Commit 0a08addc authored by Daniel Scheffler's avatar Daniel Scheffler

Added some readme files.

parent 27e90a23
Pipeline #3102 passed with stages
in 1 minute and 24 seconds
## create a GeoArray instance from a file on disk
```python
from geoarray import GeoArray
gA = GeoArray('/home/gfz-fe/scheffler/temp/Landsat-8__OLI_TIRS__LC81940242014072LGN00_L2B__250x250.bsq')
```
## OR create a GeoArray instance from a numpy array
```python
from geoarray import GeoArray
import numpy as np
testarray = np.random.randint(1,10, (250, 250, 8))
gA = GeoArray(testarray,
geotransform=[640605.0, 30.0, -0.0, 5754285.0, -0.0, -30.0],
projection='PROJCS["WGS 84 / UTM zone 32N",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",9],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","32632"]]')
```
## get some relevant metadata directly from the attributes of the GeoArray instance
```python
gA.shape
```
(250, 250, 8)
```python
gA.geotransform
```
[640605.0, 30.0, -0.0, 5754285.0, -0.0, -30.0]
```python
gA.projection
```
'PROJCS["WGS 84 / UTM zone 32N",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4326"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",9],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","32632"]]'
```python
gA.metadata
```
Metadata:
{'band_names': ['Band 1',
'Band 2',
'Band 3',
'Band 4',
'Band 5',
'Band 6',
'Band 7',
'Band 8'],
'description': '/home/gfz-fe/scheffler/temp/Landsat-8__OLI_TIRS__LC81940242014072LGN00_L2B__250x250.bsq',
'map_info': 'UTM, 1, 1, 640605, 5754285, 30, 30, 32, North,WGS-84'}
```python
gA.box.boxMapXY
```
((640605.0, 5754285.0),
(648105.0, 5754285.0),
(648105.0, 5746785.0),
(640605.0, 5746785.0))
```python
gA.footprint_poly
```
![svg](output_10_0.svg)
## index the GeoArray instance just like a numpy array
```python
gA[:10, :10, 0]
```
array([[1465, 1473, 1501, 1485, 1494, 1496, 1480, 1494, 1459, 1440],
[1421, 1448, 1469, 1467, 1476, 1470, 1495, 1515, 1487, 1474],
[1402, 1408, 1399, 1397, 1417, 1420, 1439, 1439, 1443, 1464],
[1419, 1407, 1394, 1398, 1421, 1406, 1392, 1402, 1430, 1435],
[1415, 1409, 1405, 1414, 1415, 1403, 1395, 1413, 1426, 1424],
[1414, 1411, 1412, 1410, 1416, 1411, 1409, 1416, 1416, 1425],
[1415, 1426, 1433, 1433, 1430, 1424, 1413, 1419, 1429, 1438],
[1434, 1445, 1450, 1437, 1439, 1436, 1427, 1417, 1437, 1454],
[1441, 1437, 1442, 1435, 1425, 1439, 1436, 1417, 1433, 1431],
[1418, 1435, 1437, 1439, 1437, 1433, 1427, 1413, 1415, 1405]], dtype=int16)
## visualize the data
```python
# non-interactively:
gA.show()
```
![png](output_14_0.png)
```python
# interactively (adds a slider for the band to be visualized)
gA.show(interactive=True)
