baseclasses.py 74.9 KB
Newer Older
1 2 3 4
# -*- coding: utf-8 -*-

import os
import warnings
5
from importlib import util
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
from collections import OrderedDict

import numpy as np
from matplotlib import pyplot as plt
from osgeo import gdal_array
# custom
from shapely.geometry import Polygon
from shapely.wkt import loads as shply_loads
from six import PY3

# mpl_toolkits.basemap -> imported when GeoArray.show_map() is used
# dill -> imported when dumping GeoArray

try:
    from osgeo import gdal
    from osgeo import gdalnumeric
except ImportError:
    import gdal
    import gdalnumeric
from geopandas import GeoDataFrame, GeoSeries
from pandas import DataFrame
27 28 29 30
from py_tools_ds.convenience.object_oriented import alias_property
from py_tools_ds.geo.coord_calc import get_corner_coordinates
from py_tools_ds.geo.coord_grid import snap_bounds_to_pixGrid
from py_tools_ds.geo.coord_trafo import mapXY2imXY, imXY2mapXY, transform_any_prj, reproject_shapelyGeometry
31
from py_tools_ds.geo.projection import prj_equal, WKT2EPSG, EPSG2WKT, isLocal
32 33
from py_tools_ds.geo.raster.conversion import raster2polygon
from py_tools_ds.geo.vector.topology \
34
    import get_footprint_polygon, polyVertices_outside_poly, fill_holes_within_poly
35 36
from py_tools_ds.geo.vector.geometry import boxObj
from py_tools_ds.io.raster.gdal import get_GDAL_ds_inmem
37
from py_tools_ds.compatibility.gdal import get_gdal_func
38
from py_tools_ds.numeric.numbers import is_number
39
from py_tools_ds.numeric.array import get_array_tilebounds
40 41 42

#  internal imports
from .subsetting import get_array_at_mapPos
43
from .metadata import GDAL_Metadata
44

45
if PY3:
46
    # noinspection PyCompatibility
47 48 49
    from builtins import TimeoutError, FileNotFoundError
else:
    from py_tools_ds.compatibility.python.exceptions import TimeoutError, FileNotFoundError
50

51
__author__ = 'Daniel Scheffler'
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76


class GeoArray(object):
    def __init__(self, path_or_array, geotransform=None, projection=None, bandnames=None, nodata=None, progress=True,
                 q=False):
        # type: (any, tuple, str, list, float, bool, bool) -> None
        """This class creates a fast Python interface for geodata - either on disk or in memory. It can be instanced with
        a file path or with a numpy array and the corresponding geoinformation. Instances can always be indexed like
        normal numpy arrays, no matter if GeoArray has been instanced from file or from an in-memory array. GeoArray
        provides a wide range of geo-related attributes belonging to the dataset as well as some functions for quickly
        visualizing the data as a map, a simple image or an interactive image.

        :param path_or_array:   a numpy.ndarray or a valid file path
        :param geotransform:    GDAL geotransform of the given array or file on disk
        :param projection:      projection of the given array or file on disk as WKT string
                                (only needed if GeoArray is instanced with an array)
        :param bandnames:       names of the bands within the input array, e.g. ['mask_1bit', 'mask_clouds'],
                                (default: ['B1', 'B2', 'B3', ...])
        :param nodata:          nodata value
        :param progress:        show progress bars (default: True)
        :param q:               quiet mode (default: False)
        """

        # TODO implement compatibility to GDAL VRTs
        if not (isinstance(path_or_array, (str, np.ndarray, GeoArray)) or
77
           issubclass(getattr(path_or_array, '__class__'), GeoArray)):
78
            raise ValueError("%s parameter 'arg' takes only string, np.ndarray or GeoArray(and subclass) instances. "
79
                             "Got %s." % (self.__class__.__name__, type(path_or_array)))
80 81

        if path_or_array is None:
82
            raise ValueError("The %s parameter 'path_or_array' must not be None!" % self.__class__.__name__)
83 84 85 86 87

        if isinstance(path_or_array, str):
            assert ' ' not in path_or_array, "The given path contains whitespaces. This is not supported by GDAL."

            if not os.path.exists(path_or_array):
88
                raise FileNotFoundError(path_or_array)
89

90 91
        if isinstance(path_or_array, GeoArray) or issubclass(getattr(path_or_array, '__class__'), GeoArray):
            self.__dict__ = path_or_array.__dict__.copy()
92
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
93 94
            self.geotransform = geotransform or self.geotransform
            self.projection = projection or self.projection
95
            self.bandnames = bandnames or list(self.bandnames.keys())
96 97 98
            self._nodata = nodata if nodata is not None else self._nodata
            self.progress = False if progress is False else self.progress
            self.q = q if q is not None else self.q
99 100

        else:
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
            self.arg = path_or_array
            self._arr = path_or_array if isinstance(path_or_array, np.ndarray) else None
            self.filePath = path_or_array if isinstance(path_or_array, str) and path_or_array else None
            self.basename = os.path.splitext(os.path.basename(self.filePath))[0] if not self.is_inmem else 'IN_MEM'
            self.progress = progress
            self.q = q
            self._arr_cache = None  # dict containing key 'pos' and 'arr_cached'
            self._geotransform = None
            self._projection = None
            self._shape = None
            self._dtype = None
            self._nodata = nodata
            self._mask_nodata = None
            self._mask_baddata = None
116 117
            self._footprint_poly = None
            self._gdalDataset_meta_already_set = False
118 119
            self._metadata = None
            self._bandnames = None
120 121

            if bandnames:
122
                self.bandnames = bandnames  # use property in order to validate given value
123
            if geotransform:
124
                self.geotransform = geotransform  # use property in order to validate given value
125
            if projection:
126
                self.projection = projection  # use property in order to validate given value
127 128 129 130 131 132 133 134 135 136

            if self.filePath:
                self.set_gdalDataset_meta()

