baseclasses.py 82.2 KB
Newer Older
1 2
# -*- coding: utf-8 -*-

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# geoarray, A fast Python interface for image geodata - either on disk or in memory.
#
# Copyright (C) 2019  Daniel Scheffler (GFZ Potsdam, daniel.scheffler@gfz-potsdam.de)
#
# This software was developed within the context of the GeoMultiSens project funded
# by the German Federal Ministry of Education and Research
# (project grant code: 01 IS 14 010 A-C).
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option) any
# later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with this program.  If not, see <http://www.gnu.org/licenses/>.


25 26
import os
import warnings
27
from pkgutil import find_loader
28
from collections import OrderedDict
Daniel Scheffler's avatar
Daniel Scheffler committed
29
from copy import deepcopy
30
from typing import Union  # noqa F401
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

import numpy as np
from matplotlib import pyplot as plt
from osgeo import gdal_array
# custom
from shapely.geometry import Polygon
from shapely.wkt import loads as shply_loads
from six import PY3

# mpl_toolkits.basemap -> imported when GeoArray.show_map() is used
# dill -> imported when dumping GeoArray

try:
    from osgeo import gdal
    from osgeo import gdalnumeric
except ImportError:
    import gdal
    import gdalnumeric
49 50 51 52
from py_tools_ds.convenience.object_oriented import alias_property
from py_tools_ds.geo.coord_calc import get_corner_coordinates
from py_tools_ds.geo.coord_grid import snap_bounds_to_pixGrid
from py_tools_ds.geo.coord_trafo import mapXY2imXY, imXY2mapXY, transform_any_prj, reproject_shapelyGeometry
53
from py_tools_ds.geo.projection import prj_equal, WKT2EPSG, EPSG2WKT, isLocal
54 55
from py_tools_ds.geo.raster.conversion import raster2polygon
from py_tools_ds.geo.vector.topology \
56
    import get_footprint_polygon, polyVertices_outside_poly, fill_holes_within_poly
57 58
from py_tools_ds.geo.vector.geometry import boxObj
from py_tools_ds.io.raster.gdal import get_GDAL_ds_inmem
59
from py_tools_ds.compatibility.gdal import get_gdal_func
60
from py_tools_ds.numeric.numbers import is_number
61
from py_tools_ds.numeric.array import get_array_tilebounds
62 63 64

#  internal imports
from .subsetting import get_array_at_mapPos
65
from .metadata import GDAL_Metadata
66

67
if PY3:
68
    # noinspection PyCompatibility
69 70 71
    from builtins import TimeoutError, FileNotFoundError
else:
    from py_tools_ds.compatibility.python.exceptions import TimeoutError, FileNotFoundError
72

73
__author__ = 'Daniel Scheffler'
74 75 76


class GeoArray(object):
Daniel Scheffler's avatar
Daniel Scheffler committed
77 78 79 80 81 82 83
    """
    This class creates a fast Python interface for geodata - either on disk or in memory. It can be instanced
    with a file path or with a numpy array and the corresponding geoinformation. Instances can always be indexed
    like normal numpy arrays, no matter if GeoArray has been instanced from file or from an in-memory array.
    GeoArray provides a wide range of geo-related attributes belonging to the dataset as well as some functions for
    quickly visualizing the data as a map, a simple image or an interactive image.
    """
84 85
    def __init__(self, path_or_array, geotransform=None, projection=None, bandnames=None, nodata=None, progress=True,
                 q=False):
86
        # type: (Union[str, np.ndarray, GeoArray], tuple, str, list, float, bool, bool) -> None
Daniel Scheffler's avatar
Daniel Scheffler committed
87
        """Get an instance of GeoArray.
88 89 90 91 92 93 94 95 96 97 98 99 100 101

        :param path_or_array:   a numpy.ndarray or a valid file path
        :param geotransform:    GDAL geotransform of the given array or file on disk
        :param projection:      projection of the given array or file on disk as WKT string
                                (only needed if GeoArray is instanced with an array)
        :param bandnames:       names of the bands within the input array, e.g. ['mask_1bit', 'mask_clouds'],
                                (default: ['B1', 'B2', 'B3', ...])
        :param nodata:          nodata value
        :param progress:        show progress bars (default: True)
        :param q:               quiet mode (default: False)
        """

        # TODO implement compatibility to GDAL VRTs
        if not (isinstance(path_or_array, (str, np.ndarray, GeoArray)) or
102
           issubclass(getattr(path_or_array, '__class__'), GeoArray)):
103
            raise ValueError("%s parameter 'arg' takes only string, np.ndarray or GeoArray(and subclass) instances. "
104
                             "Got %s." % (self.__class__.__name__, type(path_or_array)))
105 106

        if path_or_array is None:
107
            raise ValueError("The %s parameter 'path_or_array' must not be None!" % self.__class__.__name__)
108 109 110 111 112

        if isinstance(path_or_array, str):
            assert ' ' not in path_or_array, "The given path contains whitespaces. This is not supported by GDAL."

            if not os.path.exists(path_or_array):
113
                raise FileNotFoundError(path_or_array)
114

