L1C_P.py 49.8 KB
Newer Older
Daniel Scheffler's avatar
Daniel Scheffler committed
1
# -*- coding: utf-8 -*-
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

# gms_preprocessing, spatial and spectral homogenization of satellite remote sensing data
#
# Copyright (C) 2019  Daniel Scheffler (GFZ Potsdam, daniel.scheffler@gfz-potsdam.de)
#
# This software was developed within the context of the GeoMultiSens project funded
# by the German Federal Ministry of Education and Research
# (project grant code: 01 IS 14 010 A-C).
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with this program.  If not, see <http://www.gnu.org/licenses/>.

Daniel Scheffler's avatar
Daniel Scheffler committed
24
"""Level 1C Processor:   Atmospheric correction of TOA-reflectance data."""
Daniel Scheffler's avatar
Daniel Scheffler committed
25

26
import warnings
27
28
import re
import logging
29
import dill
30
import traceback
Daniel Scheffler's avatar
Daniel Scheffler committed
31
from typing import List  # noqa F401  # flake8 issue
32
33
from time import time
import os
34
import timeout_decorator
35

36
import numpy as np
37
38
from ecmwfapi.api import APIKeyFetchError
from ecmwfapi.api import APIException as ECMWFAPIException
Daniel Scheffler's avatar
Daniel Scheffler committed
39

40
from geoarray import GeoArray
41
from py_tools_ds.geo.map_info import mapinfo2geotransform
42

43
from ..options.config import GMS_config as CFG
44
from . import geoprocessing as GEOP
Daniel Scheffler's avatar
Daniel Scheffler committed
45
from .L1B_P import L1B_object
46
from ..model.metadata import get_LayerBandsAssignment
47
from ..misc.definition_dicts import get_outFillZeroSaturated, proc_chain, get_mask_classdefinition
48
from ..misc.locks import MultiSlotLock
49
from ..io.input_reader import SRF
50
# from .cloud_masking import Cloud_Mask_Creator  # circular dependencies
51

52
from sicor.sicor_ac import ac_gms
53
from sicor.sensors import RSImage
54
from sicor.Mask import S2Mask
55
from sicor.ECMWF import download_variables
56

Daniel Scheffler's avatar
Daniel Scheffler committed
57
58
__author__ = 'Daniel Scheffler'

Daniel Scheffler's avatar
Daniel Scheffler committed
59

60
class L1C_object(L1B_object):
61
    def __init__(self, L1B_obj=None):
62
        super(L1C_object, self).__init__()
63
64
65

        if L1B_obj:
            # populate attributes
Daniel Scheffler's avatar
Daniel Scheffler committed
66
            [setattr(self, key, value) for key, value in L1B_obj.__dict__.items()]
67

68
69
70
71
72
73
74
75
        # private attributes
        self._VZA_arr = None
        self._VAA_arr = None
        self._SZA_arr = None
        self._SAA_arr = None
        self._RAA_arr = None
        self._lonlat_arr = None

76
        self.proc_level = 'L1C'
77
        self.proc_status = 'initialized'
78

79
80
81
    @property
    def lonlat_arr(self):
        """Calculates pixelwise 2D-array with longitude and latitude coordinates.
82

83
84
85
86
87
88
        :return:
        """
        if self._lonlat_arr is None:
            self.logger.info('Calculating LonLat array...')
            self._lonlat_arr = \
                GEOP.get_lonlat_coord_array(self.shape_fullArr, self.arr_pos,
89
90
                                            mapinfo2geotransform(self.MetaObj.map_info),
                                            self.MetaObj.projection,
Daniel Scheffler's avatar
Daniel Scheffler committed
91
92
                                            meshwidth=10,  # for faster processing
                                            nodata_mask=None,  # dont overwrite areas outside the image with nodata
93
94
                                            outFill=get_outFillZeroSaturated(np.float32)[0])[0]
        return self._lonlat_arr
95

96
97
98
    @lonlat_arr.setter
    def lonlat_arr(self, lonlat_arr):
        self._lonlat_arr = lonlat_arr
99

100
101
102
103
    @lonlat_arr.deleter
    def lonlat_arr(self):
        self._lonlat_arr = None

104
105
106
107
108
109
110
111
    @property
    def VZA_arr(self):
        """Get viewing zenith angle.

        :return:
        """
        if self._VZA_arr is None:
            self.logger.info('Calculating viewing zenith array...')
112
            if self.MetaObj.ViewingAngle_arrProv:
113
                # Sentinel-2
114
115
116
117
118
119
                self._VZA_arr = GEOP.adjust_acquisArrProv_to_shapeFullArr(
                    {k: v.tolist() for k, v in self.MetaObj.ViewingAngle_arrProv.items()},
                    self.shape_fullArr,
                    meshwidth=10,  # for faster processing
                    subset=None,
                    bandwise=0)
120
121
            else:
                self._VZA_arr = GEOP.calc_VZA_array(self.shape_fullArr, self.arr_pos, self.fullSceneCornerPos,
122
123
                                                    float(self.MetaObj.ViewingAngle),
                                                    float(self.MetaObj.FOV),
124
                                                    self.logger,
Daniel Scheffler's avatar
Daniel Scheffler committed
125
                                                    nodata_mask=None,  # dont overwrite areas outside image with nodata
126
                                                    outFill=get_outFillZeroSaturated(np.float32)[0],
Daniel Scheffler's avatar
Daniel Scheffler committed
127
                                                    meshwidth=10)  # for faster processing
128
129
130
131
132
        return self._VZA_arr

    @VZA_arr.setter
    def VZA_arr(self, VZA_arr):
        self._VZA_arr = VZA_arr
133

134
135
136
137
    @VZA_arr.deleter
    def VZA_arr(self):
        self._VZA_arr = None

138
139
140
    @property
    def VAA_arr(self):
        """Get viewing azimuth angle.
141