    @property
    def arr(self):
        return self._arr

    @arr.setter
    def arr(self, ndarray):
137 138
        assert isinstance(ndarray, np.ndarray), "'arr' can only be set to a numpy array! Got %s." % type(ndarray)
        # assert ndarray.shape == self.shape, "'arr' can only be set to a numpy array with shape %s. Received %s. " \
139 140 141 142 143
        #                                    "If you need to change the dimensions, create a new instance of %s." \
        #                                    %(self.shape, ndarray.shape, self.__class__.__name__)
        #  THIS would avoid warping like this: geoArr.arr, geoArr.gt, geoArr.prj = warp(...)

        if ndarray.shape != self.shape:
144
            self.flush_cache()  # the cached array is not useful anymore
145 146 147 148 149

        self._arr = ndarray

    @property
    def bandnames(self):
150
        if self._bandnames and len(self._bandnames) == self.bands:
151 152
            return self._bandnames
        else:
153
            del self.bandnames  # runs deleter which sets it to default values
154 155 156 157 158 159 160 161
            return self._bandnames

    @bandnames.setter
    def bandnames(self, list_bandnames):
        # type: (list) -> None

        if list_bandnames:
            assert isinstance(list_bandnames, list), "A list must be given when setting the 'bandnames' attribute. " \
162
                                                     "Received %s." % type(list_bandnames)
163 164 165 166 167
            assert len(list_bandnames) == self.bands, \
                'Number of given bandnames does not match number of bands in array.'
            assert len(list(set([type(b) for b in list_bandnames]))) == 1 and type(list_bandnames[0] == 'str'), \
                "'bandnames must be a set of strings. Got other datetypes in there.'"
            bN_dict = OrderedDict((band, i) for i, band in enumerate(list_bandnames))
168 169
            assert len(bN_dict) == self.bands, \
                'Bands must not have the same name. Received band list: %s' % list_bandnames
170 171 172

            self._bandnames = bN_dict

173 174
            # update bandnames in metadata
            if self._metadata is not None:
175
                self.metadata.band_meta['band_names'] = list_bandnames
176 177 178 179 180 181 182 183 184
        else:
            del self.bandnames

    @bandnames.deleter
    def bandnames(self):
        self._bandnames = OrderedDict(('B%s' % band, i) for i, band in enumerate(range(1, self.bands + 1)))
        if self._metadata is not None:
            self.metadata.loc['band_name', :] = list(self._bandnames.keys())

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    @property
    def is_inmem(self):
        """Check if associated image array is completely loaded into memory."""

        return isinstance(self.arr, np.ndarray)

    @property
    def shape(self):
        """Get the array shape of the associated image array."""

        if self.is_inmem:
            return self.arr.shape
        else:
            if self._shape:
                return self._shape
            else:
                self.set_gdalDataset_meta()
                return self._shape

    @property
    def ndim(self):
        """Get the number dimensions of the associated image array."""
        return len(self.shape)

    @property
    def rows(self):
        """Get the number of rows of the associated image array."""

        return self.shape[0]

    @property
    def columns(self):
        """Get the number of columns of the associated image array."""

        return self.shape[1]

    cols = alias_property('columns')

    @property
    def bands(self):
        """Get the number of bands of the associated image array."""

227
        return self.shape[2] if len(self.shape) > 2 else 1
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242

    @property
    def dtype(self):
        """Get the numpy data type of the associated image array."""

        if self._dtype:
            return self._dtype
        elif self.is_inmem:
            return self.arr.dtype
        else:
            self.set_gdalDataset_meta()
            return self._dtype

    @property
    def geotransform(self):
243
        """Get the GDAL GeoTransform of the associated image, e.g., (283500.0, 5.0, 0.0, 4464500.0, 0.0, -5.0)"""
244 245 246 247 248 249 250

        if self._geotransform:
            return self._geotransform
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
            return self._geotransform
        else:
251
            return [0, 1, 0, 0, 0, -1]
252 253 254

    @geotransform.setter
    def geotransform(self, gt):
255 256
        assert isinstance(gt, (list, tuple)) and len(gt) == 6,\
            'geotransform must be a list with 6 numbers. Got %s.' % str(gt)
257

258
        for i in gt:
259
            assert is_number(i), "geotransform must contain only numbers. Got '%s' (type: %s)." % (i, type(i))
260

261
        self._geotransform = gt
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

    gt = alias_property('geotransform')

    @property
    def xgsd(self):
        """Get the X resolution in units of the given or detected projection."""

        return self.geotransform[1]

    @property
    def ygsd(self):
        """Get the Y resolution in units of the given or detected projection."""

        return abs(self.geotransform[5])

    @property
    def xygrid_specs(self):
        """
        Get the specifications for the X/Y coordinate grid, e.g. [[15,30], [0,30]] for a coordinate with its origin
        at X/Y[15,0] and a GSD of X/Y[15,30].
        """

284
        def get_grid(gt, xgsd, ygsd): return [[gt[0], gt[0] + xgsd], [gt[3], gt[3] - ygsd]]
285 286 287 288 289 290 291 292 293 294 295 296 297
        return get_grid(self.geotransform, self.xgsd, self.ygsd)

    @property
    def projection(self):
        """
        Get the projection of the associated image. Setting the projection is only allowed if GeoArray has been
        instanced from memory or the associated file on disk has no projection.
        """

        if self._projection:
            return self._projection
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
298
            return self._projection  # or "LOCAL_CS[\"MAP\"]"
299
        else:
300
            return ''  # '"LOCAL_CS[\"MAP\"]"
301 302 303 304

    @projection.setter
    def projection(self, prj):
        if self.filePath:
305
            assert self.projection is None or prj_equal(self.projection, prj), \
306
                "Cannot set %s.projection to the given value because it does not match the projection from the file " \
307
                "on disk." % self.__class__.__name__
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        else:
            self._projection = prj

    prj = alias_property('projection')

    @property
    def epsg(self):
        """Get the EPSG code of the projection of the GeoArray."""

        return WKT2EPSG(self.projection)

    @epsg.setter
    def epsg(self, epsg_code):
        self.projection = EPSG2WKT(epsg_code)

