_F.sorted_nicely(list(set(AllWrittenProcL_dueLog)))
                return AllWrittenProcL_dueLog

            # check if there are not multiple database records for this dataset
            if len(DB_match) == 1 or DB_match == [] or DB_match == 'database connection fault':

                # get all processing level that have been successfully written
                AllWrittenProcL = get_AllWrittenProcL_dueLog(path_logfile)
                dataset['proc_level'] = None  # default (dataset has to be reprocessed)

                # loop through all the found proc. levels and find the one that fulfills all requirements
                for ProcL in reversed(AllWrittenProcL):
                    if dataset['proc_level']:
                        break  # proc_level found; no further searching for lower proc_levels
                    assumed_path_GMS_file = '%s_%s.gms' % (os.path.splitext(path_logfile)[0], ProcL)

                    # check if there is also a corresponding GMS_file on disk
                    if os.path.isfile(assumed_path_GMS_file):
                        GMS_file_dict = INP_R.GMSfile2dict(assumed_path_GMS_file)
                        target_LayerBandsAssignment = \
                            get_LayerBandsAssignment(dict(
                                image_type=dataset['image_type'],
                                Satellite=dataset['satellite'],
                                Sensor=dataset['sensor'],
                                Subsystem=dataset['subsystem'],
                                proc_level=ProcL,  # must be respected because LBA changes after atm. Corr.
                                dataset_ID=dataset['dataset_ID'],
                                logger=None), nBands=(1 if dataset['sensormode'] == 'P' else None))

                        # check if the LayerBandsAssignment of the written dataset on disk equals the
                        # desired LayerBandsAssignment
                        if target_LayerBandsAssignment == GMS_file_dict['LayerBandsAssignment']:

                            # update the database record if the dataset could not be found in database
                            if DB_match == [] or DB_match == 'database connection fault':
                                self.logger.info('The dataset %s is not included in the database of processed data but'
                                                 ' according to logfile %s has been written successfully. Recreating '
                                                 'missing database entry.' % (dataset['entity_ID'], ProcL))
                                DB_T.data_DB_updater(GMS_file_dict)
Daniel Scheffler's avatar
Daniel Scheffler committed
192

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
193
                                dataset['proc_level'] = ProcL
194

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
                            # if the dataset could be found in database
                            elif len(DB_match) == 1:
                                try:
                                    self.logger.info('Found a matching %s dataset for %s. Processing skipped until %s.'
                                                     % (ProcL, dataset['entity_ID'],
                                                        proc_chain[proc_chain.index(ProcL) + 1]))
                                except IndexError:
                                    self.logger.info('Found a matching %s dataset for %s. Processing already done.'
                                                     % (ProcL, dataset['entity_ID']))

                                if DB_match[0][0] == ProcL:
                                    dataset['proc_level'] = DB_match[0][0]
                                else:
                                    dataset['proc_level'] = ProcL

                        else:
                            self.logger.info('Found a matching dataset for %s but with a different '
                                             'LayerBandsAssignment. Dataset has to be reprocessed.'
                                             % dataset['entity_ID'])
                    else:
                        self.logger.info('%s for dataset %s has been written due to logfile but no corresponding '
                                         'dataset has been found.' % (ProcL, dataset['entity_ID']) +
                                         ' Searching for lower processing level...'
                                         if AllWrittenProcL.index(ProcL) != 0 else '')
219

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
220
221
222
223
            elif len(DB_match) > 1:
                self.logger.info('According to database there are multiple matches for the dataset %s. Dataset has to '
                                 'be reprocessed.' % dataset['entity_ID'])
                dataset['proc_level'] = None
224

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
225
226
            else:
                dataset['proc_level'] = None
227

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
228
229
230
        #############################################################
        # check availability of all subsets per scene an proc_level #
        #############################################################
231

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
232
233
        datasets_validated = []
        datasets_grouped = HLP_F.group_dicts_by_key(datasets, key='scene_ID')
234