142
143
144
145
        :return:
        """
        if self._VAA_arr is None:
            self.logger.info('Calculating viewing azimuth array...')
146
            if self.MetaObj.IncidenceAngle_arrProv:
147
                # Sentinel-2
148
149
150
151
152
153
                self._VAA_arr = GEOP.adjust_acquisArrProv_to_shapeFullArr(
                    {k: v.tolist() for k, v in self.MetaObj.IncidenceAngle_arrProv.items()},
                    self.shape_fullArr,
                    meshwidth=10,  # for faster processing
                    subset=None,
                    bandwise=0)
154
155
156
            else:
                # only a mean VAA is available
                if self.VAA_mean is None:
157
158
                    self.VAA_mean = \
                        GEOP.calc_VAA_using_fullSceneCornerLonLat(self.fullSceneCornerLonLat, self.MetaObj.orbitParams)
159
160
                    assert isinstance(self.VAA_mean, float)

161
                self._VAA_arr = np.full(self.VZA_arr.shape, self.VAA_mean, np.float32)
162
163
164
165
166
        return self._VAA_arr

    @VAA_arr.setter
    def VAA_arr(self, VAA_arr):
        self._VAA_arr = VAA_arr
167

168
169
170
171
    @VAA_arr.deleter
    def VAA_arr(self):
        self._VAA_arr = None

172
173
174
175
176
177
178
179
180
181
182
    @property
    def SZA_arr(self):
        """Get solar zenith angle.

        :return:
        """
        if self._SZA_arr is None:
            self.logger.info('Calculating solar zenith and azimuth arrays...')
            self._SZA_arr, self._SAA_arr = \
                GEOP.calc_SZA_SAA_array(
                    self.shape_fullArr, self.arr_pos,
183
184
                    self.MetaObj.AcqDate,
                    self.MetaObj.AcqTime,
185
186
                    self.fullSceneCornerPos,
                    self.fullSceneCornerLonLat,
187
                    self.MetaObj.overpassDurationSec,
188
189
190
191
                    self.logger,
                    meshwidth=10,
                    nodata_mask=None,  # dont overwrite areas outside the image with nodata
                    outFill=get_outFillZeroSaturated(np.float32)[0],
192
193
                    accurracy=CFG.SZA_SAA_calculation_accurracy,
                    lonlat_arr=self.lonlat_arr if CFG.SZA_SAA_calculation_accurracy == 'fine' else None)
194
195
196
197
198
199
        return self._SZA_arr

    @SZA_arr.setter
    def SZA_arr(self, SZA_arr):
        self._SZA_arr = SZA_arr

200
201
202
203
    @SZA_arr.deleter
    def SZA_arr(self):
        self._SZA_arr = None

204
205
206
207
208
209
210
    @property
    def SAA_arr(self):
        """Get solar azimuth angle.

        :return:
        """
        if self._SAA_arr is None:
211
212
            # noinspection PyStatementEffect
            self.SZA_arr  # getter also sets self._SAA_arr
213
214
215
216
217
218
        return self._SAA_arr

    @SAA_arr.setter
    def SAA_arr(self, SAA_arr):
        self._SAA_arr = SAA_arr

219
220
221
222
    @SAA_arr.deleter
    def SAA_arr(self):
        self._SAA_arr = None

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    @property
    def RAA_arr(self):
        """Get relative azimuth angle.

        :return:
        """
        if self._RAA_arr is None:
            self.logger.info('Calculating relative azimuth array...')
            self._RAA_arr = GEOP.calc_RAA_array(self.SAA_arr, self.VAA_mean,
                                                nodata_mask=None, outFill=get_outFillZeroSaturated(np.float32)[0])
        return self._RAA_arr

    @RAA_arr.setter
    def RAA_arr(self, RAA_arr):
        self._RAA_arr = RAA_arr
238

239
240
241
242
    @RAA_arr.deleter
    def RAA_arr(self):
        self._RAA_arr = None

243
    def delete_ac_input_arrays(self):
244
245
246
247
248
249
250
        """Delete AC input arrays if they are not needed anymore."""
        self.logger.info('Deleting input arrays for atmospheric correction...')
        del self.VZA_arr
        del self.SZA_arr
        del self.SAA_arr
        del self.RAA_arr
        del self.lonlat_arr
Daniel Scheffler's avatar
Daniel Scheffler committed
251
252
253
254
255

        # use self.dem deleter
        # would have to be resampled when writing MGRS tiles
        # -> better to directly warp it to the output dims and projection
        del self.dem
256
257
258


class AtmCorr(object):
259
    def __init__(self, *L1C_objs, reporting=False):
260
        """Wrapper around atmospheric correction by Andre Hollstein, GFZ Potsdam
261
262
263
264
265
266

        Creates the input arguments for atmospheric correction from one or multiple L1C_object instance(s) belonging to
        the same scene ID, performs the atmospheric correction and returns the atmospherically corrected L1C object(s).

        :param L1C_objs: one or more instances of L1C_object belonging to the same scene ID
        """
267
        # FIXME not yet usable for data < 2012 due to missing ECMWF archive
268
269
270
        L1C_objs = L1C_objs if isinstance(L1C_objs, tuple) else (L1C_objs,)

        # hidden attributes
Daniel Scheffler's avatar
Daniel Scheffler committed
271
272
273
        self._logger = None
        self._GSDs = []
        self._data = {}
274
        self._metadata = {}
Daniel Scheffler's avatar
Daniel Scheffler committed
275
        self._nodata = {}
276
        self._band_spatial_sampling = {}
Daniel Scheffler's avatar
Daniel Scheffler committed
277
        self._options = {}
278
279
280

        # assertions
        scene_IDs = [obj.scene_ID for obj in L1C_objs]
Daniel Scheffler's avatar
Daniel Scheffler committed
281
        assert len(list(set(scene_IDs))) == 1, \
Daniel Scheffler's avatar
Daniel Scheffler committed
282
            "Input GMS objects for 'AtmCorr' must all belong to the same scene ID!. Received %s." % scene_IDs
283

Daniel Scheffler's avatar
Daniel Scheffler committed
284
        self.inObjs = L1C_objs  # type: List[L1C_object]
285
        self.reporting = reporting
Daniel Scheffler's avatar
Daniel Scheffler committed
286
287
        self.ac_input = {}  # set by self.run_atmospheric_correction()
        self.results = None  # direct output of external atmCorr module (set by run_atmospheric_correction)
288
        self.proc_info = {}
Daniel Scheffler's avatar
Daniel Scheffler committed
289
        self.outObjs = []  # atmospherically corrected L1C objects
290
291