    @property
    def box(self):
        mapPoly = get_footprint_polygon(get_corner_coordinates(gt=self.geotransform, cols=self.columns, rows=self.rows))
        return boxObj(gt=self.geotransform, prj=self.projection, mapPoly=mapPoly)

    @property
    def nodata(self):
        """
        Get the nodata value of the GeoArray. If GeoArray has been instanced with a file path the file is checked
        for an existing nodata value. Otherwise (if no value is exlicitly given during object instanciation) the nodata
        value is tried to be automatically detected.
        """

        if self._nodata is not None:
            return self._nodata
        else:
            # try to get nodata value from file
            if not self.is_inmem:
                self.set_gdalDataset_meta()
            if self._nodata is None:
Daniel Scheffler's avatar
Bugfix  
Daniel Scheffler committed
343
                self._nodata = self.find_noDataVal()
344 345 346 347 348 349
                if self._nodata == 'ambiguous':
                    warnings.warn('Nodata value could not be clearly identified. It has been set to None.')
                    self._nodata = None
                else:
                    if self._nodata is not None and not self.q:
                        print("Automatically detected nodata value for %s '%s': %s"
350
                              % (self.__class__.__name__, self.basename, self._nodata))
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
            return self._nodata

    @nodata.setter
    def nodata(self, value):
        self._nodata = value

    @property
    def mask_nodata(self):
        """
        Get the nodata mask of the associated image array. It is calculated using all image bands.
        """

        if self._mask_nodata is not None:
            return self._mask_nodata
        else:
366
            self.calc_mask_nodata()  # sets self._mask_nodata
367 368 369 370 371 372 373 374 375 376 377
            return self._mask_nodata

    @mask_nodata.setter
    def mask_nodata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import NoDataMask
378 379
            geoArr_mask = NoDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
380
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
381
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
382 383 384 385

            assert geoArr_mask.bands == 1, \
                'Expected one single band as nodata mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided nodata mask must have the same number of ' \
386
                                                            'rows and columns as the %s itself.' % imName
387 388
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given nodata mask for %s must match the geotransform of the %s itself. ' \
389
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
390 391
            assert not geoArr_mask.prj or prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given nodata mask for the %s must match the projection of the %s itself.' \
392
                % (imName, self.__class__.__name__)
393 394

            self._mask_nodata = geoArr_mask
395 396 397 398 399 400
        else:
            del self.mask_nodata

    @mask_nodata.deleter
    def mask_nodata(self):
        self._mask_nodata = None
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

    @property
    def mask_baddata(self):
        """
        Returns the bad data mask for the associated image array if it has been explicitly previously. It can be set
         by passing a file path, a numpy array or an instance of GeoArray to the setter of this property.
        """

        return self._mask_baddata

    @mask_baddata.setter
    def mask_baddata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import BadDataMask
420 421
            geoArr_mask = BadDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
422
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
423
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
424 425 426 427

            assert geoArr_mask.bands == 1, \
                'Expected one single band as bad data mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided bad data mask must have the same number of ' \
428
                                                            'rows and columns as the %s itself.' % imName
429 430
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given bad data mask for %s must match the geotransform of the %s itself. ' \
431
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
432 433
            assert prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given bad data mask for the %s must match the projection of the %s itself.' \
434
                % (imName, self.__class__.__name__)
435 436

            self._mask_baddata = geoArr_mask
437 438 439 440 441 442
        else:
            del self.mask_baddata

    @mask_baddata.deleter
    def mask_baddata(self):
        self._mask_baddata = None
443 444 445 446 447 448 449 450 451 452

    @property
    def footprint_poly(self):
        # FIXME should return polygon in image coordinates if no projection is available
        """
        Get the footprint polygon of the associated image array (returns an instance of shapely.geometry.Polygon.
        """

        if self._footprint_poly is None:
            assert self.mask_nodata is not None, 'A nodata mask is needed for calculating the footprint polygon. '
453
            if False not in self.mask_nodata[:]:
454 455 456 457
                # do not run raster2polygon if whole image is filled with data
                self._footprint_poly = self.box.mapPoly
            else:
                try:
458 459
                    multipolygon = raster2polygon(self.mask_nodata.astype(np.uint8), self.gt, self.prj, exact=False,
                                                  progress=self.progress, q=self.q, maxfeatCount=10, timeout=3)
460
                    self._footprint_poly = fill_holes_within_poly(multipolygon)
461
                except (RuntimeError, TimeoutError):
462 463 464 465
                    if not self.q:
                        warnings.warn("\nCalculation of footprint polygon failed for %s '%s'. Using outer bounds. One "
                                      "reason could be that the nodata value appears within the actual image (not only "
                                      "as fill value). To avoid this use another nodata value. Current nodata value is "
466
                                      "%s." % (self.__class__.__name__, self.basename, self.nodata))
467 468 469
                    self._footprint_poly = self.box.mapPoly

            # validation
470 471 472 473
            assert not polyVertices_outside_poly(self._footprint_poly, self.box.mapPoly), \
                "Computing footprint polygon for %s '%s' failed. The resulting polygon is partly or completely " \
                "outside of the image bounds." % (self.__class__.__name__, self.basename)
            # assert self._footprint_poly
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
            # for XY in self.corner_coord:
            #    assert self.GeoArray.box.mapPoly.contains(Point(XY)) or self.GeoArray.box.mapPoly.touches(Point(XY)), \
            #        "The corner position '%s' is outside of the %s." % (XY, self.imName)

        return self._footprint_poly

    @footprint_poly.setter
    def footprint_poly(self, poly):
        if isinstance(poly, Polygon):
            self._footprint_poly = poly
        elif isinstance(poly, str):
            self._footprint_poly = shply_loads(poly)
        else:
            raise ValueError("'footprint_poly' can only be set from a shapely polygon or a WKT string.")