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
235
236
        for ds_group in datasets_grouped:
            proc_lvls = [ds['proc_level'] for ds in ds_group]
237

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
238
239
240
241
242
            if not len(list(set(proc_lvls))) == 1:
                # reset processing level of those scenes where not all subsystems are available
                self.logger.info('%s: Found already processed subsystems %s. Remaining subsystems are missing. '
                                 'Therefore, the dataset has to be reprocessed.'
                                 % (ds_group[0]['entity_ID'], proc_lvls))
243

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
244
245
246
247
248
                for ds in ds_group:
                    ds['proc_level'] = None
                    datasets_validated += ds
            else:
                datasets_validated.extend(ds_group)
249

Daniel Scheffler's avatar
Bugfix.    
Daniel Scheffler committed
250
        return datasets_validated
251

252
253
    @staticmethod
    def _is_inMEM(GMS_objects, dataset):
Daniel Scheffler's avatar
Daniel Scheffler committed
254
        # type: (list, OrderedDict) -> bool
255
256
257
258
        """Checks whether a dataset within a dataset list has been processed in the previous processing level.
        :param GMS_objects: <list> a list of GMS objects that has been recently processed
        :param dataset:     <collections.OrderedDict> as generated by L0A_P.get_data_list_of_current_jobID()
        """
259
        # check if the scene ID of the given dataset is in the scene IDs of the previously processed datasets
260
261
262
        return dataset['scene_ID'] in [obj.scene_ID for obj in GMS_objects]

    def _get_processor_data_list(self, procLvl, prevLvl_objects=None):
263
        """Returns a list of datasets that have to be read from disk and then processed by a specific processor.
264
265
266
267
268

        :param procLvl:
        :param prevLvl_objects:
        :return:
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
269
270
        def is_procL_lower(dataset):
            return HLP_F.is_proc_level_lower(dataset['proc_level'], target_lvl=procLvl)
271
272

        if prevLvl_objects is None:
Daniel Scheffler's avatar
Daniel Scheffler committed
273
            return [dataset for dataset in self.config.data_list if is_procL_lower(dataset)]  # TODO generator?
274
        else:
Daniel Scheffler's avatar
Daniel Scheffler committed
275
            return [dataset for dataset in self.config.data_list if is_procL_lower(dataset) and
276
                    not self._is_inMEM(prevLvl_objects + self.failed_objects, dataset)]
277
278
279
280
281
282
283
284
285
286
287
288
289

    def get_DB_objects(self, procLvl, prevLvl_objects=None, parallLev=None, blocksize=None):
        """
        Returns a list of GMS objects for datasets available on disk that have to be processed by the current processor.

        :param procLvl:         <str> processing level oof the current processor
        :param prevLvl_objects: <list> of in-mem GMS objects produced by the previous processor
        :param parallLev:       <str> parallelization level ('scenes' or 'tiles')
                                -> defines if full cubes or blocks are to be returned
        :param blocksize:       <tuple> block size in case blocks are to be returned, e.g. (2000,2000)
        :return:
        """
        # TODO get prevLvl_objects automatically from self
290
        if procLvl == 'L1A':
291
292
293
            return []
        else:
            # handle input parameters
Daniel Scheffler's avatar
Daniel Scheffler committed
294
295
            parallLev = parallLev or self.config.parallelization_level
            blocksize = blocksize or self.config.tiling_block_size_XY
296
            prevLvl = proc_chain[proc_chain.index(procLvl) - 1]  # TODO replace by enum
297
298

            # get GMSfile list
299
            dataset_dicts = self._get_processor_data_list(procLvl, prevLvl_objects)
300
301
302
303
304
            GMSfile_list_prevLvl_inDB = INP_R.get_list_GMSfiles(dataset_dicts, prevLvl)