        # append AtmCorr object to input L1C objects
Daniel Scheffler's avatar
Daniel Scheffler committed
292
        # [setattr(L1C_obj, 'AtmCorr', self) for L1C_obj in self.inObjs] # too big for serialization
293

294
        if not re.search('Sentinel-2', self.inObjs[0].satellite, re.I):
295
296
            self.logger.debug('Calculation of acquisition geometry arrays is currently only validated for Sentinel-2!')
            # validation possible by comparing S2 angles provided by ESA with own angles  # TODO
297

298
299
300
301
302
    @property
    def logger(self):
        if self._logger and self._logger.handlers[:]:
            return self._logger
        else:
Daniel Scheffler's avatar
Daniel Scheffler committed
303
            if len(self.inObjs) == 1:
304
305
306
307
308
309
310
311
312
313
                # just use the logger of the inObj
                logger_atmCorr = self.inObjs[0].logger
            else:
                # in case of multiple GMS objects to be processed at once:
                # get the logger of the first inObj
                logger_atmCorr = self.inObjs[0].logger

                # add additional file handlers for the remaining inObj (that belong to the same scene_ID)
                for inObj in self.inObjs[1:]:
                    path_logfile = inObj.pathGen.get_path_logfile()
Daniel Scheffler's avatar
Daniel Scheffler committed
314
                    fileHandler = logging.FileHandler(path_logfile, mode='a')
315
                    fileHandler.setFormatter(logger_atmCorr.formatter_fileH)
316
                    fileHandler.setLevel(CFG.log_level)
317
318
319

                    logger_atmCorr.addHandler(fileHandler)

320
                    inObj.close_loggers()
Daniel Scheffler's avatar
Daniel Scheffler committed
321

322
323
324
325
326
327
            self._logger = logger_atmCorr
            return self._logger

    @logger.setter
    def logger(self, logger):
        assert isinstance(logger, logging.Logger) or logger in ['not set', None], \
Daniel Scheffler's avatar
Daniel Scheffler committed
328
            "AtmCorr.logger can not be set to %s." % logger
329
330
331
332
333
334
335
336
        if logger in ['not set', None]:
            self._logger.close()
            self._logger = logger
        else:
            self._logger = logger

    @logger.deleter
    def logger(self):
337
338
339
        if self._logger not in [None, 'not set']:
            self._logger.close()
            self._logger = None
340

341
        [inObj.close_loggers() for inObj in self.inObjs]
Daniel Scheffler's avatar
Daniel Scheffler committed
342

343
344
345
346
347
348
349
350
    @property
    def GSDs(self):
        """
        Returns a list of spatial samplings within the input GMS objects, e.g. [10,20,60].
        """
        for obj in self.inObjs:
            if obj.arr.xgsd != obj.arr.ygsd:
                warnings.warn("X/Y GSD is not equal for entity ID %s" % obj.entity_ID +
Daniel Scheffler's avatar
Daniel Scheffler committed
351
                              (' (%s)' % obj.subsystem if obj.subsystem else '') +
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
                              'Using X-GSD as key for spatial sampling dictionary.')
                self._GSDs.append(obj.arr.xgsd)

        return self._GSDs

    @property
    def data(self):
        """

        :return:
            ___ attribute: data, type:<class 'dict'>
            ______ key:B05, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 085998540.0803833 ]]
            ______ key:B01, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 131225590.13208008]]
            ______ key:B06, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .14965820.13977051]]
            ______ key:B11, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .11492920.10192871]]
            ______ key:B02, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 104187010.10308838]]
            ______ key:B10, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 013099670.01300049]]
            ______ key:B08, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .16857910.15783691]]
            ______ key:B04, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 065490720.06228638]]
            ______ key:B03, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 082702640.08148193]]
            ______ key:B12, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 068420410.06060791]]
            ______ key:B8A, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 192138670.17553711]]
            ______ key:B09, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] .09600830.09887695]]
            ______ key:B07, value_type:<class 'numpy.ndarray'>, repr: [[nan nan nan ...,0. [..] 173339840.15600586]]
        """
        if not self._data:
378
379
            data_dict = {}

380
            for inObj in self.inObjs:
381
                for bandN, bandIdx in inObj.arr.bandnames.items():
382
                    if bandN not in data_dict:
Daniel Scheffler's avatar
Daniel Scheffler committed
383
384
385
                        # float32! -> conversion to np.float16 will convert -9999 to -10000
                        arr2pass = inObj.arr[:, :, bandIdx].astype(np.float32)
                        arr2pass[arr2pass == inObj.arr.nodata] = np.nan  # set nodata values to np.nan
386
                        data_dict[bandN] = (arr2pass / inObj.MetaObj.ScaleFactor).astype(np.float16)
387
                    else:
388
                        inObj.logger.warning("Band '%s' cannot be included into atmospheric correction because it "
Daniel Scheffler's avatar
Daniel Scheffler committed
389
                                             "exists multiple times." % bandN)
390

391
            # validate: data must have all bands needed for AC
Daniel Scheffler's avatar
Daniel Scheffler committed
392
393
            full_LBA = get_LayerBandsAssignment(self.inObjs[0].GMS_identifier, return_fullLBA=True)
            all_bNs_AC = ['B%s' % i if len(i) == 2 else 'B0%s' % i for i in full_LBA]
394
395
            if not all([bN in list(data_dict.keys()) for bN in all_bNs_AC]):
                raise RuntimeError('Atmospheric correction did not receive all the needed bands. \n\tExpected: %s;\n\t'
Daniel Scheffler's avatar
Daniel Scheffler committed
396
                                   'Received: %s' % (str(all_bNs_AC), str(list(sorted(data_dict.keys())))))
397
398
399

            self._data = data_dict

400
401
402
403
404
405
406
407
        return self._data

    @data.setter
    def data(self, data_dict):
        assert isinstance(data_dict, dict), \
            "'data' can only be set to a dictionary with band names as keys and numpy arrays as values."
        self._data = data_dict