    @property
    def metadata(self):
        """
        Returns a GeoDataFrame containing all available metadata (read from file if available).
        Use 'metadata[band_index].to_dict()' to get a metadata dictionary for a specific band.
        Use 'metadata.loc[row_name].to_dict()' to get all metadata values of the same key for all bands as dictionary.
        Use 'metadata.loc[row_name, band_index] = value' to set a new value.

        :return:  geopandas.GeoDataFrame
        """

        if self._metadata is not None:
            return self._metadata
        else:
503 504
            default = GDAL_Metadata(nbands=self.bands)

505 506 507 508 509 510 511 512 513
            self._metadata = default
            if not self.is_inmem:
                self.set_gdalDataset_meta()
                return self._metadata
            else:
                return self._metadata

    @metadata.setter
    def metadata(self, GDF):
514
        assert isinstance(GDF, (GeoDataFrame, DataFrame)) and len(GDF.columns) == self.bands, \
515
            "%s.metadata can only be set with an instance of geopandas.GeoDataFrame of which the column number " \
516
            "corresponds to the band number of %s." % (self.__class__.__name__, self.__class__.__name__)
517 518 519 520 521
        self._metadata = GDF

    meta = alias_property('metadata')

    def __getitem__(self, given):
522
        if isinstance(given, (int, float, slice)) and self.ndim == 3:
523 524 525 526 527 528 529 530 531 532 533 534 535
            # handle 'given' as index for 3rd (bands) dimension
            if self.is_inmem:
                return self.arr[:, :, given]
            else:
                return self.from_path(self.arg, [given])

        elif isinstance(given, str):
            # behave like a dictionary and return the corresponding band
            if self.bandnames:
                if given not in self.bandnames:
                    raise ValueError("'%s' is not a known band. Known bands are: %s"
                                     % (given, ', '.join(list(self.bandnames.keys()))))
                if self.is_inmem:
536
                    return self.arr if self.ndim == 2 else self.arr[:, :, self.bandnames[given]]
537 538 539 540
                else:
                    return self.from_path(self.arg, [self.bandnames[given]])
            else:
                raise ValueError('String indices are only supported if %s has been instanced with bandnames given.'
541
                                 % self.__class__.__name__)
542 543 544 545 546 547 548

        elif isinstance(given, (tuple, list)):
            # handle requests like geoArr[[1,2],[3,4]  -> not implemented in from_path if array is not in mem
            types = [type(i) for i in given]
            if list in types or tuple in types:
                self.to_mem()

549
            if len(given) == 3:
550 551

                # handle strings in the 3rd dim of 'given' -> convert them to a band index
552
                if isinstance(given[2], str):
553 554 555 556 557 558 559 560
                    if self.bandnames:
                        if given[2] not in self.bandnames:
                            raise ValueError("'%s' is not a known band. Known bands are: %s"
                                             % (given[2], ', '.join(list(self.bandnames.keys()))))

                        band_idx = self.bandnames[given[2]]
                        # NOTE: the string in the 3rd is ignored if ndim==2 and band_idx==0
                        if self.is_inmem:
561
                            return self.arr if (self.ndim == 2 and band_idx == 0) else self.arr[:, :, band_idx]
562
                        else:
563 564
                            getitem_params = \
                                given[:2] if (self.ndim == 2 and band_idx == 0) else given[:2] + (band_idx,)
565 566 567 568 569 570 571
                            return self.from_path(self.arg, getitem_params)
                    else:
                        raise ValueError(
                            'String indices are only supported if %s has been instanced with bandnames given.'
                            % self.__class__.__name__)

                # in case a third dim is requested from 2D-array -> ignore 3rd dim if 3rd dim is 0
572
                elif self.ndim == 2 and given[2] == 0:
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
                    if self.is_inmem:
                        return self.arr[given[:2]]
                    else:
                        return self.from_path(self.arg, given[:2])

        # if nothing has been returned until here -> behave like a numpy array
        if self.is_inmem:
            return self.arr[given]
        else:
            getitem_params = [given] if isinstance(given, slice) else given
            return self.from_path(self.arg, getitem_params)

    def __setitem__(self, idx, array2set):
        """Overwrites the pixel values of GeoArray.arr with the given array.

        :param idx:         <int, list, slice> the index position to overwrite
        :param array2set:   <np.ndarray> array to be set. Must be compatible to the given index position.
        :return:
        """

        if self.is_inmem:
            self.arr[idx] = array2set
        else:
            raise NotImplementedError('Item assignment for %s instances that are not in memory is not yet supported.'
597
                                      % self.__class__.__name__)
598 599 600

    def __getattr__(self, attr):
        # check if the requested attribute can not be present because GeoArray has been instanced with an array
601 602
        if attr not in self.__dir__() and not self.is_inmem and attr in ['shape', 'dtype', 'geotransform',
                                                                         'projection']:
603 604
            self.set_gdalDataset_meta()

605 606 607
        if attr in self.__dir__():  # __dir__() includes also methods and properties
            return self.__getattribute__(attr)  # __getattribute__ avoids infinite loop
        elif hasattr(np.array([]), attr):
608 609
            return self[:].__getattribute__(attr)
        else:
610
            raise AttributeError("%s object has no attribute '%s'." % (self.__class__.__name__, attr))
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

    def __getstate__(self):
        """Defines how the attributes of GMS object are pickled."""