            # create GMS objects from disk with respect to parallelization level and block size
            if parallLev == 'scenes':
                # get input parameters for creating GMS objects as full cubes
305
                work = [[GMS, ['cube', None]] for GMS in GMSfile_list_prevLvl_inDB]
306
307
            else:
                # define tile positions and size
308
                def get_tilepos_list(GMSfile):
309
310
                    return get_array_tilebounds(array_shape=INP_R.GMSfile2dict(GMSfile)['shape_fullArr'],
                                                tile_shape=blocksize)
311
312
313

                # get input parameters for creating GMS objects as blocks
                work = [[GMSfile, ['block', tp]] for GMSfile in GMSfile_list_prevLvl_inDB
314
                        for tp in get_tilepos_list(GMSfile)]
315

316
317
318
319
            # create GMS objects for the found files on disk
            # NOTE: DON'T multiprocess that with MAP(GMS_object(*initargs).from_disk, work)
            # in case of multiple subsystems GMS_object(*initargs) would always point to the same object in memory
            # -> subsystem attribute will be overwritten each time
320
            def init_GMS_obj(): return HLP_F.parentObjDict[prevLvl](*HLP_F.initArgsDict[prevLvl])
321
322
            DB_objs = [init_GMS_obj().from_disk(tuple_GMS_subset=w) for w in work]  # init

323
324
325
326
327
            if DB_objs:
                DB_objs = list(chain.from_iterable(DB_objs)) if list in [type(i) for i in DB_objs] else list(DB_objs)

            return DB_objs

Daniel Scheffler's avatar
Daniel Scheffler committed
328
    def run_all_processors_OLD(self, custom_data_list=None):
329
330
331
        """
        Run all processors at once.
        """
332

333
        signal.signal(signal.SIGINT, self.stop)  # enable clean shutdown possibility
334

335
        # noinspection PyBroadException
336
        try:
337
            if self.config.profiling:
338
339
340
341
                from pyinstrument import Profiler
                self.profiler = Profiler()  # or Profiler(use_signal=False), see below
                self.profiler.start()

342
            self.logger.info('Execution of entire GeoMultiSens pre-processing chain started for job ID %s...'
343
                             % self.config.ID)
344
            self.DB_job_record.reset_job_progress()  # updates attributes of DB_job_record and related DB entry
345
            self.config.status = 'running'
346
            self.update_DB_job_record()  # TODO implement that into job.status.setter
347
348
349
350
351

            self.failed_objects = []

            # get list of datasets to be processed
            if custom_data_list:
352
                self.config.data_list = custom_data_list
353
354

            # add local availability
Daniel Scheffler's avatar
Daniel Scheffler committed
355
            self.config.data_list = self.add_local_availability(self.config.data_list)
356
            self.update_DB_job_statistics(self.config.data_list)
357
358
359
360
361
362
363
364
365
366
367
368

            self.L1A_processing()
            self.L1B_processing()
            self.L1C_processing()
            self.L2A_processing()
            self.L2B_processing()
            self.L2C_processing()

            # create summary
            self.create_job_summary()

            self.logger.info('Execution finished.')
369
            # TODO implement failed_with_warnings:
370
371
372
373
            self.config.status = 'finished' if not self.failed_objects else 'finished_with_errors'
            self.config.end_time = datetime.datetime.now()
            self.config.computation_time = self.config.end_time - self.config.start_time
            self.logger.info('Time for execution: %s' % self.config.computation_time)
374
375
376
377

            # update database entry of current job
            self.update_DB_job_record()

378
            if self.config.profiling:
379
380
381
382
383
                self.profiler.stop()
                print(self.profiler.output_text(unicode=True, color=True))

            shutdown_loggers()

384
        except Exception:  # noqa E722  # bare except
385
            if self.config.profiling:
386
387
388
                self.profiler.stop()
                print(self.profiler.output_text(unicode=True, color=True))

389
            self.config.status = 'failed'
Daniel Scheffler's avatar
Daniel Scheffler committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
            self.update_DB_job_record()

            if not self.config.disable_exception_handler:
                self.logger.error('Execution failed with an error:', exc_info=True)
                shutdown_loggers()
            else:
                self.logger.error('Execution failed with an error:')
                shutdown_loggers()
                raise

    def run_all_processors(self, custom_data_list=None):
        signal.signal(signal.SIGINT, self.stop)  # enable clean shutdown possibility