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    @property
    def nodata(self):
        """

        :return:
            ___ attribute: nodata, type:<class 'dict'>
            ______ key:60.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
            ______ key:10.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
            ______ key:20.0, value_type:<class 'numpy.ndarray'>, repr: [[ TrueTrueTrue ..., [..]  False False False]]
        """

        if not self._nodata:
            for inObj in self.inObjs:
                self._nodata[inObj.arr.xgsd] = ~inObj.arr.mask_nodata[:]

        return self._nodata

    @property
    def tile_name(self):
427
        """Returns S2A tile name.
428
        NOTE: this is only needed if no DEM is passed to ac_gms
429
430
431
432
433

        :return: e.g.
            '32UMA'
        """

Daniel Scheffler's avatar
Daniel Scheffler committed
434
        return ''  # FIXME
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

    @property
    def band_spatial_sampling(self):
        """

        :return: e.g.
            {'B01': 60.0,
             'B02': 10.0,
             'B03': 10.0,
             'B04': 10.0,
             'B05': 20.0,
             'B06': 20.0,
             'B07': 20.0,
             'B08': 10.0,
             'B09': 60.0,
             'B10': 60.0,
             'B11': 20.0,
             'B12': 20.0,
             'B8A': 20.0}
        """

        if not self._band_spatial_sampling:
            for inObj in self.inObjs:
                for bandN in inObj.arr.bandnames:
                    if bandN not in self._band_spatial_sampling:
                        self._band_spatial_sampling[bandN] = inObj.arr.xgsd
        return self._band_spatial_sampling

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    @property
    def metadata(self):
        """

        :return:
            ___ attribute: metadata, type:<class 'dict'>
            ______ key:spatial_samplings
            _________ key:60.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 1830
            ____________ key:XDIM, value_type:<class 'int'>, repr: 60
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 1830
            ____________ key:YDIM, value_type:<class 'int'>, repr: -60
            _________ key:10.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 10980
            ____________ key:XDIM, value_type:<class 'int'>, repr: 10
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 10980
            ____________ key:YDIM, value_type:<class 'int'>, repr: -10
            _________ key:20.0
            ____________ key:ULY, value_type:<class 'int'>, repr: 4900020
            ____________ key:NCOLS, value_type:<class 'int'>, repr: 5490
            ____________ key:XDIM, value_type:<class 'int'>, repr: 20
            ____________ key:ULX, value_type:<class 'int'>, repr: 600000
            ____________ key:NROWS, value_type:<class 'int'>, repr: 5490
            ____________ key:YDIM, value_type:<class 'int'>, repr: -20
            ______ key:SENSING_TIME, value_type:<class 'datetime.datetime'>, repr: 2016-03-26 10:34:06.538000+00:00
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
493

494
        if not self._metadata:
Daniel Scheffler's avatar
Daniel Scheffler committed
495
            del self.logger  # otherwise each input object would have multiple fileHandlers
496

Daniel Scheffler's avatar
Daniel Scheffler committed
497
            metadata = dict(
498
                U=self.inObjs[0].MetaObj.EarthSunDist,
Daniel Scheffler's avatar
Daniel Scheffler committed
499
500
501
502
503
                SENSING_TIME=self.inObjs[0].acq_datetime,
                # SENSING_TIME=datetime.strptime('2015-08-12 10:40:21 +0000', '%Y-%m-%d %H:%M:%S %z'),
                viewing_zenith=self._meta_get_viewing_zenith(),
                viewing_azimuth=self._meta_get_viewing_azimuth(),
                relative_viewing_azimuth=self._meta_get_relative_viewing_azimuth(),
504
505
                sun_mean_azimuth=self.inObjs[0].MetaObj.SunAzimuth,
                sun_mean_zenith=90 - self.inObjs[0].MetaObj.SunElevation,
Daniel Scheffler's avatar
Daniel Scheffler committed
506
507
508
509
                solar_irradiance=self._meta_get_solar_irradiance(),
                aux_data=self._meta_get_aux_data(),
                spatial_samplings=self._meta_get_spatial_samplings()
            )
510
511

            self._metadata = metadata
512
513
514

        return self._metadata

515
516
    @property
    def options(self):
517
        # type: () -> dict
518
519
520
521
522
523
        """Returns a dictionary containing AC options.
        """
        if self._options:
            return self._options
        else:
            self._options = self.inObjs[0].ac_options
Daniel Scheffler's avatar
Daniel Scheffler committed
524
            self._options["AC"]['bands'] = [b for b in self.data.keys() if b in self._options["AC"]['bands']]
525
            self._options["report"]["reporting"] = self.reporting
526
527
            return self._options

528
    def _meta_get_spatial_samplings(self):
529
530
531
        """

        :return:
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
         {10.0: {'NCOLS': 10980,
           'NROWS': 10980,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 10.0,
           'YDIM': -10.0},
          20.0: {'NCOLS': 5490,
           'NROWS': 5490,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 20.0,
           'YDIM': -20.0},
          60.0: {'NCOLS': 1830,
           'NROWS': 1830,
           'ULX': 499980.0,
           'ULY': 5800020.0,
           'XDIM': 60.0,
           'YDIM': -60.0}}
550
        """
551
552
        # set corner coordinates and dims
        spatial_samplings = {}
553
554
555

        for inObj in self.inObjs:

556
557
558
559
560
            # validate GSD
            if inObj.arr.xgsd != inObj.arr.ygsd:
                warnings.warn("X/Y GSD is not equal for entity ID %s" % inObj.entity_ID +
                              (' (%s)' % inObj.subsystem if inObj.subsystem else '') +
                              'Using X-GSD as key for spatial sampling dictionary.')
561

562
563
            # set spatial information
            spatial_samplings[inObj.arr.xgsd] = dict(
Daniel Scheffler's avatar
Daniel Scheffler committed
564
565
566
567
568
569
                ULX=inObj.arr.box.boxMapYX[0][1],
                ULY=inObj.arr.box.boxMapYX[0][0],
                XDIM=inObj.arr.xgsd,
                YDIM=-inObj.arr.ygsd,
                NROWS=inObj.arr.rows,
                NCOLS=inObj.arr.cols)
570