        # clean array cache in order to avoid cache pickling
        self.flush_cache()

        return self.__dict__

    def __setstate__(self, state):
        """Defines how the attributes of GMS object are unpickled.
        NOTE: This method has been implemented because otherwise pickled and unpickled instances show recursion errors
        within __getattr__ when requesting any attribute.
        """

        self.__dict__ = state

    def calc_mask_nodata(self, fromBand=None, overwrite=False):
        """Calculates a no data mask with (values: 0=nodata; 1=data)

        :param fromBand:  <int> index of the band to be used (if None, all bands are used)
        :param overwrite: <bool> whether to overwrite existing nodata mask that has already been calculated
        :return:
        """

        if self._mask_nodata is None or overwrite:
            assert self.ndim in [2, 3], "Only 2D or 3D arrays are supported. Got a %sD array." % self.ndim
638
            arr = self[:, :, fromBand] if self.ndim == 3 and fromBand is not None else self[:]
639

640 641 642
            min_v, max_v = np.min(arr), np.max(arr)
            if (min_v == max_v == self.nodata) or (np.isnan(min_v) and np.isnan(max_v) and np.isnan(self.nodata)):
                self.mask_nodata = np.full(arr.shape[:2], False)
643
            else:
644 645 646 647 648 649 650 651 652 653
                if self.nodata is None:
                    self.mask_nodata = np.ones((self.rows, self.cols), np.bool)
                elif np.isnan(self.nodata):
                    self.mask_nodata = \
                        np.invert(np.isnan(arr)) if arr.ndim == 2 else \
                        np.all(np.invert(np.isnan(arr)), axis=2)
                else:
                    self.mask_nodata = \
                        np.ma.masked_not_equal(arr, self.nodata).mask if arr.ndim == 2 else \
                        np.all(np.ma.masked_not_equal(arr, self.nodata).mask, axis=2)
654

655 656 657 658 659 660 661 662
    def find_noDataVal(self, bandIdx=0, sz=3):
        """Tries to derive no data value from homogenious corner pixels within 3x3 windows (by default).
        :param bandIdx:
        :param sz: window size in which corner pixels are analysed
        """
        wins = [self[0:sz, 0:sz, bandIdx], self[0:sz, -sz:, bandIdx],
                self[-sz:, -sz:, bandIdx], self[-sz:, 0:sz, bandIdx]]  # UL, UR, LR, LL

663 664
        means, stds = [np.mean(win) for win in wins], [np.std(win) for win in wins]
        possVals = [mean for mean, std in zip(means, stds) if std == 0 or np.isnan(std)]
665 666 667 668
        # possVals==[]: all corners are filled with data; np.std(possVals)==0: noDataVal clearly identified

        if possVals:
            if np.std(possVals) != 0:
669 670 671 672 673 674
                if np.isnan(np.std(possVals)):
                    # at least one of the possible values is np.nan
                    nodata = np.nan
                else:
                    # different possible nodata values have been found in the image corner
                    nodata = 'ambiguous'
675 676 677 678 679
            else:
                if len(possVals) <= 2:
                    # each window in each corner
                    warnings.warn("\nAutomatic nodata value detection returned the value %s for GeoArray '%s' but this "
                                  "seems to be unreliable (occurs in only %s). To avoid automatic detection, just pass "
680 681 682
                                  "the correct nodata value."
                                  % (possVals[0], self.basename, ('2 image corners' if len(possVals) == 2 else
                                                                  '1 image corner')))
683
                nodata = possVals[0]
684
        else:
685 686 687
            nodata = None

        return nodata
688

689 690 691 692 693 694 695 696 697 698
    def set_gdalDataset_meta(self):
        """Retrieves GDAL metadata from file. This function is only executed once to avoid overwriting of user defined
         attributes, that are defined after object instanciation.

        :return:
        """

        if not self._gdalDataset_meta_already_set:
            assert self.filePath
            ds = gdal.Open(self.filePath)
699 700 701
            if not ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

702
            # set private class variables (in order to avoid recursion error)
703 704
            self._shape = tuple([ds.RasterYSize, ds.RasterXSize] + ([ds.RasterCount] if ds.RasterCount > 1 else []))
            self._dtype = gdal_array.GDALTypeCodeToNumericTypeCode(ds.GetRasterBand(1).DataType)
705
            self._geotransform = list(ds.GetGeoTransform())
706 707

            # for some reason GDAL reads arbitrary geotransforms as (0, 1, 0, 0, 0, 1) instead of (0, 1, 0, 0, 0, -1)
708
            self._geotransform[5] = -abs(self._geotransform[5])  # => force ygsd to be negative
709

710 711
            # temp conversion to EPSG needed because GDAL seems to modify WKT string when writing file to disk
            # (e.g. using gdal_merge) -> conversion to EPSG and back undos that
712 713
            wkt = ds.GetProjection()
            self._projection = EPSG2WKT(WKT2EPSG(wkt)) if not isLocal(wkt) else ''
714

715 716 717 718
            if 'nodata' not in self._initParams or self._initParams['nodata'] is None:
                band = ds.GetRasterBand(1)
                # FIXME this does not support different nodata values within the same file
                self._nodata = band.GetNoDataValue()
719

720 721 722 723
            # set metadata attribute
            if self.is_inmem or not self.filePath:
                # metadata cannot be read from disk -> set it to the default
                self._metadata = GDAL_Metadata(nbands=self.bands)
724

725 726
            else:
                self._metadata = GDAL_Metadata(filePath=self.filePath)
727

728
            del ds
729 730 731 732 733 734 735 736 737 738 739 740 741 742

        self._gdalDataset_meta_already_set = True

    def from_path(self, path, getitem_params=None):
        # type: (str, list) -> np.ndarray
        """Read a GDAL compatible raster image from disk, with respect to the given image position.
        NOTE: If the requested array position is already in cache, it is returned from there.

        :param path:            <str> the file path of the image to read
        :param getitem_params:  <list> a list of slices in the form [row_slice, col_slice, band_slice]
        :return out_arr:        <np.ndarray> the output array
        """

        ds = gdal.Open(path)
743 744 745
        if not ds:
            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

746
        R, C, B = ds.RasterYSize, ds.RasterXSize, ds.RasterCount
747
        del ds
748

749
        # convert getitem_params to subset area to be read #
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
        rS, rE, cS, cE, bS, bE, bL = [None] * 7