```
<link rel="stylesheet" href="https://code.jquery.com/ui/1.10.4/themes/smoothness/jquery-ui.css">
<style>div.hololayout {
display: flex;
align-items: center;
margin: 0;
}
div.holoframe {
width: 75%;
}
div.holowell {
display: flex;
align-items: center;
}
form.holoform {
background-color: #fafafa;
border-radius: 5px;
overflow: hidden;
padding-left: 0.8em;
padding-right: 0.8em;
padding-top: 0.4em;
padding-bottom: 0.4em;
box-shadow: inset 0 1px 1px rgba(0, 0, 0, 0.05);
margin-bottom: 20px;
border: 1px solid #e3e3e3;
}
div.holowidgets {
padding-right: 0;
width: 25%;
}
div.holoslider {
min-height: 0 !important;
height: 0.8em;
width: 100%;
}
div.holoformgroup {
padding-top: 0.5em;
margin-bottom: 0.5em;
}
div.hologroup {
padding-left: 0;
padding-right: 0.8em;
width: 100%;
}
.holoselect {
width: 92%;
margin-left: 0;
margin-right: 0;
}
.holotext {
padding-left: 0.5em;
padding-right: 0;
width: 100%;
}
.holowidgets .ui-resizable-se {
visibility: hidden
}
.holoframe > .ui-resizable-se {
visibility: hidden
}
.holowidgets .ui-resizable-s {
visibility: hidden
}
/* CSS rules for noUISlider based slider used by JupyterLab extension */
.noUi-handle {
width: 20px !important;
height: 20px !important;
left: -5px !important;
top: -5px !important;
}
.noUi-handle:before, .noUi-handle:after {
visibility: hidden;
height: 0px;
}
.noUi-target {
margin-left: 0.5em;
margin-right: 0.5em;
}
</style>
<div class="logo-block">
<img src='
AAAB+wAAAfsBxc2miwAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAA6zSURB
VHic7ZtpeFRVmsf/5966taWqUlUJ2UioBBJiIBAwCZtog9IOgjqACsogKtqirT2ttt069nQ/zDzt
tI4+CrJIREFaFgWhBXpUNhHZQoKBkIUASchWla1S+3ar7r1nPkDaCAnZKoQP/D7mnPOe9/xy76n3
nFSAW9ziFoPFNED2LLK5wcyBDObkb8ZkxuaoSYlI6ZcOKq1eWFdedqNzGHQBk9RMEwFAASkk0Xw3
ETacDNi2vtvc7L0ROdw0AjoSotQVkKSvHQz/wRO1lScGModBFbDMaNRN1A4tUBCS3lk7BWhQkgpD
lG4852/+7DWr1R3uHAZVQDsbh6ZPN7CyxUrCzJMRouusj0ipRwD2uKm0Zn5d2dFwzX1TCGhnmdGo
G62Nna+isiUqhkzuKrkQaJlPEv5mFl2fvGg2t/VnzkEV8F5ioioOEWkLG86fvbpthynjdhXYZziQ
x1hC9J2NFyi8vCTt91Fh04KGip0AaG9zuCk2wQCVyoNU3Hjezee9bq92duzzTmxsRJoy+jEZZZYo
GTKJ6SJngdJqAfRzpze0+jHreUtPc7gpBLQnIYK6BYp/uGhw9YK688eu7v95ysgshcg9qSLMo3JC
4jqLKQFBgdKDPoQ+Pltb8dUyQLpeDjeVgI6EgLIQFT5tEl3rn2losHVsexbZ3EyT9wE1uGdkIPcy
BGxn8QUq1QrA5nqW5i2tLqvrrM9NK6AdkVIvL9E9bZL/oyfMVd/jqvc8LylzRBKDJSzIExwhQzuL
QYGQj4rHfFTc8mUdu3E7yoLtbTe9gI4EqVgVkug2i5+uXGo919ixbRog+3fTbQ8qJe4ZOYNfMoTI
OoshUNosgO60AisX15aeI2PSIp5KiFLI9ubb1vV3Qb2ltwLakUCDAkWX7/nHKRmmGIl9VgYsUhJm
2NXjKYADtM1ygne9QQDIXlk49FBstMKx66D1v4+XuQr7vqTe0VcBHQlRWiOCbmmSYe2SqtL6q5rJ
zsTb7lKx3FKOYC4DoqyS/B5bvLPxvD9Qtf6saxYLQGJErmDOdOMr/zo96km1nElr8bmPOBwI9COv