571
572
573
        return spatial_samplings

    def _meta_get_solar_irradiance(self):
574
575
576
        """

        :return:
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
        {'B01': 1913.57,
         'B02': 1941.63,
         'B03': 1822.61,
         'B04': 1512.79,
         'B05': 1425.56,
         'B06': 1288.32,
         'B07': 1163.19,
         'B08': 1036.39,
         'B09': 813.04,
         'B10': 367.15,
         'B11': 245.59,
         'B12': 85.25,
         'B8A': 955.19}
        """

        solar_irradiance = {}

        for inObj in self.inObjs:
595
596
            for bandN in inObj.arr.bandnames:
                lba_key = bandN[2:] if bandN.startswith('B0') else bandN[1:]
597
                if bandN not in solar_irradiance:
598
599
                    solar_irradiance[bandN] = inObj.MetaObj.SolIrradiance[lba_key]

600
601
602
603
604
605
606
607
608
609
        return solar_irradiance

    def _meta_get_viewing_zenith(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
        """

        viewing_zenith = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
610
        for inObj in self.inObjs:  # type: L1C_object
611
            for bandN, bandIdx in inObj.arr.bandnames.items():
612
                if bandN not in viewing_zenith:
613
614
                    arr2pass = inObj.VZA_arr[:, :, bandIdx] if inObj.VZA_arr.ndim == 3 else inObj.VZA_arr
                    viewing_zenith[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
615
                    # viewing_zenith[bandN] = inObj.VZA_arr[:, :, bandIdx] if inObj.VZA_arr.ndim==3 else inObj.VZA_arr
616
617
618
619
620
621
622
623
624
625
        return viewing_zenith

    def _meta_get_viewing_azimuth(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
        """

        viewing_azimuth = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
626
        for inObj in self.inObjs:  # type: L1C_object
627
            for bandN, bandIdx in inObj.arr.bandnames.items():
628
                if bandN not in viewing_azimuth:
Daniel Scheffler's avatar
Daniel Scheffler committed
629
                    arr2pass = inObj.VAA_arr[:, :, bandIdx] if inObj.VAA_arr.ndim == 3 else inObj.VAA_arr
630
                    viewing_azimuth[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
631
                    # viewing_azimuth[bandN] = inObj.VAA_arr[:, :, bandIdx] if inObj.VAA_arr.ndim==3 else inObj.VAA_arr
632

633
634
635
636
637
638
        return viewing_azimuth

    def _meta_get_relative_viewing_azimuth(self):
        """

        :return: {B10:ndarray(dtype=float16),[...],B09:ndarray(dtype=float16)}
639
640
        """

641
642
        relative_viewing_azimuth = {}

Daniel Scheffler's avatar
Daniel Scheffler committed
643
        for inObj in self.inObjs:  # type: L1C_object
644
            for bandN, bandIdx in inObj.arr.bandnames.items():
645
                if bandN not in relative_viewing_azimuth:
646
647
                    arr2pass = inObj.RAA_arr[:, :, bandIdx] if inObj.RAA_arr.ndim == 3 else inObj.RAA_arr
                    relative_viewing_azimuth[bandN] = arr2pass.astype(np.float16)
Daniel Scheffler's avatar
Daniel Scheffler committed
648
649
                    # relative_viewing_azimuth[bandN] = \
                    #     inObj.RAA_arr[:, :, bandIdx] if inObj.RAA_arr.ndim==3 else inObj.RAA_arr
650

651
        return relative_viewing_azimuth
652

653
654
655
656
657
658
659
660
    def _meta_get_aux_data(self):
        """

        :return:  {lons:ndarray(dtype=float16),,lats:ndarray(dtype=float16)}
        """

        aux_data = dict(
            # set lons and lats (a 2D array for all bands is enough (different band resolutions dont matter))
Daniel Scheffler's avatar
Daniel Scheffler committed
661
662
            lons=self.inObjs[0].lonlat_arr[::10, ::10, 0].astype(np.float16),  # 2D array of lon values: 0° - 360°
            lats=self.inObjs[0].lonlat_arr[::10, ::10, 1].astype(np.float16)  # 2D array of lat values: -90° - 90°
663
            # FIXME correct to reduce resolution here by factor 10?
664
665
666
667
668
669
670
671
672
673
674
675
        )

        return aux_data

    def _get_dem(self):
        """Get a DEM to be used in atmospheric correction.

        :return: <np.ndarray> 2D array (with 20m resolution in case of Sentinel-2)
        """
        # determine which input GMS object is used to generate DEM
        if re.search('Sentinel-2', self.inObjs[0].satellite):
            # in case of Sentinel-2 the 20m DEM must be passed
Daniel Scheffler's avatar
Daniel Scheffler committed
676
            inObj4dem = [obj for obj in self.inObjs if obj.arr.xgsd == 20]
677
678
679
            if not inObj4dem:
                self.logger.warning('Sentinel-2 20m subsystem could not be found. DEM passed to '
                                    'atmospheric correction might have wrong resolution.')
680
681
682
683
            inObj4dem = inObj4dem[0]
        else:
            inObj4dem = self.inObjs[0]

684
685
686
687
        try:
            dem = inObj4dem.dem[:].astype(np.float32)
        except Exception as e:
            dem = None
Daniel Scheffler's avatar
Daniel Scheffler committed
688
            self.logger.warning('A static elevation is assumed during atmospheric correction due to an error during '
689
690
691
                                'creation of the DEM corresponding to scene %s (entity ID: %s). Error message was: '
                                '\n%s\n' % (self.inObjs[0].scene_ID, self.inObjs[0].entity_ID, repr(e)))
            self.logger.info("Print traceback in case you care:")
692
            self.logger.warning(traceback.format_exc())
693
694

        return dem
695
696

    def _get_srf(self):
697
        """Returns an instance of SRF in the same structure like sicor.sensors.SRF.SensorSRF
698
        """
699
700
701
        # FIXME calculation of center wavelengths within SRF() used not the GMS algorithm
        # SRF instance must be created for all bands and the previous proc level
        GMS_identifier_fullScene = self.inObjs[0].GMS_identifier
Mathias Peters's avatar
Mathias Peters committed
702
703
        GMS_identifier_fullScene.subsystem = ''
        GMS_identifier_fullScene.proc_level = proc_chain[proc_chain.index(self.inObjs[0].proc_level) - 1]
704
705

        return SRF(GMS_identifier_fullScene, wvl_unit='nanometers', format_bandnames=True)
706

707
708
709
710
711
712
    def _get_mask_clouds(self):
        """Returns an instance of S2Mask in case cloud mask is given by input GMS objects. Otherwise None is returned.