        # populate rS, rE, cS, cE, bS, bE, bL
        if getitem_params:
            if len(getitem_params) >= 2:
                givenR, givenC = getitem_params[:2]
                if isinstance(givenR, slice):
                    rS = givenR.start
                    rE = givenR.stop - 1 if givenR.stop is not None else None
                elif isinstance(givenR, int):
                    rS = givenR
                    rE = givenR
                if isinstance(givenC, slice):
                    cS = givenC.start
                    cE = givenC.stop - 1 if givenC.stop is not None else None
                elif isinstance(givenC, int):
                    cS = givenC
                    cE = givenC
            if len(getitem_params) in [1, 3]:
                givenB = getitem_params[2] if len(getitem_params) == 3 else getitem_params[0]
                if isinstance(givenB, slice):
                    bS = givenB.start
                    bE = givenB.stop - 1 if givenB.stop is not None else None
                elif isinstance(givenB, int):
                    bS = givenB
                    bE = givenB
776
                elif isinstance(givenB, (tuple, list)):
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
                    typesInGivenB = [type(i) for i in givenB]
                    assert len(list(set(typesInGivenB))) == 1, \
                        'Mixed data types within the list of bands are not supported.'
                    if isinstance(givenB[0], int):
                        bL = list(givenB)
                    elif isinstance(givenB[0], str):
                        bL = [self.bandnames[i] for i in givenB]
                elif type(givenB) in [str]:
                    bL = [self.bandnames[givenB]]

        # set defaults for not given values
        rS = rS if rS is not None else 0
        rE = rE if rE is not None else R - 1
        cS = cS if cS is not None else 0
        cE = cE if cE is not None else C - 1
        bS = bS if bS is not None else 0
        bE = bE if bE is not None else B - 1
        bL = list(range(bS, bE + 1)) if not bL else bL

        # convert negative to positive ones
        rS = rS if rS >= 0 else self.rows + rS
        rE = rE if rE >= 0 else self.rows + rE
        cS = cS if cS >= 0 else self.columns + cS
        cE = cE if cE >= 0 else self.columns + cE
        bS = bS if bS >= 0 else self.bands + bS
        bE = bE if bE >= 0 else self.bands + bE
803
        bL = [b if b >= 0 else (self.bands + b) for b in bL]
804 805

        # validate subset area bounds to be read
806 807 808 809 810 811 812
        def msg(v, idx, sz):
            # FIXME numpy raises that error ONLY for the 2nd axis
            return '%s is out of bounds for axis %s with size %s' % (v, idx, sz)

        for val, axIdx, axSize in zip([rS, rE, cS, cE, bS, bE], [0, 0, 1, 1, 2, 2], [R, R, C, C, B, B]):
            if not 0 <= val <= axSize - 1:
                raise ValueError(msg(val, axIdx, axSize))
813 814

        # summarize requested array position in arr_pos
815
        # NOTE: # bandlist must be string because truth value of an array with more than one element is ambiguous
816 817 818
        arr_pos = dict(rS=rS, rE=rE, cS=cS, cE=cE, bS=bS, bE=bE, bL=bL)

        # check if the requested array position is already in cache -> if yes, return it from there
819
        if self._arr_cache is not None and self._arr_cache['pos'] == arr_pos:
820
            out_arr = self._arr_cache['arr_cached']
821 822 823 824 825 826 827

        else:
            # TODO insert a multiprocessing.Lock here in order to prevent IO bottlenecks?
            # read subset area from disk
            if bL == list(range(0, B)):
                tempArr = gdalnumeric.LoadFile(path, cS, rS, cE - cS + 1, rE - rS + 1)
                out_arr = np.swapaxes(np.swapaxes(tempArr, 0, 2), 0, 1) if B > 1 else tempArr
828 829
                if out_arr is None:
                    raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
830 831 832 833
            else:
                ds = gdal.Open(path)
                if len(bL) == 1:
                    band = ds.GetRasterBand(bL[0] + 1)
834
                    out_arr = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
835 836
                    if out_arr is None:
                        raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
837
                    del band
838 839 840 841 842
                else:
                    out_arr = np.empty((rE - rS + 1, cE - cS + 1, len(bL)))
                    for i, bIdx in enumerate(bL):
                        band = ds.GetRasterBand(bIdx + 1)
                        out_arr[:, :, i] = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
843 844
                        if out_arr is None:
                            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
845
                        del band
846

847
                del ds
848

849 850 851 852 853
            # 3D to 2D conversion in case out_arr can be represented by a 2D array (avoids shapes like (1,2,2
            # NOTE: -> numpy also returns a 2D array in that case
            if 1 in out_arr.shape:
                out_arr = out_arr.reshape(*[i for i in out_arr.shape if i != 1])

854
            # only set self.arr if the whole cube has been read (in order to avoid sudden shape changes)
855
            if out_arr.shape == self.shape:
856 857 858 859 860
                self.arr = out_arr

            # write _arr_cache
            self._arr_cache = dict(pos=arr_pos, arr_cached=out_arr)

861 862
        return out_arr  # TODO implement check of returned datatype (e.g. NoDataMask should always return np.bool
        # TODO -> would be np.int8 if an int8 file is read from disk
863 864 865 866 867 868 869 870

    def save(self, out_path, fmt='ENVI', creationOptions=None):
        # type: (str, str, list) -> None
        """Write the raster data to disk.

        :param out_path:        <str> output path
        :param fmt:             <str> the output format / GDAL driver code to be used for output creation, e.g. 'ENVI'
                                Refer to http://www.gdal.org/formats_list.html to get a full list of supported formats.
871 872
        :param creationOptions: <list> GDAL creation options,
                                e.g., ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
873 874 875
        """

        if not self.q:
876 877
            print('Writing GeoArray of size %s to %s.' % (self.shape, out_path))
        assert self.ndim in [2, 3], 'Only 2D- or 3D arrays are supported.'
878 879 880 881 882 883 884 885 886 887

        driver = gdal.GetDriverByName(fmt)
        if driver is None:
            raise Exception("'%s' is not a supported GDAL driver. Refer to www.gdal.org/formats_list.html for full "
                            "list of GDAL driver codes." % fmt)

        if not os.path.isdir(os.path.dirname(out_path)):
            os.makedirs(os.path.dirname(out_path))

        if self.is_inmem:
Daniel Scheffler's avatar
Daniel Scheffler committed
888 889 890 891 892 893
            ds_inmem = get_GDAL_ds_inmem(self.arr, self.geotransform, self.projection,
                                         self.nodata)  # expects rows,columns,bands