        # noinspection PyBroadException
        try:
            if self.config.profiling:
                from pyinstrument import Profiler
                self.profiler = Profiler()  # or Profiler(use_signal=False), see below
                self.profiler.start()

            self.logger.info('Execution of entire GeoMultiSens pre-processing chain started for job ID %s...'
                             % self.config.ID)
            self.DB_job_record.reset_job_progress()  # updates attributes of DB_job_record and related DB entry
            self.config.status = 'running'
            self.update_DB_job_record()  # TODO implement that into config.status.setter

            self.failed_objects = []

            # get list of datasets to be processed
            if custom_data_list:
                self.config.data_list = custom_data_list

            # add local availability
            self.config.data_list = self.add_local_availability(self.config.data_list)
            self.update_DB_job_statistics(self.config.data_list)

            # group dataset dicts by sceneid
            dataset_groups = HLP_F.group_dicts_by_key(self.config.data_list, key='scene_ID')

            from .pipeline import run_complete_preprocessing
            GMS_objs = MAP(run_complete_preprocessing, dataset_groups)

            # separate results into successful and failed objects
            self.L2C_newObjects = [obj for obj in GMS_objs if isinstance(obj, L2C_P.L2C_object)]
            self.failed_objects = [obj for obj in GMS_objs if isinstance(obj, failed_GMS_object)]

            # create summary
            self.create_job_summary()

            self.logger.info('Execution finished.')
            # TODO implement failed_with_warnings:
            self.config.status = 'finished' if not self.failed_objects else 'finished_with_errors'
            self.config.end_time = datetime.datetime.now()
            self.config.computation_time = self.config.end_time - self.config.start_time
            self.logger.info('Time for execution: %s' % self.config.computation_time)

            # update database entry of current job
            self.update_DB_job_record()

            if self.config.profiling:
                self.profiler.stop()
                print(self.profiler.output_text(unicode=True, color=True))

            shutdown_loggers()

        except Exception:  # noqa E722  # bare except
            if self.config.profiling:
                self.profiler.stop()
                print(self.profiler.output_text(unicode=True, color=True))

            self.config.status = 'failed'
461
462
            self.update_DB_job_record()

463
            if not self.config.disable_exception_handler:
464
                self.logger.error('Execution failed with an error:', exc_info=True)
465
466
                shutdown_loggers()
            else:
467
                self.logger.error('Execution failed with an error:')
468
469
                shutdown_loggers()
                raise
470

471
472
    def stop(self, signum, frame):
        """Interrupt the running process controller gracefully."""
473

474
        self.config.status = 'canceled'
475
476
        self.update_DB_job_record()

477
        self.logger.warning('Process controller stopped by user.')
478
479
        del self.logger
        shutdown_loggers()
480

481
        raise KeyboardInterrupt  # terminate execution and show traceback
482

483
484
485
486
    def benchmark(self):
        """
        Run a benchmark.
        """
487
        data_list_bench = self.config.data_list
488
489
490
491
        for count_datasets in range(len(data_list_bench)):
            t_processing_all_runs, t_IO_all_runs = [], []
            for count_run in range(10):
                current_data_list = data_list_bench[0:count_datasets + 1]
492
493
                if os.path.exists(self.config.path_database):
                    os.remove(self.config.path_database)
494
495
496
497
498
499
500
501
502
503
                t_start = time.time()
                self.run_all_processors(current_data_list)
                t_processing_all_runs.append(time.time() - t_start)
                t_IO_all_runs.append(globals()['time_IO'])

            assert current_data_list, 'Empty data list.'
            OUT_W.write_global_benchmark_output(t_processing_all_runs, t_IO_all_runs, current_data_list)

    def L1A_processing(self):
        """
504
        Run Level 1A processing: Data import and metadata homogenization
505
        """
506
        if self.config.exec_L1AP[0]:
507
            self.logger.info('\n\n##### Level 1A Processing started - raster format and metadata homogenization ####\n')
508