115 116
        if isinstance(path_or_array, GeoArray) or issubclass(getattr(path_or_array, '__class__'), GeoArray):
            self.__dict__ = path_or_array.__dict__.copy()
117
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
118 119
            self.geotransform = geotransform or self.geotransform
            self.projection = projection or self.projection
120
            self.bandnames = bandnames or list(self.bandnames.keys())
121 122 123
            self._nodata = nodata if nodata is not None else self._nodata
            self.progress = False if progress is False else self.progress
            self.q = q if q is not None else self.q
124 125

        else:
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
            self.arg = path_or_array
            self._arr = path_or_array if isinstance(path_or_array, np.ndarray) else None
            self.filePath = path_or_array if isinstance(path_or_array, str) and path_or_array else None
            self.basename = os.path.splitext(os.path.basename(self.filePath))[0] if not self.is_inmem else 'IN_MEM'
            self.progress = progress
            self.q = q
            self._arr_cache = None  # dict containing key 'pos' and 'arr_cached'
            self._geotransform = None
            self._projection = None
            self._shape = None
            self._dtype = None
            self._nodata = nodata
            self._mask_nodata = None
            self._mask_baddata = None
141 142
            self._footprint_poly = None
            self._gdalDataset_meta_already_set = False
143 144
            self._metadata = None
            self._bandnames = None
145 146

            if bandnames:
147
                self.bandnames = bandnames  # use property in order to validate given value
148
            if geotransform:
149
                self.geotransform = geotransform  # use property in order to validate given value
150
            if projection:
151
                self.projection = projection  # use property in order to validate given value
152 153 154 155 156 157 158 159 160 161

            if self.filePath:
                self.set_gdalDataset_meta()

    @property
    def arr(self):
        return self._arr

    @arr.setter
    def arr(self, ndarray):
162 163
        assert isinstance(ndarray, np.ndarray), "'arr' can only be set to a numpy array! Got %s." % type(ndarray)
        # assert ndarray.shape == self.shape, "'arr' can only be set to a numpy array with shape %s. Received %s. " \
164 165 166 167 168
        #                                    "If you need to change the dimensions, create a new instance of %s." \
        #                                    %(self.shape, ndarray.shape, self.__class__.__name__)
        #  THIS would avoid warping like this: geoArr.arr, geoArr.gt, geoArr.prj = warp(...)

        if ndarray.shape != self.shape:
169
            self.flush_cache()  # the cached array is not useful anymore
170 171 172 173 174

        self._arr = ndarray

    @property
    def bandnames(self):
175
        if self._bandnames and len(self._bandnames) == self.bands:
176 177
            return self._bandnames
        else:
178
            del self.bandnames  # runs deleter which sets it to default values
179 180 181 182 183 184 185
            return self._bandnames

    @bandnames.setter
    def bandnames(self, list_bandnames):
        # type: (list) -> None

        if list_bandnames:
186 187 188 189 190 191 192 193
            if not isinstance(list_bandnames, list):
                raise TypeError("A list must be given when setting the 'bandnames' attribute. "
                                "Received %s." % type(list_bandnames))
            if len(list_bandnames) != self.bands:
                raise ValueError('Number of given bandnames does not match number of bands in array.')
            if len(list(set([type(b) for b in list_bandnames]))) != 1 or not isinstance(list_bandnames[0], str):
                raise ValueError("'bandnames must be a set of strings. Got other datatypes in there.'")

194
            bN_dict = OrderedDict((band, i) for i, band in enumerate(list_bandnames))
195 196 197

            if len(bN_dict) != self.bands:
                raise ValueError('Bands must different names. Received band list: %s' % list_bandnames)
198 199 200

            self._bandnames = bN_dict

201
            try:
202
                self.metadata.band_meta['band_names'] = list_bandnames
203 204 205
            except AttributeError:
                # in case self._metadata is None
                pass
206 207 208 209 210 211 212
        else:
            del self.bandnames

    @bandnames.deleter
    def bandnames(self):
        self._bandnames = OrderedDict(('B%s' % band, i) for i, band in enumerate(range(1, self.bands + 1)))
        if self._metadata is not None:
213
            self.metadata.band_meta['band_names'] = list(self._bandnames.keys())
214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    @property
    def is_inmem(self):
        """Check if associated image array is completely loaded into memory."""
        return isinstance(self.arr, np.ndarray)

    @property
    def shape(self):
        """Get the array shape of the associated image array."""
        if self.is_inmem:
            return self.arr.shape
        else:
            if self._shape:
                return self._shape
            else:
                self.set_gdalDataset_meta()
                return self._shape

    @property
    def ndim(self):
        """Get the number dimensions of the associated image array."""
        return len(self.shape)

    @property
    def rows(self):
        """Get the number of rows of the associated image array."""

        return self.shape[0]

    @property
    def columns(self):
        """Get the number of columns of the associated image array."""

        return self.shape[1]

    cols = alias_property('columns')

    @property
    def bands(self):
        """Get the number of bands of the associated image array."""

255
        return self.shape[2] if len(self.shape) > 2 else 1
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

    @property
    def dtype(self):
        """Get the numpy data type of the associated image array."""

        if self._dtype:
            return self._dtype
        elif self.is_inmem:
            return self.arr.dtype
        else:
            self.set_gdalDataset_meta()
            return self._dtype

    @property
    def geotransform(self):
271
        """Get the GDAL GeoTransform of the associated image, e.g., (283500.0, 5.0, 0.0, 4464500.0, 0.0, -5.0)"""
272 273 274 275 276 277 278

        if self._geotransform:
            return self._geotransform
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
            return self._geotransform
        else:
279
            return [0, 1, 0, 0, 0, -1]
280 281 282

    @geotransform.setter
    def geotransform(self, gt):
283
        # type: (Union[list, tuple]) -> None
284 285
        assert isinstance(gt, (list, tuple)) and len(gt) == 6,\
            'geotransform must be a list with 6 numbers. Got %s.' % str(gt)
286

287
        for i in gt:
288
            assert is_number(i), "geotransform must contain only numbers. Got '%s' (type: %s)." % (i, type(i))
289

290
        self._geotransform = gt
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

    gt = alias_property('geotransform')

    @property
    def xgsd(self):
        """Get the X resolution in units of the given or detected projection."""

        return self.geotransform[1]

    @property
    def ygsd(self):
        """Get the Y resolution in units of the given or detected projection."""