HnFPRIwmkSOv9kcAS4heRsidOkpeWBgZM+UBrTFAXNYL5Vf2ii9c1trNzpYdaoVil3WIc+wdk+gQ
noie3ecCcxt9ITcLAPWt/laGEO/9U6PmzZkenTtsSMQ8uYywJVW+grCstAvCIaAdArAsIWkRDDs/
KzLm2YcjY1Lv0UdW73HabE9n6V66cxSzfEmuJssTpKGVp+0vHq73FwL46eOjpMpbRAnNmJFrGJNu
Ukf9Yrz+3rghiumCKNXXWPhLYcjxGsIpoCMsIRoFITkW8AuyM8jC1+/QLx4bozCEJIq38+1rtpR6
V/yzb8eBlRb3fo5l783N0CWolAzJHaVNzkrTzlEp2bQ2q3TC5gn6wpnoQAmwSiGh2GitnTmVMc5O
UyfKWUKCIsU7+fZDKwqdT6DDpvkzAX4/+AMFjk0tDp5GRXLpQ2MUmhgDp5gxQT8+Y7hyPsMi8uxF
71H0oebujHALECjFKaW9Lm68n18wXp2kVzIcABytD5iXFzg+WVXkegpAsOOYziqo0OkK76GyquC3
ltZAzMhhqlSNmmWTE5T6e3IN05ITFLM4GdN0vtZ3ob8Jh1NAKXFbm5PtLU/eqTSlGjkNAJjdgn/N
aedXa0tdi7+t9G0FIF49rtMSEgAs1kDLkTPO7ebm4IUWeyh1bKomXqlgMG6kJmHcSM0clYLJ8XtR
1GTnbV3F6I5wCGikAb402npp1h1s7LQUZZSMIfALFOuL3UUrfnS8+rez7v9qcold5tilgHbO1fjK
9ubb17u9oshxzMiUBKXWqJNxd+fqb0tLVs4lILFnK71H0Ind7uiPgACVcFJlrb0tV6DzxqqTIhUM
CwDf1/rrVhTa33/3pGPxJYdQ2l2cbgVcQSosdx8uqnDtbGjh9SlDVSMNWhlnilfqZk42Th2ZpLpf
xrHec5e815zrr0dfBZSwzkZfqsv+1FS1KUknUwPARVvItfKUY+cn57yP7qv07UE3p8B2uhUwLk09
e0SCOrK+hbdYHYLjRIl71wWzv9jpEoeOHhGRrJAzyEyNiJuUqX0g2sBN5kGK6y2Blp5M3lsB9Qh4
y2Ja6x6+i0ucmKgwMATwhSjdUu49tKrQ/pvN5d53ml2CGwCmJipmKjgmyuaXzNeL2a0AkQ01Th5j
2DktO3Jyk8f9vcOBQHV94OK+fPumJmvQHxJoWkaKWq9Vs+yUsbq0zGT1I4RgeH2b5wef7+c7bl8F
eKgoHVVZa8ZPEORzR6sT1BzDUAD/d9F78e2Tzv99v8D+fLVTqAKAsbGamKey1Mt9Ann4eH3gTXTz
idWtAJ8PQWOk7NzSeQn/OTHDuEikVF1R4z8BQCy+6D1aWRfY0tTGG2OM8rRoPaeIj5ZHzJxszElN
VM8K8JS5WOfv8mzRnQAKoEhmt8gyPM4lU9SmBK1MCQBnW4KONT86v1hZ1PbwSXPw4JWussVjtH9Y
NCoiL9UoH/6PSu8jFrfY2t36erQHXLIEakMi1SydmzB31h3GGXFDFNPaK8Rme9B79Ixrd0WN+1ij
NRQ/doRmuFLBkHSTOm5GruG+pFjFdAmorG4IXH1Qua6ASniclfFtDYt+oUjKipPrCQB7QBQ2lrgP
fFzm+9XWUtcqJ3/5vDLDpJ79XHZk3u8nGZ42qlj1+ydtbxysCezrydp6ugmipNJ7WBPB5tydY0jP
HaVNzs3QzeE4ZpTbI+ZbnSFPbVOw9vsfnVvqWnirPyCNGD08IlqtYkh2hjZ5dErEQzoNm+6ykyOt
Lt5/PQEuSRRKo22VkydK+vvS1XEKlhCJAnsqvcVvH7f/ZU2R67eXbMEGAMiIV5oWZWiWvz5Fv2xG
sjqNJQRvn3Rs2lji/lNP19VjAQDgD7FHhujZB9OGqYxRkZxixgRDVlqS6uEOFaJUVu0rPFzctrnF
JqijImVp8dEKVWyUXDk92zAuMZ6bFwpBU1HrOw6AdhQgUooChb0+ItMbWJitSo5Ws3IAOGEOtL53
0vHZih9sC4vtofZ7Qu6523V/fmGcds1TY3V36pUsBwAbSlxnVh2xLfAD/IAIMDf7XYIkNmXfpp2l
18rkAJAy9HKFaIr/qULkeQQKy9zf1JgDB2uaeFNGijo5QsUyacNUUTOnGO42xSnv4oOwpDi1zYkc
efUc3I5Gk6PhyTuVKaOGyLUAYPGIoY9Pu/atL/L92+4q9wbflRJ2Trpm/jPjdBtfnqB/dIThcl8A
KG7hbRuKnb8qsQsVvVlTrwQAQMUlf3kwJI24Z4JhPMtcfng5GcH49GsrxJpGvvHIaeem2ma+KSjQ
lIwUdYyCY8j4dE1KzijNnIP2llF2wcXNnsoapw9XxsgYAl6k+KzUXbi2yP3KR2ecf6z3BFsBICdW
nvnIaG3eHybqX7vbpEqUMT+9OL4Qpe8VON7dXuFd39v19FoAABRVePbGGuXTszO0P7tu6lghUonE
llRdrhArLvmKdh9u29jcFiRRkfLUxBiFNiqSU9icoZQHo5mYBI1MBgBH6wMNb+U7Pnw337H4gi1Y