509
510
            datalist_L1A_P = self._get_processor_data_list('L1A')

511
            if self.config.parallelization_level == 'scenes':
512
                # map
513
                L1A_resObjects = MAP(L1A_map, datalist_L1A_P, CPUs=12)
514
            else:  # tiles
515
516
                all_L1A_tiles_map1 = MAP(L1A_map_1, datalist_L1A_P,
                                         flatten_output=True)  # map_1 # merge results to new list of splits
517

518
519
520
                L1A_obj_tiles = MAP(L1A_map_2, all_L1A_tiles_map1)  # map_2
                grouped_L1A_Tiles = HLP_F.group_objects_by_attributes(
                    L1A_obj_tiles, 'scene_ID', 'subsystem')  # group results
521

522
                L1A_objects = MAP(L1A_P.L1A_object().from_tiles, grouped_L1A_Tiles)  # reduce
523

524
                L1A_resObjects = MAP(L1A_map_3, L1A_objects)  # map_3
525

526
            self.L1A_newObjects = [obj for obj in L1A_resObjects if isinstance(obj, L1A_P.L1A_object)]
527
            self.failed_objects += [obj for obj in L1A_resObjects if isinstance(obj, failed_GMS_object) and
528
529
530
531
532
533
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L1A_newObjects

    def L1B_processing(self):
        """
534
        Run Level 1B processing: calculation of geometric shifts
535
536
537
538
        """
        # TODO implement check for running spatial index mediator server
        # run on full cubes

539
        if self.config.exec_L1BP[0]:
540
            self.logger.info('\n\n####### Level 1B Processing started - detection of geometric displacements #######\n')
541

542
543
            L1A_DBObjects = self.get_DB_objects('L1B', self.L1A_newObjects, parallLev='scenes')
            L1A_Instances = self.L1A_newObjects + L1A_DBObjects  # combine newly and earlier processed L1A data
544

545
            L1B_resObjects = MAP(L1B_map, L1A_Instances)
546

547
548
549
            self.L1B_newObjects = [obj for obj in L1B_resObjects if isinstance(obj, L1B_P.L1B_object)]
            self.failed_objects += [obj for obj in L1B_resObjects if isinstance(obj, failed_GMS_object) and
                                    obj.scene_ID not in self.sceneids_failed]
550
551
552
553
554

        return self.L1B_newObjects

    def L1C_processing(self):
        """
555
        Run Level 1C processing: atmospheric correction
556
        """
557
        if self.config.exec_L1CP[0]:
558
            self.logger.info('\n\n############## Level 1C Processing started - atmospheric correction ##############\n')
559

560
            if self.config.parallelization_level == 'scenes':
561
562
563
564
                L1B_DBObjects = self.get_DB_objects('L1C', self.L1B_newObjects)
                L1B_Instances = self.L1B_newObjects + L1B_DBObjects  # combine newly and earlier processed L1B data

                # group by scene ID (all subsystems belonging to the same scene ID must be processed together)
565
                grouped_L1B_Instances = HLP_F.group_objects_by_attributes(L1B_Instances, 'scene_ID')
566

567
568
                L1C_resObjects = MAP(L1C_map, grouped_L1B_Instances, flatten_output=True,
                                     CPUs=15)  # FIXME CPUs set to 15 for testing
569