        return abs(self.geotransform[5])

    @property
    def xygrid_specs(self):
        """
        Get the specifications for the X/Y coordinate grid, e.g. [[15,30], [0,30]] for a coordinate with its origin
        at X/Y[15,0] and a GSD of X/Y[15,30].
        """

313
        def get_grid(gt, xgsd, ygsd): return [[gt[0], gt[0] + xgsd], [gt[3], gt[3] - ygsd]]
314 315 316 317 318 319 320 321 322 323 324 325 326
        return get_grid(self.geotransform, self.xgsd, self.ygsd)

    @property
    def projection(self):
        """
        Get the projection of the associated image. Setting the projection is only allowed if GeoArray has been
        instanced from memory or the associated file on disk has no projection.
        """

        if self._projection:
            return self._projection
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
327
            return self._projection  # or "LOCAL_CS[\"MAP\"]"
328
        else:
329
            return ''  # '"LOCAL_CS[\"MAP\"]"
330 331 332

    @projection.setter
    def projection(self, prj):
333
        # type: (str) -> None
334
        if self.filePath and self.projection:
335
            assert self.projection is None or prj_equal(self.projection, prj), \
336
                "Cannot set %s.projection to the given value because it does not match the projection from the file " \
337
                "on disk." % self.__class__.__name__
338 339 340 341 342 343 344 345 346 347 348 349 350
        else:
            self._projection = prj

    prj = alias_property('projection')

    @property
    def epsg(self):
        """Get the EPSG code of the projection of the GeoArray."""

        return WKT2EPSG(self.projection)

    @epsg.setter
    def epsg(self, epsg_code):
351
        # type: (int) -> None
352 353 354 355 356 357 358
        self.projection = EPSG2WKT(epsg_code)

    @property
    def box(self):
        mapPoly = get_footprint_polygon(get_corner_coordinates(gt=self.geotransform, cols=self.columns, rows=self.rows))
        return boxObj(gt=self.geotransform, prj=self.projection, mapPoly=mapPoly)

359 360 361 362 363 364 365 366
    @property
    def is_map_geo(self):
        # type: () -> bool
        """
        Returns 'True' if the GeoArray instance has a valid geoinformation with map instead of image coordinates.
        """
        return self.gt and list(self.gt) != [0, 1, 0, 0, 0, -1] and self.prj

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    @property
    def nodata(self):
        """
        Get the nodata value of the GeoArray. If GeoArray has been instanced with a file path the file is checked
        for an existing nodata value. Otherwise (if no value is exlicitly given during object instanciation) the nodata
        value is tried to be automatically detected.
        """

        if self._nodata is not None:
            return self._nodata
        else:
            # try to get nodata value from file
            if not self.is_inmem:
                self.set_gdalDataset_meta()
            if self._nodata is None:
382
                self.find_noDataVal()
383 384 385 386 387 388
                if self._nodata == 'ambiguous':
                    warnings.warn('Nodata value could not be clearly identified. It has been set to None.')
                    self._nodata = None
                else:
                    if self._nodata is not None and not self.q:
                        print("Automatically detected nodata value for %s '%s': %s"
389
                              % (self.__class__.__name__, self.basename, self._nodata))
390 391 392 393
            return self._nodata

    @nodata.setter
    def nodata(self, value):
394
        # type: (Union[int, None]) -> None
395 396
        self._nodata = value

397 398 399
        if self._metadata and value is not None:
            self.metadata.global_meta.update({'data ignore value': str(value)})

400 401 402 403 404 405 406 407 408
    @property
    def mask_nodata(self):
        """
        Get the nodata mask of the associated image array. It is calculated using all image bands.
        """

        if self._mask_nodata is not None:
            return self._mask_nodata
        else:
409
            self.calc_mask_nodata()  # sets self._mask_nodata
410 411 412 413 414 415 416 417 418 419 420
            return self._mask_nodata

    @mask_nodata.setter
    def mask_nodata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import NoDataMask
421 422
            geoArr_mask = NoDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
423
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
424
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
425 426 427 428

            assert geoArr_mask.bands == 1, \
                'Expected one single band as nodata mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided nodata mask must have the same number of ' \
429
                                                            'rows and columns as the %s itself.' % imName
430 431
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given nodata mask for %s must match the geotransform of the %s itself. ' \
432
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
433 434
            assert not geoArr_mask.prj or prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given nodata mask for the %s must match the projection of the %s itself.' \
435
                % (imName, self.__class__.__name__)
436 437

            self._mask_nodata = geoArr_mask
438 439 440 441 442 443
        else:
            del self.mask_nodata

    @mask_nodata.deleter
    def mask_nodata(self):
        self._mask_nodata = None
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

    @property
    def mask_baddata(self):
        """
        Returns the bad data mask for the associated image array if it has been explicitly previously. It can be set
         by passing a file path, a numpy array or an instance of GeoArray to the setter of this property.
        """

        return self._mask_baddata

    @mask_baddata.setter
    def mask_baddata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import BadDataMask
463 464
            geoArr_mask = BadDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
465
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
466
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
467 468 469 470

            assert geoArr_mask.bands == 1, \
                'Expected one single band as bad data mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided bad data mask must have the same number of ' \
471
                                                            'rows and columns as the %s itself.' % imName
472 473
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given bad data mask for %s must match the geotransform of the %s itself. ' \
474
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
475 476
            assert prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given bad data mask for the %s must match the projection of the %s itself.' \
477
                % (imName, self.__class__.__name__)
478 479

            self._mask_baddata = geoArr_mask
480 481 482 483 484 485
        else:
            del self.mask_baddata

    @mask_baddata.deleter
    def mask_baddata(self):
        self._mask_baddata = None
486 487 488 489 490 491 492 493 494 495