ciWs+uks3Z9fztUvfzxTm9Ne8XXkvQLHNytOOZeiD4e0PgkAIAYCYknKUNUDSXEKzdWNpnil7r4p
xqkjTarZMtk/K8TQ6Qve78qqvXurGwIJqcOUKfUWHsm8KGvxSP68YudXq4pcj39X49uOK2X142O0
Tz5/u/7TVybqH0rSya6ZBwD21/gubbrgWdDgEOx9WUhfBaC2ibcEBYm7a7x+ukrBMNcEZggyR0TE
T8zUPjikQ4VosQZbTpS4vqizBKvqmvjsqnpfzaZyx9JPiz1/bfGKdgD45XB1zoIMzYbfTdS/NClB
Gct0USiY3YL/g0LHy/uq/Ef6uo5+n0R/vyhp17Klpge763f8rMu6YU/zrn2nml+2WtH+Z+5IAAFc
2bUTdTDOSNa9+cQY7YLsOIXhevEkCvzph7a8laecz/Un/z4/Ae04XeL3UQb57IwU9ZDr9UuKVajv
nxp1+1UVIo/LjztZkKH59fO3G/JemqCfmaCRqbqbd90ZZ8FfjtkfAyD0J/9+C2h1hDwsSxvGjNDc
b4zk5NfrSwiQblLHzZhg+Jf4aPlUwpDqkQqa9nimbt1/TDH8OitGMaQnj+RJS6B1fbF7SY1TqO5v
/v0WAADl1f7zokgS7s7VT2DZ7pegUjBM7mjtiDZbcN4j0YrHH0rXpCtY0qPX0cVL0rv5jv/ZXend
0u/EESYBAFBU4T4Qa5TflZOhTe7pmKpaP8kCVUVw1+yhXfJWvn1P3hnXi33JsTN6PnP3hHZ8Z3/h
aLHzmkNPuPj7Bc/F/Q38CwjTpSwQXgE4Vmwry9tpfq/ZFgqFMy4AVDtCvi8rvMvOmv0N4YwbVgEA
sPM72/KVnzfspmH7HQGCRLG2yL1+z8XwvPcdCbsAANh+xPzstgMtxeGKt+6MK3/tacfvwhWvIwMi
oKEBtm0H7W+UVfkc/Y1V0BhoPlDr/w1w/eu1vjIgAgDg22OtX6/eYfnEz/focrZTHAFR+PSs56/7
q32nwpjazxgwAQCwcU/T62t3WL7r6/jVRa6/byp1rei+Z98ZUAEAhEPHPc8fKnTU9nbgtnOe8h0l
9hcGIqmODLQAHCy2Xti6v/XNRivf43f4fFvIteu854+VHnR7q9tfBlwAAGz+pnndB9vM26UebAe8
SLHujPOTPVW+rwY+sxskAAC2HrA8t2Vvc7ffP1r9o+vwR2dcr92InIAbKKC1FZ5tB1tf+/G8p8sv
N/9Q5zd/XR34LYCwV5JdccMEAMDBk45DH243r/X4xGvqxFa/GNpS7n6rwOwNWwHVE26oAADYurf1
zx/utOzt+DMKYM0p17YtZZ5VNzqfsB2HewG1WXE8PoZ7gOclbTIvynZf9JV+fqZtfgs/8F/Nu5rB
EIBmJ+8QRMmpU7EzGRsf2FzuePqYRbzh/zE26EwdrT10f6r6o8HOYzCJB9Dpff8tbnGLG8L/A/WE
roTBs2RqAAAAAElFTkSuQmCC'
style='height:25px; border-radius:12px; display: inline-block; float: left; vertical-align: middle'></img>
<img src='
AAAFMAAABTABZarKtgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAArNSURB
VFiFnVd5VFNXGv/ee0kgGyQhbFoXIKCFYEXEDVErTucMoKUOWA/VLsNSLPQgFTOdyrHPiIp1lFIQ
OlaPShEG3EpPcQmISCuV1bQ1CLKIULeQhJA9JO+9+UMT0x5aPfOdc895373f/e7v/t537/ddBF5Q
JBIJl81mJwCACEVRQBCEQhAEAQCgnghCURRCkmS7Wq2+WlJSYn0Rv8jzDHAcD0EQJIVGo5mFQuGF
jIyMu39kq1KpkOrq6gU6nS6aIAiGzWY7VVBQ0P9/AcjNzWXy+fxcOp2uiY+Przm0d6+n8dblv/Fo
kzM4SzYfPlRePvFnjnt6ehh1dXVv2mw2nlar/byoqMj8wgBwHBchCJIZEhJSeu1yHVi7vtu02t8+
NykQ7BMWoOUMhXQsXLv5IQAwSJJEEASxcDicoeTk5DtCoZBy9XX69Gnv3t7ebJIky3EcH3guAKlU
GoGiaOKWLVsOvhs7/9XXPMde3/IyIFbMnaPDuD5AUdQuOf2XlD0npTExMWYAgNbWVpZcLg8xGAzB
JEnSvby82tPT052LaTQatLy8fBtJkt/s3Lnz5h8CwHFcRKPRNu/YsePAjh072KTs0IGCxRg8RgUB
TGpSx6cmHgMAfNqN6Xa1GvJ/D35gYAAViURkcXHxUrPZHDRv3rxv4uLiDI7xPXv2bLdYLBUFBQWD
jj7M8ZGbm8tkMpmSrKysQiaTScXGxtpqL7dManT6tcu5mgEWWJyOhicozpk+c3NsbKzNFcBbWWEf
1Td9/upA30i3ZJv0h8bGxiSFQmFcuHDhOACAWCy+0d3dvX3lypUtzc3N9t8AiIuLk4SEhByLiooy
AgAcO3ZsNlPgH3Cttb35JZo+bCYXIQAA9MDiUW7sWS1KN687w6Mera2twa2trfMvXboUOS28Pyb1