570
            else:  # tiles
571
572
                raise NotImplementedError("Tiled processing is not yet completely implemented for L1C processor. Use "
                                          "parallelization level 'scenes' instead!")
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
                # blocksize = (5000, 5000)
                # """if newly processed L1A objects are present: cut them into tiles"""
                # L1B_newTiles = []
                # if self.L1B_newObjects:
                #     tuples_obj_blocksize = [(obj, blocksize) for obj in self.L1B_newObjects]
                #     L1B_newTiles = MAP(HLP_F.cut_GMS_obj_into_blocks, tuples_obj_blocksize, flatten_output=True)
                #
                # """combine newly and earlier processed L1B data"""
                # L1B_newDBTiles = self.get_DB_objects('L1C', self.L1B_newObjects, blocksize=blocksize)
                # L1B_tiles = L1B_newTiles + L1B_newDBTiles
                #
                # # TODO merge subsets of S2/Aster in order to provide all bands for atm.correction
                # L1C_tiles = MAP(L1C_map, L1B_tiles)
                # grouped_L1C_Tiles = \
                #     HLP_F.group_objects_by_attributes(L1C_tiles, 'scene_ID', 'subsystem')  # group results
                # [L1C_tiles_group[0].delete_tempFiles() for L1C_tiles_group in grouped_L1C_Tiles]
                # L1C_resObjects = MAP(L1C_P.L1C_object().from_tiles, grouped_L1C_Tiles)  # reduce

            self.L1C_newObjects = [obj for obj in L1C_resObjects if isinstance(obj, L1C_P.L1C_object)]
592
            self.failed_objects += [obj for obj in L1C_resObjects if isinstance(obj, failed_GMS_object) and
593
594
595
596
597
598
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L1C_newObjects

    def L2A_processing(self):
        """
599
        Run Level 2A processing: geometric homogenization
600
        """
601
        if self.config.exec_L2AP[0]:
602
603
            self.logger.info(
                '\n\n#### Level 2A Processing started - shift correction / geometric homogenization ####\n')
604

605
            """combine newly and earlier processed L1C data"""
606
607
            L1C_DBObjects = self.get_DB_objects('L2A', self.L1C_newObjects, parallLev='scenes')
            L1C_Instances = self.L1C_newObjects + L1C_DBObjects  # combine newly and earlier processed L1C data
608
609
610
611

            # group by scene ID (all subsystems belonging to the same scene ID must be processed together)
            grouped_L1C_Instances = HLP_F.group_objects_by_attributes(L1C_Instances, 'scene_ID')

612
            L2A_resTiles = MAP(L2A_map, grouped_L1C_Instances, flatten_output=True)
613

614
            self.L2A_tiles = [obj for obj in L2A_resTiles if isinstance(obj, L2A_P.L2A_object)]
615
            self.failed_objects += [obj for obj in L2A_resTiles if isinstance(obj, failed_GMS_object) and
616
617
618
619
620
621
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L2A_tiles

    def L2B_processing(self):
        """
622
        Run Level 2B processing: spectral homogenization
623
        """
624
        if self.config.exec_L2BP[0]:
625
            self.logger.info('\n\n############# Level 2B Processing started - spectral homogenization ##############\n')
626

627
            if self.config.parallelization_level == 'scenes':
628
                # don't know if scenes makes sense in L2B processing because full objects are very big!
629
                """if newly processed L2A objects are present: merge them to scenes"""
630
631
                grouped_L2A_Tiles = HLP_F.group_objects_by_attributes(self.L2A_tiles, 'scene_ID')  # group results
                # reduce # will be too slow because it has to pickle back really large L2A_newObjects
632
                # L2A_newObjects  = MAP(HLP_F.merge_GMS_tiles_to_GMS_obj, grouped_L2A_Tiles)
633
                L2A_newObjects = [L2A_P.L2A_object().from_tiles(tileList) for tileList in grouped_L2A_Tiles]
634

635
                """combine newly and earlier processed L2A data"""
636
637
                L2A_DBObjects = self.get_DB_objects('L2B', self.L2A_tiles)
                L2A_Instances = L2A_newObjects + L2A_DBObjects  # combine newly and earlier processed L2A data
638

639
                L2B_resObjects = MAP(L2B_map, L2A_Instances)
640
641

            else:  # tiles
642
                L2A_newTiles = self.L2A_tiles  # tiles have the block size specified in L2A_map_2
643
644