    @property
    def footprint_poly(self):
        # FIXME should return polygon in image coordinates if no projection is available
        """
        Get the footprint polygon of the associated image array (returns an instance of shapely.geometry.Polygon.
        """

        if self._footprint_poly is None:
            assert self.mask_nodata is not None, 'A nodata mask is needed for calculating the footprint polygon. '
496
            if False not in self.mask_nodata[:]:
497 498 499 500
                # do not run raster2polygon if whole image is filled with data
                self._footprint_poly = self.box.mapPoly
            else:
                try:
501 502
                    multipolygon = raster2polygon(self.mask_nodata.astype(np.uint8), self.gt, self.prj, exact=False,
                                                  progress=self.progress, q=self.q, maxfeatCount=10, timeout=3)
503
                    self._footprint_poly = fill_holes_within_poly(multipolygon)
504
                except (RuntimeError, TimeoutError):
505 506 507 508
                    if not self.q:
                        warnings.warn("\nCalculation of footprint polygon failed for %s '%s'. Using outer bounds. One "
                                      "reason could be that the nodata value appears within the actual image (not only "
                                      "as fill value). To avoid this use another nodata value. Current nodata value is "
509
                                      "%s." % (self.__class__.__name__, self.basename, self.nodata))
510 511 512
                    self._footprint_poly = self.box.mapPoly

            # validation
513 514 515 516
            assert not polyVertices_outside_poly(self._footprint_poly, self.box.mapPoly), \
                "Computing footprint polygon for %s '%s' failed. The resulting polygon is partly or completely " \
                "outside of the image bounds." % (self.__class__.__name__, self.basename)
            # assert self._footprint_poly
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
            # for XY in self.corner_coord:
            #    assert self.GeoArray.box.mapPoly.contains(Point(XY)) or self.GeoArray.box.mapPoly.touches(Point(XY)), \
            #        "The corner position '%s' is outside of the %s." % (XY, self.imName)

        return self._footprint_poly

    @footprint_poly.setter
    def footprint_poly(self, poly):
        if isinstance(poly, Polygon):
            self._footprint_poly = poly
        elif isinstance(poly, str):
            self._footprint_poly = shply_loads(poly)
        else:
            raise ValueError("'footprint_poly' can only be set from a shapely polygon or a WKT string.")

    @property
    def metadata(self):
        """
        Returns a GeoDataFrame containing all available metadata (read from file if available).
        Use 'metadata[band_index].to_dict()' to get a metadata dictionary for a specific band.
        Use 'metadata.loc[row_name].to_dict()' to get all metadata values of the same key for all bands as dictionary.
        Use 'metadata.loc[row_name, band_index] = value' to set a new value.

        :return:  geopandas.GeoDataFrame
        """

        if self._metadata is not None:
            return self._metadata
        else:
546
            default = GDAL_Metadata(nbands=self.bands, nodata_allbands=self._nodata)
547

548 549 550 551 552 553 554 555
            self._metadata = default
            if not self.is_inmem:
                self.set_gdalDataset_meta()
                return self._metadata
            else:
                return self._metadata

    @metadata.setter
556 557 558 559 560 561
    def metadata(self, meta):
        if not isinstance(meta, GDAL_Metadata) or meta.bands != self.bands:
            raise ValueError("%s.metadata can only be set with an instance of geoarray.metadata.GDAL_Metadata of "
                             "which the band number corresponds to the band number of %s."
                             % (self.__class__.__name__, self.__class__.__name__))
        self._metadata = meta
562 563 564 565

    meta = alias_property('metadata')

    def __getitem__(self, given):
566
        if isinstance(given, (int, float, slice, np.integer, np.floating)) and self.ndim == 3:
567 568 569 570 571 572 573 574 575 576 577 578 579
            # handle 'given' as index for 3rd (bands) dimension
            if self.is_inmem:
                return self.arr[:, :, given]
            else:
                return self.from_path(self.arg, [given])

        elif isinstance(given, str):
            # behave like a dictionary and return the corresponding band
            if self.bandnames:
                if given not in self.bandnames:
                    raise ValueError("'%s' is not a known band. Known bands are: %s"
                                     % (given, ', '.join(list(self.bandnames.keys()))))
                if self.is_inmem:
580
                    return self.arr if self.ndim == 2 else self.arr[:, :, self.bandnames[given]]
581 582 583 584
                else:
                    return self.from_path(self.arg, [self.bandnames[given]])
            else:
                raise ValueError('String indices are only supported if %s has been instanced with bandnames given.'
585
                                 % self.__class__.__name__)
586 587 588 589 590 591 592

        elif isinstance(given, (tuple, list)):
            # handle requests like geoArr[[1,2],[3,4]  -> not implemented in from_path if array is not in mem
            types = [type(i) for i in given]
            if list in types or tuple in types:
                self.to_mem()

593
            if len(given) == 3:
594 595

                # handle strings in the 3rd dim of 'given' -> convert them to a band index
596
                if isinstance(given[2], str):
597 598 599 600 601 602 603 604
                    if self.bandnames:
                        if given[2] not in self.bandnames:
                            raise ValueError("'%s' is not a known band. Known bands are: %s"
                                             % (given[2], ', '.join(list(self.bandnames.keys()))))

                        band_idx = self.bandnames[given[2]]
                        # NOTE: the string in the 3rd is ignored if ndim==2 and band_idx==0
                        if self.is_inmem:
605
                            return self.arr if (self.ndim == 2 and band_idx == 0) else self.arr[:, :, band_idx]
606
                        else:
607 608
                            getitem_params = \
                                given[:2] if (self.ndim == 2 and band_idx == 0) else given[:2] + (band_idx,)
609 610 611 612 613 614 615
                            return self.from_path(self.arg, getitem_params)
                    else:
                        raise ValueError(
                            'String indices are only supported if %s has been instanced with bandnames given.'
                            % self.__class__.__name__)

                # in case a third dim is requested from 2D-array -> ignore 3rd dim if 3rd dim is 0
616
                elif self.ndim == 2 and given[2] == 0:
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
                    if self.is_inmem:
                        return self.arr[given[:2]]
                    else:
                        return self.from_path(self.arg, given[:2])

        # if nothing has been returned until here -> behave like a numpy array
        if self.is_inmem:
            return self.arr[given]
        else:
            getitem_params = [given] if isinstance(given, slice) else given
            return self.from_path(self.arg, getitem_params)

    def __setitem__(self, idx, array2set):
        """Overwrites the pixel values of GeoArray.arr with the given array.