U08McRtf/sXBSmt5cc35pqamVQqFwhoZGallMpnU/fv3e7RaberVq1d/AABAn1IfQqfTNRs3blQB
AFy+fJk7Nja2XCKRnD3dNSorusPq6NfTPR+gPiEEoLRFXO1tS2+zavv27ReftjNttyr0S1/j0rUP
PEJQwNwQYGgAACQSyXmNRhMtk8lYAAApKSlKDMP0+fn5QU4ACIKkxMfH1zjYuHnz5uspKSlOfdX7
u68fvOePcCzKQR4YVCgATGfa/F3pnzaHWOAXSDyaMCqH2+r8VXErP3D+snXr1tV2dXW94dATExOr
6XT6JgAAVCKRcDEMM4WHh9sAAHJyUqNu//wDymKx7AAAVVVVPiaTKXxByrYMvBsxEMSTwPXhuL+8
e/fu9fv371+flvbemogYNz+TnsBOFEwMFO8/KzEYDKFVVVX+AAChoaGT7u7ud48ePRro0DEMs+bl
5bFRNpud4O3tfdGBzq5uy/5wTUPM/q2zC9atmbVqeHg4Pi0t7WxGRoZFH5rw76I7LI8HqHfwPL7d
rfVagzw1NfW81t4ePUfsP/OrnWZ6fPSuUqFQSEkkkrOjo6OvuQR5q0ajiXLoPj4+lzgcTjwKACLH
9SqXy2kzhBO8haGo+UA2wZW+p880DxeveGt9aHx9fT09ctlq3sC0NT9e6xsbjuZblSxl7wKtVotM
m6PnXvlmZJBtX91CEMQsxyJsNlteXl4udugIghAajQYFAEhPTx9AEGQOimGY8y4oLt63KlJkdB4t
P282Z/c/dPrDH04ktJ9P2tfWXP3+2o1vHzunEp6Xq0lsGt08KzUrcSGTQ3n3XeefLCs5UqnT6Rap
VCoEACA7O/snvV4f5gJooLa2NsihoygKKEVRzquTND2OCpttGXdG1tOxwOlgzdvE9v30rV+m3W5I
2jfJNQmLH85QUUzPNTwvkAx0+vVGhq2/VV9fT+dyuZ01NTXOXQOA3fGxevXq2waDYY5r8KIoij5b
jzB5Cz2oKdOo0erOm+1tVuVtBMZXElNMRJR1fvvjx9iPLQ/RjpuB0Xu/Vp7YmH1864YNG3oNBkPw
VD7mzp1rJUnSzZUBmqsBggAgGFC/n6jVA+3WoN3tu1Gg39cg2tEx1Cg3CIJHsclxnl2HRorMN8Z0
fRW+vr7GJ36Q56Z5h9BIknzGAMJWtvdQYs0EZe3/FSwqk5tpXEMb1JoYD+n8xRdQJl/fMPEgzKhS
L40KCD7lGzg92qIyovpb3y/msT2un2psvFpWVvYyl8vtc1nDSXFXV5c7iqLOtEyS5LNBAADfWeKm
Ly4uuvR1++sfv51/P5sfnHm2/Iy+mBmwsaHJbpt+Q0jHSS7TZ/PSNVkNJ/973OxtemD1s91CPb12
h9MfvZsk5meo1eqo5ORkxTNWn7HR1tY2l8PhOAsUiqIolCRJcETtv/61qzNySYK5trZ2TCgUUiwW
S1FSUhLR+bA/kAzwXcAbHa/cFhrTXrJ/v+7IkSPu3Je4Xm5eboJv2wba5QbO5fQwxhsP679Y+nFO
jgAAoKSkJILFYjnBGI1G0YYNGwYBnqRoiqIQlKKojurq6gUAAAKBgKQoiuGYkJWVpTCZTOKmI1Xd
HwnDcm+cOnOMw+H0FxYWbqpvqv/r9EV+bky+O+/QoUPiqJRt9JphTLFHbKBCR87tWL9EPN9oNIZn
ZWUpXHaMCQQCEgCgsrIyEgBuoGq1+qpOp4t2GPH5/BvFxcVLHXpgYGDD8ePH/56Xl2cCAMjMzOxP
S0s7pWfow4RCbz/fAF9RT0+P9yeffHJySSqev+9nxLD1FaAlTR8vlJ8vxxzsFhUVLRMIBB0OvwaD
YRlFUdfQkpISK0EQ9J6eHgYAQEZGxl2z2Rw0MjJCBwBITk5+xOVyfzpw4ECSw5lQKKQIbxtJm4EN
8eZ7jPz0oNv+dK5FG/jq54eH+IFr/S1KabBy0UerAvI+++wzD4vFEpCWljYEACCTyVh2ux3FcXwS
BQCw2WxVdXV1bzrQRURE1FVVVTn1zMzM/pkzZ35/9OjRd0pLS19RqVQIy4/tCwDgOcPTQvFQEQBA
aWnpK0ERK2LbyVllN341GUJ4YDu8zD5bKyur7O+85tx9Z2fnO1ar9QjA04KkpaVFs2LFir8olcq7
YWFhJpFINNnX16drbGyMjY6Ovg0AIBaLjcuXL5d3d3d7XbhwIW704b3F479MeD1qVfJ5Og/bvb4R
LwaDMZabm9uwflNa/z/3HOIv5NsDEK7XS7FeevXPvYNLvm5S/GglCK5KpZorlUobXE8g5ObmMqVS
6UG1Wu1BURSHoijOiRMnwgoLC7coFAqBo+9Fm0KhEKStmvvto3TeucFN7pVJYbytarXaQyqVHsRx
3N15TF1BuBaljr4rV66wOzo63mAymXdzcnKuwwtIUVHRMqvVGkgQxMV7NXvyJijGvcNXB/7z5Zdf
bicI4gSO40NTAgD4bVnuODIAT2pElUq1FEEQO4fD6QsPD++fqixHEATj8/ntjoCrqKhwS0hIsJWV
leURBHEOx3G563pT3tn5+flBDAbjg6CgoMMpKSlK17GhoSFMJpMFPk04DJIkEQzDzCwW6+5UD5Oa