        :return:
        """

713
714
        tgt_res = self.inObjs[0].ac_options['cld_mask']['target_resolution']

715
        # check if input GMS objects provide a cloud mask
716
        avail_cloud_masks = {inObj.GMS_identifier.subsystem: inObj.mask_clouds for inObj in self.inObjs}
717
        no_avail_CMs = list(set(avail_cloud_masks.values())) == [None]
718
719

        # compute cloud mask if not already provided
720
        if no_avail_CMs:
721
            algorithm = CFG.cloud_masking_algorithm[self.inObjs[0].satellite]
722

723
724
            if algorithm == 'SICOR':
                return None
725

726
727
728
729
730
            else:
                # FMASK or Classical Bayesian
                try:
                    from .cloud_masking import Cloud_Mask_Creator

731
                    CMC = Cloud_Mask_Creator(self.inObjs[0], algorithm=algorithm, tempdir_root=CFG.path_tempdir)
732
733
734
735
                    CMC.calc_cloud_mask()
                    cm_geoarray = CMC.cloud_mask_geoarray
                    cm_array = CMC.cloud_mask_array
                    cm_legend = CMC.cloud_mask_legend
Daniel Scheffler's avatar
Daniel Scheffler committed
736
                except Exception:
737
738
                    self.logger.error('\nAn error occurred during FMASK cloud masking. Error message was: ')
                    self.logger.error(traceback.format_exc())
739
                    return None
740

741
742
        else:
            # check if there is a cloud mask with suitable GSD
Daniel Scheffler's avatar
Daniel Scheffler committed
743
            inObjs2use = [obj for obj in self.inObjs if obj.mask_clouds is not None and obj.mask_clouds.xgsd == tgt_res]
744
745
            if not inObjs2use:
                raise ValueError('Error appending cloud mask to input arguments of atmospheric correction. No input '
Daniel Scheffler's avatar
Daniel Scheffler committed
746
                                 'GMS object provides a cloud mask with spatial resolution of %s.' % tgt_res)
747
748
749
750
751
752
753
754
            inObj2use = inObjs2use[0]

            # get mask (geo)array
            cm_geoarray = inObj2use.mask_clouds
            cm_array = inObj2use.mask_clouds[:]

            # get legend
            cm_legend = get_mask_classdefinition('mask_clouds', inObj2use.satellite)
755
            #    {'Clear': 10, 'Thick Clouds': 20, 'Thin Clouds': 30, 'Snow': 40}  # FIXME hardcoded
756
757
758
759
760
761

            # validate that xGSD equals yGSD
            if cm_geoarray.xgsd != cm_geoarray.ygsd:
                warnings.warn("Cloud mask X/Y GSD is not equal for entity ID %s" % inObj2use.entity_ID +
                              (' (%s)' % inObj2use.subsystem if inObj2use.subsystem else '') +
                              'Using X-GSD as key for cloud mask geocoding.')
762
763
764
765

        # get geocoding
        cm_geocoding = self.metadata["spatial_samplings"][tgt_res]

766
767
        # get nodata value
        self.options['cld_mask']['nodata_value_mask'] = cm_geoarray.nodata
768

769
        # append cloud mask to input object with the same spatial resolution if there was no mask before
770
        for inObj in self.inObjs:
771
            if inObj.arr.xgsd == cm_geoarray.xgsd:
772
773
                inObj.mask_clouds = cm_geoarray
                inObj.build_combined_masks_array()
Daniel Scheffler's avatar
Daniel Scheffler committed
774
                break  # appending it to one inObj is enough
775

776
777
778
        return S2Mask(mask_array=cm_array,
                      mask_legend=cm_legend,
                      geo_coding=cm_geocoding)
779

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
    def _check_or_download_ECMWF_data(self):
        """Check if ECMWF files are already downloaded. If not, start the downloader."""
        self.logger.info('Checking if ECMWF data are available... (if not, run download!)')

        default_products = [
            "fc_T2M",
            "fc_O3",
            "fc_SLP",
            "fc_TCWV",
            "fc_GMES_ozone",
            "fc_total_AOT_550nm",
            "fc_sulphate_AOT_550nm",
            "fc_black_carbon_AOT_550nm",
            "fc_dust_AOT_550nm",
            "fc_organic_matter_AOT_550nm",
            "fc_sea_salt_AOT_550nm"]

797
798
        # NOTE: use_signals must be set to True while executed as multiprocessing worker (e.g., in multiprocessing.Pool)
        @timeout_decorator.timeout(seconds=60*5, timeout_exception=TimeoutError)
799
800
        def run_request():
            try:
801
802
803
804
805
806
807
808
809
810
811
812
813
814
                with MultiSlotLock('ECMWF download lock', allowed_slots=1, logger=self.logger):
                    t0 = time()
                    # NOTE: download_variables does not accept a logger -> so the output may be invisible in WebApp
                    results = download_variables(date_from=self.inObjs[0].acq_datetime,
                                                 date_to=self.inObjs[0].acq_datetime,
                                                 db_path=CFG.path_ECMWF_db,
                                                 max_step=120,  # default
                                                 ecmwf_variables=default_products,
                                                 processes=0,  # singleprocessing
                                                 force=False)  # dont force download if files already exist
                    t1 = time()
                    self.logger.info("Runtime: %.2f" % (t1 - t0))
                    for result in results:
                        self.logger.info(result)
815
816
817
818
819
820
821
822
823

            except APIKeyFetchError:
                self.logger.error("ECMWF data download failed due to missing API credentials.")