        :param idx:         <int, list, slice> the index position to overwrite
        :param array2set:   <np.ndarray> array to be set. Must be compatible to the given index position.
        :return:
        """

        if self.is_inmem:
            self.arr[idx] = array2set
        else:
            raise NotImplementedError('Item assignment for %s instances that are not in memory is not yet supported.'
641
                                      % self.__class__.__name__)
642 643 644

    def __getattr__(self, attr):
        # check if the requested attribute can not be present because GeoArray has been instanced with an array
645 646
        attrsNot2Link2np = ['__deepcopy__']   # attributes we don't want to inherit from numpy.ndarray

647 648
        if attr not in self.__dir__() and not self.is_inmem and attr in ['shape', 'dtype', 'geotransform',
                                                                         'projection']:
649 650
            self.set_gdalDataset_meta()

651 652
        if attr in self.__dir__():  # __dir__() includes also methods and properties
            return self.__getattribute__(attr)  # __getattribute__ avoids infinite loop
653
        elif attr not in attrsNot2Link2np and hasattr(np.array([]), attr):
654 655
            return self[:].__getattribute__(attr)
        else:
656
            raise AttributeError("%s object has no attribute '%s'." % (self.__class__.__name__, attr))
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

    def __getstate__(self):
        """Defines how the attributes of GMS object are pickled."""

        # clean array cache in order to avoid cache pickling
        self.flush_cache()

        return self.__dict__

    def __setstate__(self, state):
        """Defines how the attributes of GMS object are unpickled.
        NOTE: This method has been implemented because otherwise pickled and unpickled instances show recursion errors
        within __getattr__ when requesting any attribute.
        """

        self.__dict__ = state

    def calc_mask_nodata(self, fromBand=None, overwrite=False):
        """Calculates a no data mask with (values: 0=nodata; 1=data)

677 678 679
        NOTE:   Only pixel containing the nodata values in ALL bands are recognized as nodata pixel. If they contain a
                pixel value different from the nodata value in any band they are good data pixels.

680 681 682 683 684 685 686
        :param fromBand:  <int> index of the band to be used (if None, all bands are used)
        :param overwrite: <bool> whether to overwrite existing nodata mask that has already been calculated
        :return:
        """

        if self._mask_nodata is None or overwrite:
            assert self.ndim in [2, 3], "Only 2D or 3D arrays are supported. Got a %sD array." % self.ndim
687
            arr = self[:, :, fromBand] if self.ndim == 3 and fromBand is not None else self[:]
688

689 690 691
            min_v, max_v = np.min(arr), np.max(arr)
            if (min_v == max_v == self.nodata) or (np.isnan(min_v) and np.isnan(max_v) and np.isnan(self.nodata)):
                self.mask_nodata = np.full(arr.shape[:2], False)
692
            else:
693 694 695 696 697
                if self.nodata is None:
                    self.mask_nodata = np.ones((self.rows, self.cols), np.bool)
                elif np.isnan(self.nodata):
                    self.mask_nodata = \
                        np.invert(np.isnan(arr)) if arr.ndim == 2 else \
698
                        np.any(np.invert(np.isnan(arr)), axis=2)
699 700 701
                else:
                    self.mask_nodata = \
                        np.ma.masked_not_equal(arr, self.nodata).mask if arr.ndim == 2 else \
702
                        np.any(np.ma.masked_not_equal(arr, self.nodata).mask, axis=2)
703

704 705 706 707 708 709 710 711
    def find_noDataVal(self, bandIdx=0, sz=3):
        """Tries to derive no data value from homogenious corner pixels within 3x3 windows (by default).
        :param bandIdx:
        :param sz: window size in which corner pixels are analysed
        """
        wins = [self[0:sz, 0:sz, bandIdx], self[0:sz, -sz:, bandIdx],
                self[-sz:, -sz:, bandIdx], self[-sz:, 0:sz, bandIdx]]  # UL, UR, LR, LL

712 713
        means, stds = [np.mean(win) for win in wins], [np.std(win) for win in wins]
        possVals = [mean for mean, std in zip(means, stds) if std == 0 or np.isnan(std)]
714 715 716 717
        # possVals==[]: all corners are filled with data; np.std(possVals)==0: noDataVal clearly identified

        if possVals:
            if np.std(possVals) != 0:
718 719 720 721 722 723
                if np.isnan(np.std(possVals)):
                    # at least one of the possible values is np.nan
                    nodata = np.nan
                else:
                    # different possible nodata values have been found in the image corner
                    nodata = 'ambiguous'
724 725 726 727 728
            else:
                if len(possVals) <= 2:
                    # each window in each corner
                    warnings.warn("\nAutomatic nodata value detection returned the value %s for GeoArray '%s' but this "
                                  "seems to be unreliable (occurs in only %s). To avoid automatic detection, just pass "
729 730 731
                                  "the correct nodata value."
                                  % (possVals[0], self.basename, ('2 image corners' if len(possVals) == 2 else
                                                                  '1 image corner')))
732
                nodata = possVals[0]
733
        else:
734 735
            nodata = None

736
        self.nodata = nodata
737
        return nodata
738

739 740 741 742 743 744 745 746 747 748
    def set_gdalDataset_meta(self):
        """Retrieves GDAL metadata from file. This function is only executed once to avoid overwriting of user defined
         attributes, that are defined after object instanciation.