                """combine newly and earlier processed L2A data"""
645
646
647
                blocksize = (2048, 2048)  # must be equal to the blocksize of L2A_newTiles specified in L2A_map_2
                L2A_newDBTiles = self.get_DB_objects('L2B', self.L2A_tiles, blocksize=blocksize)
                L2A_tiles = L2A_newTiles + L2A_newDBTiles
648

649
                L2B_tiles = MAP(L2B_map, L2A_tiles)
650
651

                grouped_L2B_Tiles = \
652
653
                    HLP_F.group_objects_by_attributes(L2B_tiles,
                                                      'scene_ID')  # group results # FIXME nötig an dieser Stelle?
654
655
                [L2B_tiles_group[0].delete_tempFiles() for L2B_tiles_group in grouped_L2B_Tiles]

656
                L2B_resObjects = [L2B_P.L2B_object().from_tiles(tileList) for tileList in grouped_L2B_Tiles]
657

658
            self.L2B_newObjects = [obj for obj in L2B_resObjects if isinstance(obj, L2B_P.L2B_object)]
659
            self.failed_objects += [obj for obj in L2B_resObjects if isinstance(obj, failed_GMS_object) and
660
661
662
663
664
665
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L2B_newObjects

    def L2C_processing(self):
        """
666
        Run Level 2C processing: accurracy assessment and MGRS tiling
667
        """
668
        # FIXME only parallelization_level == 'scenes' implemented
669
        if self.config.exec_L2CP[0]:
670
            self.logger.info('\n\n########## Level 2C Processing started - calculation of quality layers ###########\n')
671

672
            """combine newly and earlier processed L2A data"""
673
674
            L2B_DBObjects = self.get_DB_objects('L2C', self.L2B_newObjects, parallLev='scenes')
            L2B_Instances = self.L2B_newObjects + L2B_DBObjects  # combine newly and earlier processed L2A data
675

676
            L2C_resObjects = MAP(L2C_map, L2B_Instances, CPUs=8)  # FIXME 8 workers due to heavy IO
677
            # FIXME in case of inmem_serialization mode results are too big to be back-pickled
678
            self.L2C_newObjects = [obj for obj in L2C_resObjects if isinstance(obj, L2C_P.L2C_object)]
679
            self.failed_objects += [obj for obj in L2C_resObjects if isinstance(obj, failed_GMS_object) and
680
681
682
683
684
685
686
687
                                    obj.scene_ID not in self.sceneids_failed]

        return self.L2C_newObjects

    def update_DB_job_record(self):
        """
        Update the database records of the current job (table 'jobs').
        """
688
        # TODO move this method to config.Job
689
690
        # update 'failed_sceneids' column of job record within jobs table
        sceneids_failed = list(set([obj.scene_ID for obj in self.failed_objects]))
691
        DB_T.update_records_in_postgreSQLdb(
692
            self.config.conn_database, 'jobs',
693
            {'failed_sceneids': sceneids_failed,  # update 'failed_sceneids' column
694
695
696
             'finishtime': self.config.end_time,  # add job finish timestamp
             'status': self.config.status},  # update 'job_status' column
            {'id': self.config.ID})
697

698
699
700
701
702
    def update_DB_job_statistics(self, usecase_datalist):
        """
        Update job statistics of the running job in the database.
        """
        # TODO move this method to config.Job
703
        already_updated_IDs = []
704
        for ds in usecase_datalist:
705
706
            if ds['proc_level'] is not None and ds['scene_ID'] not in already_updated_IDs:
                # update statistics column of jobs table
707
                DB_T.increment_decrement_arrayCol_in_postgreSQLdb(
708
                    self.config.conn_database, 'jobs', 'statistics', cond_dict={'id': self.config.ID},
709
710
711
                    idx_val2decrement=db_jobs_statistics_def['downloaded'],
                    idx_val2increment=db_jobs_statistics_def[ds['proc_level']])