            except (ECMWFAPIException, Exception):
                self.logger.error("ECMWF data download failed for scene %s (entity ID: %s). Traceback: "
                                  % (self.inObjs[0].scene_ID, self.inObjs[0].entity_ID))
                self.logger.error(traceback.format_exc())

824
        try:
825
826
827
            run_request()
        except TimeoutError:
            self.logger.error("ECMWF data download failed due to API request timeout after waiting 5 minutes.")
828
829
830
831

    def _validate_snr_source(self):
        """Check if the given file path for the SNR model exists - if not, use a constant SNR of 500."""
        if not os.path.isfile(self.options["uncertainties"]["snr_model"]):
832
833
            self.logger.warning('No valid SNR model found for %s %s. Using constant SNR to compute uncertainties of '
                                'atmospheric correction.' % (self.inObjs[0].satellite, self.inObjs[0].sensor))
834
835
836
            # self.options["uncertainties"]["snr_model"] = np.nan  # causes the computed uncertainties to be np.nan
            self.options["uncertainties"]["snr_model"] = 500  # use a constant SNR of 500 to compute uncertainties

837
838
    def run_atmospheric_correction(self, dump_ac_input=False):
        # type: (bool) -> list
839
840
841
        """Collects all input data for atmospheric correction, runs the AC and returns the corrected L1C objects
        containing surface reflectance.

842
843
        :param dump_ac_input:   allows to dump the inputs of AC to the scene's processing folder in case AC fails
        :return:                list of L1C_object instances containing atmospherically corrected data
844
        """
845
846

        # collect input args/kwargs for AC
847
848
        self.logger.info('Calculating input data for atmospheric correction...')

849
        rs_data = dict(
Daniel Scheffler's avatar
Daniel Scheffler committed
850
851
852
853
854
855
856
857
858
            data=self.data,
            metadata=self.metadata,
            nodata=self.nodata,
            band_spatial_sampling=self.band_spatial_sampling,
            tile_name=self.tile_name,
            dem=self._get_dem(),
            srf=self._get_srf(),
            mask_clouds=self._get_mask_clouds()
            # returns an instance of S2Mask or None if cloud mask is not given by input GMS objects
Daniel Scheffler's avatar
Daniel Scheffler committed
859
        )  # NOTE: all keys of this dict are later converted to attributes of RSImage
860

861
862
863
864
        # remove empty values from RSImage kwargs because SICOR treats any kind of RSImage attributes as given
        # => 'None'-attributes may cause issues
        rs_data = {k: v for k, v in rs_data.items() if v is not None}

Daniel Scheffler's avatar
Daniel Scheffler committed
865
        script = False
866

867
        # check if ECMWF data are available - if not, start the download
868
        if CFG.auto_download_ecmwf:
869
            self._check_or_download_ECMWF_data()
870
871

        # validate SNR
872
873
        if CFG.ac_estimate_accuracy:
            self._validate_snr_source()
874

875
876
877
        # create an instance of RSImage
        rs_image = RSImage(**rs_data)

878
        self.ac_input = dict(
879
            rs_image=rs_image,
Daniel Scheffler's avatar
Daniel Scheffler committed
880
            options=self.options,  # type: dict
881
882
            logger=repr(self.logger),  # only a string
            script=script
883
        )
884

885
886
887
888
        # path_dump = self.inObjs[0].pathGen.get_path_ac_input_dump()
        # with open(path_dump, 'wb') as outF:
        #     dill.dump(self.ac_input, outF)

889
        # run AC
890
        self.logger.info('Atmospheric correction started.')
891
        try:
892
            rs_image.logger = self.logger
893
            self.results = ac_gms(rs_image, self.options, logger=self.logger, script=script)
894

895
        except Exception as e:
896
897
898
899
900
901
            self.logger.error('\nAn error occurred during atmospheric correction. BE AWARE THAT THE SCENE %s '
                              '(ENTITY ID %s) HAS NOT BEEN ATMOSPHERICALLY CORRECTED! Error message was: \n%s\n'
                              % (self.inObjs[0].scene_ID, self.inObjs[0].entity_ID, repr(e)))
            self.logger.error(traceback.format_exc())
            # TODO include that in the job summary

902
            # serialialize AC input
903
904
905
906
907
908
            if dump_ac_input:
                path_dump = self.inObjs[0].pathGen.get_path_ac_input_dump()
                with open(path_dump, 'wb') as outF:
                    dill.dump(self.ac_input, outF)

                self.logger.error('An error occurred during atmospheric correction. Inputs have been dumped to %s.'
Daniel Scheffler's avatar
Daniel Scheffler committed
909
                                  % path_dump)
910
911

            # delete AC input arrays
Daniel Scheffler's avatar
Daniel Scheffler committed
912
            for inObj in self.inObjs:  # type: L1C_object
913
914
                inObj.delete_ac_input_arrays()

915
916
            return list(self.inObjs)

917
918
919
920
        finally:
            # rs_image.logger must be closed properly in any case
            rs_image.logger.close()

921
        # get processing infos
922
        self.proc_info = self.ac_input['options']['processing']
923

924
        # join results
Daniel Scheffler's avatar
Daniel Scheffler committed
925
        self._join_results_to_inObjs()  # sets self.outObjs
926

927
928
        # delete input arrays that are not needed anymore
        [inObj.delete_ac_input_arrays() for inObj in self.inObjs]
929

930
931
932
        return self.outObjs

    def _join_results_to_inObjs(self):
933
934
935
        """
        Join results of atmospheric correction to the input GMS objects.
        """
936

937
        self.logger.info('Joining results of atmospheric correction to input GMS objects.')
Daniel Scheffler's avatar
Daniel Scheffler committed
938
939
940
        # delete logger
        # -> otherwise logging in inObjs would open a second FileHandler to the same file (which is permitted)
        del self.logger
941
942

        self._join_data_ac()
943
        self._join_data_errors(bandwise=CFG.ac_bandwise_accuracy)
944
945
946
947
948
        self._join_mask_clouds()
        self._join_mask_confidence_array()