        :return:
        """

        if not self._gdalDataset_meta_already_set:
            assert self.filePath
            ds = gdal.Open(self.filePath)
749 750 751
            if not ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

752
            # set private class variables (in order to avoid recursion error)
753 754
            self._shape = tuple([ds.RasterYSize, ds.RasterXSize] + ([ds.RasterCount] if ds.RasterCount > 1 else []))
            self._dtype = gdal_array.GDALTypeCodeToNumericTypeCode(ds.GetRasterBand(1).DataType)
755
            self._geotransform = list(ds.GetGeoTransform())
756 757

            # for some reason GDAL reads arbitrary geotransforms as (0, 1, 0, 0, 0, 1) instead of (0, 1, 0, 0, 0, -1)
758
            self._geotransform[5] = -abs(self._geotransform[5])  # => force ygsd to be negative
759

760 761
            # temp conversion to EPSG needed because GDAL seems to modify WKT string when writing file to disk
            # (e.g. using gdal_merge) -> conversion to EPSG and back undos that
762 763
            wkt = ds.GetProjection()
            self._projection = EPSG2WKT(WKT2EPSG(wkt)) if not isLocal(wkt) else ''
764

765 766 767
            if 'nodata' not in self._initParams or self._initParams['nodata'] is None:
                band = ds.GetRasterBand(1)
                # FIXME this does not support different nodata values within the same file
768
                self.nodata = band.GetNoDataValue()
769

770 771 772
            # set metadata attribute
            if self.is_inmem or not self.filePath:
                # metadata cannot be read from disk -> set it to the default
773
                self._metadata = GDAL_Metadata(nbands=self.bands, nodata_allbands=self._nodata)
774

775 776
            else:
                self._metadata = GDAL_Metadata(filePath=self.filePath)
777

778 779 780 781 782 783
            # copy over the band names
            if 'band_names' in self.metadata.band_meta and self.metadata.band_meta['band_names']:
                self.bandnames = self.metadata.band_meta['band_names']

            # noinspection PyUnusedLocal
            ds = None
784 785 786 787 788 789 790 791 792 793 794 795 796 797

        self._gdalDataset_meta_already_set = True

    def from_path(self, path, getitem_params=None):
        # type: (str, list) -> np.ndarray
        """Read a GDAL compatible raster image from disk, with respect to the given image position.
        NOTE: If the requested array position is already in cache, it is returned from there.

        :param path:            <str> the file path of the image to read
        :param getitem_params:  <list> a list of slices in the form [row_slice, col_slice, band_slice]
        :return out_arr:        <np.ndarray> the output array
        """

        ds = gdal.Open(path)
798 799 800
        if not ds:
            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

801
        R, C, B = ds.RasterYSize, ds.RasterXSize, ds.RasterCount
802
        del ds
803

804
        # convert getitem_params to subset area to be read #
805 806 807 808
        rS, rE, cS, cE, bS, bE, bL = [None] * 7

        # populate rS, rE, cS, cE, bS, bE, bL
        if getitem_params:
809
            # populate rS, rE, cS, cE
810 811 812 813 814
            if len(getitem_params) >= 2:
                givenR, givenC = getitem_params[:2]
                if isinstance(givenR, slice):
                    rS = givenR.start
                    rE = givenR.stop - 1 if givenR.stop is not None else None
815
                elif isinstance(givenR, (int, np.integer)):
816 817 818 819 820
                    rS = givenR
                    rE = givenR
                if isinstance(givenC, slice):
                    cS = givenC.start
                    cE = givenC.stop - 1 if givenC.stop is not None else None
821
                elif isinstance(givenC, (int, np.integer)):
822 823
                    cS = givenC
                    cE = givenC
824 825

            # populate bS, bE, bL
826 827 828 829 830
            if len(getitem_params) in [1, 3]:
                givenB = getitem_params[2] if len(getitem_params) == 3 else getitem_params[0]
                if isinstance(givenB, slice):
                    bS = givenB.start
                    bE = givenB.stop - 1 if givenB.stop is not None else None
831
                elif isinstance(givenB, (int, np.integer)):
832 833
                    bS = givenB
                    bE = givenB
834
                elif isinstance(givenB, (tuple, list)):
835 836 837
                    typesInGivenB = [type(i) for i in givenB]
                    assert len(list(set(typesInGivenB))) == 1, \
                        'Mixed data types within the list of bands are not supported.'
838
                    if isinstance(givenB[0], (int, np.integer)):
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
                        bL = list(givenB)
                    elif isinstance(givenB[0], str):
                        bL = [self.bandnames[i] for i in givenB]
                elif type(givenB) in [str]:
                    bL = [self.bandnames[givenB]]

        # set defaults for not given values
        rS = rS if rS is not None else 0
        rE = rE if rE is not None else R - 1
        cS = cS if cS is not None else 0
        cE = cE if cE is not None else C - 1
        bS = bS if bS is not None else 0
        bE = bE if bE is not None else B - 1
        bL = list(range(bS, bE + 1)) if not bL else bL

        # convert negative to positive ones
        rS = rS if rS >= 0 else self.rows + rS
        rE = rE if rE >= 0 else self.rows + rE
        cS = cS if cS >= 0 else self.columns + cS
        cE = cE if cE >= 0 else self.columns + cE
        bS = bS if bS >= 0 else self.bands + bS
        bE = bE if bE >= 0 else self.bands + bE
861
        bL = [b if b >= 0 else (self.bands + b) for b in bL]
862 863