712
713
714
                # avoid double updating in case of subsystems belonging to the same scene ID
                already_updated_IDs.append(ds['scene_ID'])

715
716
717
718
    def create_job_summary(self):
        """
        Create job success summary
        """
719
720
721

        # get objects with highest requested processing level
        highest_procL_Objs = []
722
        for pL in reversed(proc_chain):
723
            if getattr(self.config, 'exec_%sP' % pL)[0]:
724
                highest_procL_Objs = getattr(self, '%s_newObjects' % pL) if pL != 'L2A' else self.L2A_tiles
725
726
                break

727
728
729
730
        gms_objects2summarize = highest_procL_Objs + self.failed_objects
        if gms_objects2summarize:
            # create summaries
            detailed_JS, quick_JS = get_job_summary(gms_objects2summarize)
731
732
733
            detailed_JS.to_excel(os.path.join(self.config.path_job_logs, '%s_summary.xlsx' % self.config.ID))
            detailed_JS.to_csv(os.path.join(self.config.path_job_logs, '%s_summary.csv' % self.config.ID), sep='\t')
            self.logger.info('\nQUICK JOB SUMMARY (ID %s):\n' % self.config.ID + quick_JS.to_string())
734
735

            self.summary_detailed = detailed_JS
736
            self.summary_quick = quick_JS
737
738
739
740
741

        else:
            # TODO implement check if proc level with lowest procL has to be processed at all (due to job.exec_L1X)
            # TODO otherwise it is possible that get_job_summary receives an empty list
            self.logger.warning("Job summary skipped because get_job_summary() received an empty list of GMS objects.")
742
743
744
745
746
747

    def clear_lists_procObj(self):
        self.failed_objects = []
        self.L1A_newObjects = []
        self.L1B_newObjects = []
        self.L1C_newObjects = []
748
        self.L2A_tiles = []
749
        self.L2B_newObjects = []
750
751
752
753
754
        self.L2C_newObjects = []


def get_job_summary(list_GMS_objects):
    # get detailed job summary
755
756
    DJS_cols = ['GMS_object', 'scene_ID', 'entity_ID', 'satellite', 'sensor', 'subsystem', 'image_type', 'proc_level',
                'arr_shape', 'arr_pos', 'failedMapper', 'ExceptionType', 'ExceptionValue', 'ExceptionTraceback']
757
758
759
760
    DJS = DataFrame(columns=DJS_cols)
    DJS['GMS_object'] = list_GMS_objects

    for col in DJS_cols[1:]:
761
762
        def get_val(obj): return getattr(obj, col) if hasattr(obj, col) else None
        DJS[col] = list(DJS['GMS_object'].map(get_val))
763
764

    del DJS['GMS_object']
765
    DJS = DJS.sort_values(by=['satellite', 'sensor', 'entity_ID'])
766
767

    # get quick job summary
768
769
770
771
    QJS = DataFrame(columns=['satellite', 'sensor', 'count', 'proc_successfully', 'proc_failed'])
    all_sat, all_sen = zip(*[i.split('__') for i in (np.unique(DJS['satellite'] + '__' + DJS['sensor']))])
    QJS['satellite'] = all_sat
    QJS['sensor'] = all_sen
772
    # count objects with the same satellite/sensor/sceneid combination
773
774
    QJS['count'] = [len(DJS[(DJS['satellite'] == sat) & (DJS['sensor'] == sen)]['scene_ID'].unique())
                    for sat, sen in zip(all_sat, all_sen)]
775
    QJS['proc_successfully'] = [len(DJS[(DJS['satellite'] == sat) &
776
777
                                        (DJS['sensor'] == sen) &
                                        (DJS['failedMapper'].isnull())]['scene_ID'].unique())
778
                                for sat, sen in zip(all_sat, all_sen)]
779
    QJS['proc_failed'] = QJS['count'] - QJS['proc_successfully']
780
781
    QJS = QJS.sort_values(by=['satellite', 'sensor'])
    return DJS, QJS