            # write dataset
            ds_out = driver.CreateCopy(out_path, ds_inmem, options=creationOptions if creationOptions else [])
            del ds_inmem
894 895

            # set metadata
Daniel Scheffler's avatar
Daniel Scheffler committed
896
            # NOTE:  The dataset has to be written BEFORE metadata are added. Otherwise, metadata are not written.
897 898 899
            if fmt == 'ENVI':
                envi_metadict = self.metadata.to_ENVI_metadict()
                ds_out.SetMetadata(envi_metadict, 'ENVI')
900

901 902 903
                if 'band_names' in envi_metadict:
                    ds_out.SetMetadata({'Band_%s' % str(bidx + 1): self.metadata.band_meta['band_names'][bidx]
                                        for bidx in range(self.bands)})
904

905 906
                ds_out.FlushCache()
                gdal.Unlink(out_path + '.aux.xml')
907

908 909 910 911
            elif self.metadata.all_meta:
                    # set global domain metadata
                    if self.metadata.global_meta:
                        ds_out.SetMetadata(self.metadata.global_meta)
912

913 914 915 916
                    # set band domain metadata
                    for bidx in range(self.bands):
                        band = ds_out.GetRasterBand(bidx + 1)
                        meta2write = dict((k, repr(v)) for k, v in self.metadata.band_meta.items() if v is not np.nan)
917

918 919 920
                        band.SetMetadata(meta2write)
                        band.FlushCache()
                        del band
921

Daniel Scheffler's avatar
Daniel Scheffler committed
922
            ds_out.FlushCache()
923

924 925 926
            # rows, columns, bands => bands, rows, columns
            # out_arr = self.arr if self.ndim == 2 else np.swapaxes(np.swapaxes(self.arr, 0, 2), 1, 2)
            # gdalnumeric.SaveArray(out_arr, out_path, format=fmt, prototype=ds) # expects bands,rows,columns
Daniel Scheffler's avatar
Daniel Scheffler committed
927
            del ds_out
928 929 930

        else:
            src_ds = gdal.Open(self.filePath)
931 932 933
            if not src_ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

934 935
            gdal_Translate = get_gdal_func('Translate')
            gdal_Translate(out_path, src_ds, format=fmt, creationOptions=creationOptions)
936
            del src_ds
937 938 939 940 941 942 943 944 945

        if not os.path.exists(out_path):
            raise Exception(gdal.GetLastErrorMsg())

    def dump(self, out_path):
        # type: (str) -> None
        """Serialize the whole object instance to disk using dill."""

        import dill
946 947
        with open(out_path, 'wb') as outF:
            dill.dump(self, outF)
948 949 950 951 952 953 954 955 956

    def _get_plottable_image(self, xlim=None, ylim=None, band=None, boundsMap=None, boundsMapPrj=None, res_factor=None,
                             nodataVal=None, out_prj=None):
        # handle limits
        if boundsMap:
            boundsMapPrj = boundsMapPrj if boundsMapPrj else self.prj
            image2plot, gt, prj = self.get_mapPos(boundsMap, boundsMapPrj, band2get=band,
                                                  fillVal=nodataVal if nodataVal is not None else self.nodata)
        else:
957 958
            cS, cE = xlim if isinstance(xlim, (tuple, list)) else (0, self.columns)
            rS, rE = ylim if isinstance(ylim, (tuple, list)) else (0, self.rows)
959 960

            image2plot = self[rS:rE, cS:cE, band] if band is not None else self[rS:rE, cS:cE]
961
            gt, prj = self.geotransform, self.projection
962

963
        transOpt = ['SRC_METHOD=NO_GEOTRANSFORM'] if tuple(gt) == (0, 1, 0, 0, 0, -1) else None
964
        xdim, ydim = None, None
965
        nodataVal = nodataVal if nodataVal is not None else self.nodata
966 967

        if res_factor != 1. and image2plot.shape[0] * image2plot.shape[1] > 1e6:  # shape > 1000*1000
968 969 970 971
            # sample image down / normalize
            xdim, ydim = \
                (self.columns * res_factor, self.rows * res_factor) if res_factor else \
                tuple((np.array([self.columns, self.rows]) / (np.array([self.columns, self.rows]).max() / 1000)))
972 973 974
            xdim, ydim = int(xdim), int(ydim)

        if xdim or ydim or out_prj:
975
            from py_tools_ds.geo.raster.reproject import warp_ndarray
976 977 978 979 980
            image2plot, gt, prj = warp_ndarray(image2plot, self.geotransform, self.projection,
                                               out_XYdims=(xdim, ydim), in_nodata=nodataVal, out_nodata=nodataVal,
                                               transformerOptions=transOpt, out_prj=out_prj, q=True)
            if transOpt and 'NO_GEOTRANSFORM' in ','.join(transOpt):
                image2plot = np.flipud(image2plot)
981 982
                gt = list(gt)
                gt[3] = 0
983 984 985 986 987 988 989

            if xdim or ydim:
                print('Note: array has been downsampled to %s x %s for faster visualization.' % (xdim, ydim))

        return image2plot, gt, prj

    def show(self, xlim=None, ylim=None, band=None, boundsMap=None, boundsMapPrj=None, figsize=None,
990 991
             interpolation='none', vmin=None, vmax=None, pmin=2, pmax=98, cmap=None, nodataVal=None,
             res_factor=None, interactive=False):
992 993 994 995 996 997 998 999 1000 1001
        """Plots the desired array position into a figure.