        # validate subset area bounds to be read
864 865 866 867 868 869 870
        def msg(v, idx, sz):
            # FIXME numpy raises that error ONLY for the 2nd axis
            return '%s is out of bounds for axis %s with size %s' % (v, idx, sz)

        for val, axIdx, axSize in zip([rS, rE, cS, cE, bS, bE], [0, 0, 1, 1, 2, 2], [R, R, C, C, B, B]):
            if not 0 <= val <= axSize - 1:
                raise ValueError(msg(val, axIdx, axSize))
871 872

        # summarize requested array position in arr_pos
873
        # NOTE: # bandlist must be string because truth value of an array with more than one element is ambiguous
874 875
        arr_pos = dict(rS=rS, rE=rE, cS=cS, cE=cE, bS=bS, bE=bE, bL=bL)

876 877
        def _ensure_np_shape_consistency_3D_2D(arr):
            """Ensure numpy output shape consistency according to the given indexing parameters.
878 879 880 881 882 883 884 885

            This may require 3D to 2D conversion in case out_arr can be represented by a 2D array AND index has been
            provided as integer (avoids shapes like (1,2,2). It also may require 2D to 3D conversion in case only one
            band has been requested and the 3rd dimension has been provided as a slice.

            NOTE: -> numpy also returns a 2D array in that case
            NOTE: if array is indexed with a slice -> keep it a 3D array
            """
886 887 888 889
            # a single value -> return as float/int
            if arr.ndim == 2 and arr.size == 1:
                arr = arr[0, 0]

890 891 892 893 894 895
            # 2D -> 3D
            if arr.ndim == 2 and isinstance(getitem_params, (tuple, list)) and len(getitem_params) == 3 and \
                    isinstance(getitem_params[2], slice):
                arr = arr[:, :, np.newaxis]

            # 3D -> 2D
Daniel Scheffler's avatar
Bugfix.  
Daniel Scheffler committed
896
            if 1 in arr.shape and len(getitem_params) != 1:
897 898
                outshape = []
                for i, sh in enumerate(arr.shape):
899
                    if sh == 1 and isinstance(getitem_params[i], (int, np.integer, float, np.floating)):
900 901 902 903 904 905 906 907
                        pass
                    else:
                        outshape.append(sh)

                arr = arr.reshape(*outshape)

            return arr

908
        # check if the requested array position is already in cache -> if yes, return it from there
909
        if self._arr_cache is not None and self._arr_cache['pos'] == arr_pos:
910
            out_arr = self._arr_cache['arr_cached']
911
            out_arr = _ensure_np_shape_consistency_3D_2D(out_arr)
912 913 914 915 916 917 918

        else:
            # TODO insert a multiprocessing.Lock here in order to prevent IO bottlenecks?
            # read subset area from disk
            if bL == list(range(0, B)):
                tempArr = gdalnumeric.LoadFile(path, cS, rS, cE - cS + 1, rE - rS + 1)
                out_arr = np.swapaxes(np.swapaxes(tempArr, 0, 2), 0, 1) if B > 1 else tempArr
919 920
                if out_arr is None:
                    raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
921 922 923 924
            else:
                ds = gdal.Open(path)
                if len(bL) == 1:
                    band = ds.GetRasterBand(bL[0] + 1)
925
                    out_arr = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
926 927
                    if out_arr is None:
                        raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
928
                    del band
929 930 931 932 933
                else:
                    out_arr = np.empty((rE - rS + 1, cE - cS + 1, len(bL)))
                    for i, bIdx in enumerate(bL):
                        band = ds.GetRasterBand(bIdx + 1)
                        out_arr[:, :, i] = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
934 935
                        if out_arr is None:
                            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
936
                        del band
937

938
                del ds
939

940
            out_arr = _ensure_np_shape_consistency_3D_2D(out_arr)
941

942
            # only set self.arr if the whole cube has been read (in order to avoid sudden shape changes)
943
            if out_arr.shape == self.shape:
944 945 946 947 948
                self.arr = out_arr

            # write _arr_cache
            self._arr_cache = dict(pos=arr_pos, arr_cached=out_arr)

949 950
        return out_arr  # TODO implement check of returned datatype (e.g. NoDataMask should always return np.bool
        # TODO -> would be np.int8 if an int8 file is read from disk
951 952 953 954 955 956 957 958

    def save(self, out_path, fmt='ENVI', creationOptions=None):
        # type: (str, str, list) -> None
        """Write the raster data to disk.

        :param out_path:        <str> output path
        :param fmt:             <str> the output format / GDAL driver code to be used for output creation, e.g. 'ENVI'
                                Refer to http://www.gdal.org/formats_list.html to get a full list of supported formats.
959 960
        :param creationOptions: <list> GDAL creation options,
                                e.g., ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
961 962 963
        """

        if not self.q:
964 965
            print('Writing GeoArray of size %s to %s.' % (self.shape, out_path))
        assert self.ndim in [2, 3], 'Only 2D- or 3D arrays are supported.'
966 967 968 969 970 971 972 973 974

        driver = gdal.GetDriverByName(fmt)
        if driver is None:
            raise Exception("'%s' is not a supported GDAL driver. Refer to www.gdal.org/formats_list.html for full "
                            "list of GDAL driver codes." % fmt)

        if not os.path.isdir(os.path.dirname(out_path)):
            os.makedirs(os.path.dirname(out_path))

975 976
        envi_metadict = self.metadata.to_ENVI_metadict()