mhrfO3fufECS5GHXnf8pAAAAHMfdURTdimGYPjExsTo0NHTyj2ynEplMxurs7HyHIAiKJMlSHMct
U9k9N2vl5+cH0en0TRiGWX18fC65vnh+LxqNBq2oqFhgMpmi7XY7arVaj+zdu/fxn/l/4bSZl5fH
5nK5CQAQMtXznCRJePpEbwOAZhzHX4ix/wHzzC/tu64gcwAAAABJRU5ErkJggg=='
style='height:15px; border-radius:12px; display: inline-block; float: left'></img>
</div>
<div class="hololayout row row-fluid">
<div class="holoframe" id="display_area46305c5d388e4b91bcbaad4e6b678dea">
<div id="_anim_img46305c5d388e4b91bcbaad4e6b678dea">
</div>
</div>
<div class="holowidgets" id="widget_area46305c5d388e4b91bcbaad4e6b678dea">
<form class="holoform well" id="form46305c5d388e4b91bcbaad4e6b678dea">
<div class="form-group control-group holoformgroup" style=''>
<label for="textInput46305c5d388e4b91bcbaad4e6b678dea_band">
<strong>band:</strong>
</label>
<div class="holowell">
<div class="hologroup">
<input type="text" class="holotext form-control input-small"
id="textInput46305c5d388e4b91bcbaad4e6b678dea_band" value="" readonly>
</div>
<div class="holoslider"
id="_anim_widget46305c5d388e4b91bcbaad4e6b678dea_band"></div>
</div>
</div>
</form>
</div>
</div>
```python
gA.show_histogram(band=0)
```
![png](output_16_0.png)
STD: 103.690543564
MEAN: 1301.152864
2 % percentile: 1186.0
98 % percentile: 1585.0
```python
gA.show_footprint()
```
<div style="width:100%;"><div style="position:relative;width:100%;height:0;padding-bottom:60%;"><iframe src="data:text/html;charset=utf-8;base64,PCFET0NUWVBFIGh0bWw+CjxoZWFkPiAgICAKICAgIDxtZXRhIGh0dHAtZXF1aXY9ImNvbnRlbnQtdHlwZSIgY29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PVVURi04IiAvPgogICAgPHNjcmlwdD5MX1BSRUZFUl9DQU5WQVMgPSBmYWxzZTsgTF9OT19UT1VDSCA9IGZhbHNlOyBMX0RJU0FCTEVfM0QgPSBmYWxzZTs8L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS4yLjAvZGlzdC9sZWFmbGV0LmpzIj48L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2FqYXguZ29vZ2xlYXBpcy5jb20vYWpheC9saWJzL2pxdWVyeS8xLjExLjEvanF1ZXJ5Lm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvanMvYm9vdHN0cmFwLm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvTGVhZmxldC5hd2Vzb21lLW1hcmtlcnMvMi4wLjIvbGVhZmxldC5hd2Vzb21lLW1hcmtlcnMuanMiPjwvc2NyaXB0PgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS4yLjAvZGlzdC9sZWFmbGV0LmNzcyIgLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvY3NzL2Jvb3RzdHJhcC5taW4uY3NzIiAvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9jc3MvYm9vdHN0cmFwLXRoZW1lLm1pbi5jc3MiIC8+CiAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vbWF4Y2RuLmJvb3RzdHJhcGNkbi5jb20vZm9udC1hd2Vzb21lLzQuNi4zL2Nzcy9mb250LWF3ZXNvbWUubWluLmNzcyIgLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvTGVhZmxldC5hd2Vzb21lLW1hcmtlcnMvMi4wLjIvbGVhZmxldC5hd2Vzb21lLW1hcmtlcnMuY3NzIiAvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL3Jhd2dpdC5jb20vcHl0aG9uLXZpc3VhbGl6YXRpb24vZm9saXVtL21hc3Rlci9mb2xpdW0vdGVtcGxhdGVzL2xlYWZsZXQuYXdlc29tZS5yb3RhdGUuY3NzIiAvPgogICAgPHN0eWxlPmh0bWwsIGJvZHkge3dpZHRoOiAxMDAlO2hlaWdodDogMTAwJTttYXJnaW46IDA7cGFkZGluZzogMDt9PC9zdHlsZT4KICAgIDxzdHlsZT4jbWFwIHtwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtib3R0b206MDtyaWdodDowO2xlZnQ6MDt9PC9zdHlsZT4KICAgIAogICAgICAgICAgICA8c3R5bGU+ICNtYXBfYzI4MzY3NGY3MGQyNDkzNDlhNTQzZWQ5OGJiN2FmZWYgewogICAgICAgICAgICAgICAgcG9zaXRpb24gOiByZWxhdGl2ZTsKICAgICAgICAgICAgICAgIHdpZHRoIDogMTAwLjAlOwogICAgICAgICAgICAgICAgaGVpZ2h0OiAxMDAuMCU7CiAgICAgICAgICAgICAgICBsZWZ0OiAwLjAlOwogICAgICAgICAgICAgICAgdG9wOiAwLjAlOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICA8L3N0eWxlPgogICAgICAgIAo8L2hlYWQ+Cjxib2R5PiAgICAKICAgIAogICAgICAgICAgICA8ZGl2IGNsYXNzPSJmb2xpdW0tbWFwIiBpZD0ibWFwX2MyODM2NzRmNzBkMjQ5MzQ5YTU0M2VkOThiYjdhZmVmIiA+PC9kaXY+CiAgICAgICAgCjwvYm9keT4KPHNjcmlwdD4gICAgCiAgICAKCiAgICAgICAgICAgIAogICAgICAgICAgICAgICAgdmFyIGJvdW5kcyA9IG51bGw7CiAgICAgICAgICAgIAoKICAgICAgICAgICAgdmFyIG1hcF9jMjgzNjc0ZjcwZDI0OTM0OWE1NDNlZDk4YmI3YWZlZiA9IEwubWFwKAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgJ21hcF9jMjgzNjc0ZjcwZDI0OTM0OWE1NDNlZDk4YmI3YWZlZicsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB7Y2VudGVyOiBbNTEuODg2ODY0NTg3LDExLjA5NzU3OTEyMDNdLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgem9vbTogMTAsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtYXhCb3VuZHM6IGJvdW5kcywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxheWVyczogW10sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB3b3JsZENvcHlKdW1wOiBmYWxzZSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNyczogTC5DUlMuRVBTRzM4NTcKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfSk7CiAgICAgICAgICAgIAogICAgICAgIAogICAgCiAgICAgICAgICAgIHZhciB0aWxlX2xheWVyXzI1ZTBlMTVkN2U1YzQ0NmU5MjU1YTg0ZmNlM2ZhN2VjID0gTC50aWxlTGF5ZXIoCiAgICAgICAgICAgICAgICAnaHR0cHM6Ly97c30udGlsZS5vcGVuc3RyZWV0bWFwLm9yZy97en0ve3h9L3t5fS5wbmcnLAogICAgICAgICAgICAgICAgewogICJhdHRyaWJ1dGlvbiI6IG51bGwsCiAgImRldGVjdFJldGluYSI6IGZhbHNlLAogICJtYXhab29tIjogMTgsCiAgIm1pblpvb20iOiAxLAogICJub1dyYXAiOiBmYWxzZSwKICAic3ViZG9tYWlucyI6ICJhYmMiCn0KICAgICAgICAgICAgICAgICkuYWRkVG8obWFwX2MyODM2NzRmNzBkMjQ5MzQ5YTU0M2VkOThiYjdhZmVmKTsKICAgICAgICAKICAgIAoKICAgICAgICAgICAgCgogICAgICAgICAgICAgICAgdmFyIGdlb19qc29uX2Y4MTE2ZDhjYmM2NzQ0OGNiNTNhNDcwNDZlYjgzMzE5ID0gTC5nZW9Kc29uKAogICAgICAgICAgICAgICAgICAgIHsiZmVhdHVyZXMiOiBbeyJnZW9tZXRyeSI6IHsiY29vcmRpbmF0ZXMiOiBbW1sxMS4xNTM2Mzk0NTA1MTMwMTcsIDUxLjkxOTU3