        :param xlim:            [start_column, end_column]
        :param ylim:            [start_row, end_row]
        :param band:            the band index of the band to be plotted (if None and interactive==True all bands are
                                shown, otherwise the first band is chosen)
        :param boundsMap:       xmin, ymin, xmax, ymax
        :param boundsMapPrj:
        :param figsize:
        :param interpolation:
1002 1003 1004 1005
        :param vmin:            darkest pixel value to be included in stretching
        :param vmax:            brightest pixel value to be included in stretching
        :param pmin:            percentage to be used for excluding the darkest pixels from stretching (default: 2)
        :param pmax:            percentage to be used for excluding the brightest pixels from stretching (default: 98)
1006 1007
        :param cmap:
        :param nodataVal:
Daniel Scheffler's avatar
Daniel Scheffler committed
1008 1009
        :param res_factor:      <float> resolution factor for downsampling of the image to be plotted in order to save
                                plotting time and memory (default=None -> downsampling is performed to 1000x1000)
1010 1011 1012 1013 1014 1015 1016 1017
        :param interactive:     <bool> activates interactive plotting based on 'holoviews' library.
                                NOTE: this deactivates the magic '% matplotlib inline' in Jupyter Notebook
        :return:
        """

        band = (band if band is not None else 0) if not interactive else band

        # get image to plot
1018
        nodataVal = nodataVal if nodataVal is not None else self.nodata
Daniel Scheffler's avatar
Daniel Scheffler committed
1019 1020 1021
        image2plot, gt, prj = \
            self._get_plottable_image(xlim, ylim, band, boundsMap=boundsMap, boundsMapPrj=boundsMapPrj,
                                      res_factor=res_factor, nodataVal=nodataVal)
1022 1023

        # set color palette
1024
        palette = cmap if cmap else plt.get_cmap('gray')
1025
        if nodataVal is not None and np.std(image2plot) != 0:  # do not show nodata
1026
            image2plot = np.ma.masked_equal(image2plot, nodataVal)
1027
            vmin_auto, vmax_auto = \
1028
                np.nanpercentile(image2plot.compressed(), pmin), np.nanpercentile(image2plot.compressed(), pmax)
1029 1030
            palette.set_bad('aqua', 0)
        else:
1031
            vmin_auto, vmax_auto = np.nanpercentile(image2plot, pmin), np.nanpercentile(image2plot, pmax)
1032 1033 1034 1035

        vmin = vmin if vmin is not None else vmin_auto
        vmax = vmax if vmax is not None else vmax_auto

1036
        palette.set_over('1')
1037 1038
        palette.set_under('0')

1039 1040 1041 1042 1043 1044
        # check availability of holoviews
        if not util.find_spec('holoviews'):
            warnings.warn("Interactive mode requires holoviews. Install it by running, e.g., "
                          "'conda install --yes -c ioam bokeh holoviews'. Using non-interactive mode.")
            interactive = False

1045
        if interactive and image2plot.ndim == 3:
1046 1047 1048 1049 1050 1051 1052
            import holoviews as hv
            from skimage.exposure import rescale_intensity
            hv.notebook_extension('matplotlib')

            cS, cE = xlim if isinstance(xlim, (tuple, list)) else (0, self.columns - 1)
            rS, rE = ylim if isinstance(ylim, (tuple, list)) else (0, self.rows - 1)

1053
            image2plot = np.array(rescale_intensity(image2plot, in_range=(vmin, vmax)))
1054

1055 1056 1057 1058 1059 1060 1061
            def get_hv_image(b):
                # FIXME ylabels have the wrong order
                return hv.Image(image2plot[:, :, b] if b is not None else image2plot,
                                bounds=(cS, rS, cE, rE))(
                    style={'cmap': 'gray'}, plot={'fig_inches': 4 if figsize is None else figsize, 'show_grid': True})

            # hvIm = hv.Image(image2plot)(style={'cmap': 'gray'}, figure_inches=figsize)
1062 1063 1064 1065 1066 1067 1068
            hmap = hv.HoloMap([(band, get_hv_image(band)) for band in range(image2plot.shape[2])], kdims=['band'])

            return hmap

        else:
            if interactive:
                warnings.warn('Currently there is no interactive mode for single-band arrays. '
1069
                              'Switching to standard matplotlib figure..')  # TODO implement zoomable fig
1070 1071 1072 1073 1074

            # show image
            plt.figure(figsize=figsize)
            rows, cols = image2plot.shape[:2]
            plt.imshow(image2plot, palette, interpolation=interpolation, extent=(0, cols, rows, 0),
1075
                       vmin=vmin, vmax=vmax, )  # compressed excludes nodata values
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
            plt.show()

    def show_map(self, xlim=None, ylim=None, band=0, boundsMap=None, boundsMapPrj=None, ax=None, figsize=None,
                 interpolation='none', vmin=None, vmax=None, cmap=None, nodataVal=None, res_factor=None,
                 return_map=False, zoomable=False):
        """

        :param xlim:
        :param ylim:
        :param band:            band index (starting with 0)
        :param boundsMap:       xmin, ymin, xmax, ymax
        :param boundsMapPrj:
        :param ax:              allows to pass a matplotlib axis object where figure is plotted into
        :param figsize:
        :param interpolation:
        :param vmin:
        :param vmax:
        :param cmap:
        :param nodataVal:
Daniel Scheffler's avatar
Daniel Scheffler committed
1095 1096
        :param res_factor:      <float> resolution factor for downsampling of the image to be plotted in order to save
                                plotting time and memory (default=None -> downsampling is performed to 1000x1000)
1097 1098 1099 1100 1101
        :param return_map:
        :param zoomable:        <bool> enable or disable zooming via mpld3
        :return:
        """

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
        if not util.find_spec('mpl_toolkits.basemap'):
            raise ImportError('This function requires Basemap. You need to install basemap manually (see www./'
                              'matplotlib.org/basemap) if you want to plot maps. It is not automatically installed.')

        from mpl_toolkits.basemap import Basemap

        mpld3_avl = util.find_spec('mpld3')
        if not mpld3_avl:
            warnings.warn('mpld3 is not available. Zooming disabled.')
            zoomable = False

        if zoomable:
1114
            import mpld3
1115 1116 1117 1118 1119
            mpld3.enable_notebook()
        elif mpld3_avl:
            import mpld3
            # noinspection PyBroadException
            try:
1120
                mpld3.disable_notebook()
Daniel Scheffler's avatar