        # update masks (always do that because masks can also only contain one layer)
        [inObj.build_combined_masks_array() for inObj in self.inObjs]
949

950
951
952
        # update AC processing info
        [inObj.ac_options['processing'].update(self.proc_info) for inObj in self.inObjs]

953
954
955
956
        self.outObjs = self.inObjs

    def _join_data_ac(self):
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
957
958
        Join ATMOSPHERICALLY CORRECTED ARRAY as 3D int8 or int16 BOA reflectance array, scaled to scale factor from
        config.
959
        """
960

961
        if self.results.data_ac is not None:
962
            for inObj in self.inObjs:
Daniel Scheffler's avatar
Daniel Scheffler committed
963
964
                self.logger.info('Joining image data to %s.' % (inObj.entity_ID if not inObj.subsystem else
                                                                '%s %s' % (inObj.entity_ID, inObj.subsystem)))
965

966
                assert isinstance(inObj, L1B_object)
967
                nodata = self.results.nodata[inObj.arr.xgsd]  # 2D mask with True outside of image coverage
Daniel Scheffler's avatar
Daniel Scheffler committed
968
                ac_bandNs = [bandN for bandN in inObj.arr.bandnames if bandN in self.results.data_ac.keys()]
969
                out_LBA = [bN.split('B0')[1] if bN.startswith('B0') else bN.split('B')[1] for bN in ac_bandNs]
970

971
972
973
                # update metadata #
                ###################

974
975
                inObj.arr_desc = 'BOA_Ref'
                inObj.MetaObj.bands = len(self.results.data_ac)
976
                inObj.MetaObj.PhysUnit = 'BOA_Reflectance in [0-%d]' % CFG.scale_factor_BOARef
977
                inObj.MetaObj.LayerBandsAssignment = out_LBA
978
                inObj.LayerBandsAssignment = out_LBA
979
980
                inObj.MetaObj.filter_layerdependent_metadata()

981
982
983
984
                ##################################################################################
                # join SURFACE REFLECTANCE as 3D int16 array, scaled to scale factor from config #
                ##################################################################################

985
                oF_refl, oZ_refl, oS_refl = get_outFillZeroSaturated(inObj.arr.dtype)
986
                surf_refl = np.dstack((self.results.data_ac[bandN] for bandN in ac_bandNs))
987
                surf_refl *= CFG.scale_factor_BOARef  # scale using scale factor (output is float16)
988
989
990
991
992
993
994
995
996

                # set AC nodata values to GMS outFill
                # NOTE: AC nodata contains a pixel mask where at least one band is no data
                #       => Setting these pixels to outZero would also reduce pixel values of surrounding pixels in
                #          spatial homogenization (because resampling only ignores -9999).
                #       It would be possible to generate a zero-data mask here for each subsystem and apply it after
                #       spatial homogenization. Alternatively zero-data pixels could be interpolated spectrally or
                #       spatially within L1A processor (also see issue #74).
                surf_refl[nodata] = oF_refl  # overwrite AC nodata values with GMS outFill
997

Daniel Scheffler's avatar
Daniel Scheffler committed
998
                # apply the original nodata mask (indicating background values)
999
                surf_refl[np.array(inObj.mask_nodata).astype(np.int8) == 0] = oF_refl
1000

1001
1002
                # set AC NaNs to GMS outFill
                # NOTE: SICOR result has NaNs at no data positions AND non-clear positions
Daniel Scheffler's avatar
Daniel Scheffler committed
1003
                if self.results.bad_data_value is np.nan:
1004
                    surf_refl[np.isnan(surf_refl)] = oF_refl
Daniel Scheffler's avatar
Daniel Scheffler committed
1005
                else:
1006
                    surf_refl[surf_refl == self.results.bad_data_value] = oF_refl
1007

1008
                # use inObj.arr setter to generate a GeoArray
1009
                inObj.arr = surf_refl.astype(inObj.arr.dtype)  # -> int16 (also converts NaNs to 0 if needed
1010

1011
1012
1013
        else:
            self.logger.warning('Atmospheric correction did not return a result for the input array. '
                                'Thus the output keeps NOT atmospherically corrected.')
1014

1015
1016
    def _join_data_errors(self, bandwise=False):
        """Join ERRORS ARRAY as 3D or 2D int8 or int16 BOA reflectance array, scaled to scale factor from config.
1017

1018
1019
1020
        :param bandwise:    if True, a 3D array with bandwise information for each pixel is generated
        :return:
        """
1021
1022
        # TODO ac_error values are very close to 0 -> a scale factor of 255 yields int8 values below 10
        # TODO => better to stretch the whole array to values between 0 and 100 and save original min/max?
1023
        if self.results.data_errors is not None:
1024

1025
            for inObj in self.inObjs:
Daniel Scheffler's avatar
Daniel Scheffler committed
1026
1027
                inObj.logger.info('Joining AC errors to %s.' % (inObj.entity_ID if not inObj.subsystem else
                                                                '%s %s' % (inObj.entity_ID, inObj.subsystem)))
1028

1029
1030
                nodata = self.results.nodata[inObj.arr.xgsd]  # 2D mask with True outside of image coverage
                ac_bandNs = [bandN for bandN in inObj.arr.bandnames if bandN in self.results.data_ac.keys()]
1031
1032
                out_dtype = np.int8 if CFG.ac_scale_factor_errors <= 255 else np.int16
                out_nodata_val = get_outFillZeroSaturated(out_dtype)[0]
1033

1034
                # generate raw ac_errors array
1035
                ac_errors = np.dstack((self.results.data_errors[bandN] for bandN in ac_bandNs))
1036

1037
1038
1039
1040
1041
1042
1043
                # apply scale factor from config to data pixels and overwrite nodata area with nodata value
                ac_errors *= CFG.ac_scale_factor_errors  # scale using scale factor (output is float16)
                ac_errors[np.isnan(ac_errors)] = out_nodata_val  # replace NaNs with outnodata
                ac_errors[nodata] = out_nodata_val  # set all positions where SICOR nodata mask is 1 to outnodata
                ac_errors = np.around(ac_errors).astype(out_dtype)