977
        if self.is_inmem:
Daniel Scheffler's avatar
Daniel Scheffler committed
978 979 980 981 982
            ds_inmem = get_GDAL_ds_inmem(self.arr, self.geotransform, self.projection,
                                         self.nodata)  # expects rows,columns,bands

            # write dataset
            ds_out = driver.CreateCopy(out_path, ds_inmem, options=creationOptions if creationOptions else [])
983 984 985 986 987 988

            # # rows, columns, bands => bands, rows, columns
            # out_arr = self.arr if self.ndim == 2 else np.swapaxes(np.swapaxes(self.arr, 0, 2), 1, 2)
            # gdalnumeric.SaveArray(out_arr, out_path, format=fmt, prototype=ds_inmem)  # expects bands,rows,columns
            # ds_out = gdal.Open(out_path)

Daniel Scheffler's avatar
Daniel Scheffler committed
989
            del ds_inmem
990

991 992 993 994
            ################
            # set metadata #
            ################

Daniel Scheffler's avatar
Daniel Scheffler committed
995
            # NOTE:  The dataset has to be written BEFORE metadata are added. Otherwise, metadata are not written.
996 997 998

            # ENVI #
            ########
999 1000
            if fmt == 'ENVI':
                ds_out.SetMetadata(envi_metadict, 'ENVI')
1001

1002
                if 'band_names' in envi_metadict:
1003 1004
                    for bidx in range(self.bands):
                        band = ds_out.GetRasterBand(bidx + 1)
1005 1006 1007 1008
                        bandname = self.metadata.band_meta['band_names'][bidx].strip()
                        band.SetDescription(bandname)

                        assert band.GetDescription() == bandname
1009 1010 1011 1012
                        del band

                if 'description' in envi_metadict:
                    ds_out.SetDescription(envi_metadict['description'])
1013

1014 1015
                ds_out.FlushCache()
                gdal.Unlink(out_path + '.aux.xml')
1016

1017
            elif self.metadata.all_meta:
1018 1019 1020
                # set global domain metadata
                if self.metadata.global_meta:
                    ds_out.SetMetadata(dict((k, repr(v)) for k, v in self.metadata.global_meta.items()))
1021

1022 1023
                if 'description' in envi_metadict:
                    ds_out.SetDescription(envi_metadict['description'])
1024

1025 1026
                # set band domain metadata
                bandmeta_dict = self.metadata.to_DataFrame().astype(str).to_dict()
1027

1028 1029 1030 1031 1032
                for bidx in range(self.bands):
                    band = ds_out.GetRasterBand(bidx + 1)
                    bandmeta = bandmeta_dict[bidx]
                    # meta2write = dict((k, repr(v)) for k, v in self.metadata.band_meta.items() if v is not np.nan)
                    band.SetMetadata(bandmeta)
1033

1034 1035
                    if 'band_names' in envi_metadict:
                        band.SetDescription(self.metadata.band_meta['band_names'][bidx].strip())
1036

1037 1038
                    band.FlushCache()
                    del band
1039

Daniel Scheffler's avatar
Daniel Scheffler committed
1040 1041
            ds_out.FlushCache()
            del ds_out
1042 1043 1044

        else:
            src_ds = gdal.Open(self.filePath)
1045 1046 1047
            if not src_ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

1048 1049
            gdal_Translate = get_gdal_func('Translate')
            gdal_Translate(out_path, src_ds, format=fmt, creationOptions=creationOptions)
1050
            del src_ds
1051

1052 1053 1054 1055 1056 1057 1058 1059 1060
            # add band names
            if 'band_names' in envi_metadict:
                ds_out = gdal.Open(out_path)

                for bidx in range(self.bands):
                    band = ds_out.GetRasterBand(bidx + 1)
                    band.SetDescription(self.metadata.band_meta['band_names'][bidx])
                    del band

1061 1062 1063 1064 1065 1066 1067 1068
        if not os.path.exists(out_path):
            raise Exception(gdal.GetLastErrorMsg())

    def dump(self, out_path):
        # type: (str) -> None
        """Serialize the whole object instance to disk using dill."""

        import dill
1069 1070
        with open(out_path, 'wb') as outF:
            dill.dump(self, outF)
1071 1072

    def _get_plottable_image(self, xlim=None, ylim=None, band=None, boundsMap=None, boundsMapPrj=None, res_factor=None,
1073
                             nodataVal=None, out_prj=None, ignore_rotation=False):
1074 1075 1076 1077 1078 1079
        # handle limits
        if boundsMap:
            boundsMapPrj = boundsMapPrj if boundsMapPrj else self.prj
            image2plot, gt, prj = self.get_mapPos(boundsMap, boundsMapPrj, band2get=band,
                                                  fillVal=nodataVal if nodataVal is not None else self.nodata)
        else:
1080 1081
            cS, cE = xlim if isinstance(xlim, (tuple, list)) else (0, self.columns)
            rS, rE = ylim if isinstance(ylim, (tuple, list)) else (0, self.rows)
1082 1083

            image2plot = self[rS:rE, cS:cE, band] if band is not None else self[rS:rE, cS:cE]
1084
            gt, prj = self.geotransform, self.projection
1085

1086
        transOpt = ['SRC_METHOD=NO_GEOTRANSFORM'] if tuple(gt) == (0, 1, 0, 0, 0, -1) else None
1087
        xdim, ydim = None, None
1088 1089 1090 1091
        in_nodata = nodataVal if nodataVal is not None else self.nodata
        out_nodata = in_nodata if in_nodata is not None else -9999
        if not np.can_cast(out_nodata, image2plot.dtype):
            image2plot = image2plot.astype(np.int32)
1092

1093
        # rotated images always have to be resampled for plotting
Daniel Scheffler's avatar
Bugfix.  
Daniel Scheffler committed
1094
        if not ignore_rotation and (gt[