ODE3MDcwMDYzXSwgWzExLjE1MDQxOTkwODcwNjI3LCA1MS44NTIxOTIyNzM4ODQyOV0sIFsxMS4wNDE1OTk4MDQ4MTkzMjQsIDUxLjg1NDEzMTg3NjA4NTE3XSwgWzExLjA0NDY1NjcwODQ2NDQxNiwgNTEuOTIxNTIyNDQ2MzM0NDNdLCBbMTEuMTUzNjM5NDUwNTEzMDE3LCA1MS45MTk1NzgxNzA3MDA2M11dXSwgInR5cGUiOiAiUG9seWdvbiJ9LCAicHJvcGVydGllcyI6IHsiaGlnaGxpZ2h0Ijoge30sICJzdHlsZSI6IHt9fSwgInR5cGUiOiAiRmVhdHVyZSJ9XSwgInR5cGUiOiAiRmVhdHVyZUNvbGxlY3Rpb24ifQogICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICkuYWRkVG8obWFwX2MyODM2NzRmNzBkMjQ5MzQ5YTU0M2VkOThiYjdhZmVmKTsKICAgICAgICAgICAgICAgIGdlb19qc29uX2Y4MTE2ZDhjYmM2NzQ0OGNiNTNhNDcwNDZlYjgzMzE5LnNldFN0eWxlKGZ1bmN0aW9uKGZlYXR1cmUpIHtyZXR1cm4gZmVhdHVyZS5wcm9wZXJ0aWVzLnN0eWxlO30pOwoKICAgICAgICAgICAgCjwvc2NyaXB0Pg==" style="position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;" allowfullscreen webkitallowfullscreen mozallowfullscreen></iframe></div></div>
## use some geo functions
### subsetting
```python
gA_subset = gA.get_subset(xslice=slice(0,50), yslice=slice(0,50), zslice=slice(0,2)) # return a subset GeoArray instance of the upper left corner (first 2 bands)
print(gA_subset.shape)
gA_subset.show()
```
(50, 50, 2)
![png](output_20_1.png)
### get a geographic position
```python
gA.box.boundsMap
```
(640605.0, 648105.0, 5746785.0, 5754285.0)
```python
# define target bounds
xmin=641000.0
ymin=5750000.0
xmax=642000.0
ymax=5752000
nparr, gt, prj = gA.get_mapPos(mapBounds=(xmin, ymin, xmax, ymax), mapBounds_prj=gA.projection)
gA_map_subset = GeoArray(nparr, geotransform=gt, projection=prj)
print(gA_map_subset.shape)
gA_map_subset.show()
```
(67, 34, 8)
![png](output_23_1.png)
### warp the GeoArray
```python
gA_map_subset.epsg # EPSG code so far
```
32632
```python
gA_map_subset.reproject_to_new_grid(tgt_prj=32631, # EPSG code of target projection (also takes WKT strings, etc.)
tgt_xygrid=[[0,30], [30, 0]] # characteristics of target pixel grid (defines pixel origin and pixel size)
)
```
Warping progress |==================================================| 100.0% Complete => 0:00:00
```python
gA_map_subset.show()
```
Automatically detected nodata value for GeoArray 'IN_MEM': 0.0
![png](output_27_1.png)
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="300" height="300" viewBox="640305.0 5746485.0 8100.0 8100.0" preserveAspectRatio="xMinYMin meet"><g transform="matrix(1,0,0,-1,0,11501070.0)"><path fill-rule="evenodd" fill="#66cc99" stroke="#555555" stroke-width="54.0" opacity="0.6" d="M 648105.0,5754285.0 L 648105.0,5746785.0 L 640605.0,5746785.0 L 640605.0,5754285.0 L 648105.0,5754285.0 z" /></g></svg>
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment