baseclasses.py 72.5 KB
Newer Older
1 2 3 4
# -*- coding: utf-8 -*-

import os
import warnings
5
from importlib import util
6
from collections import OrderedDict
7
from typing import Generator  # noqa F401  # flake8 issue
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

import numpy as np
from matplotlib import pyplot as plt
from osgeo import gdal_array
# custom
from shapely.geometry import Polygon
from shapely.wkt import loads as shply_loads
from six import PY3

# mpl_toolkits.basemap -> imported when GeoArray.show_map() is used
# dill -> imported when dumping GeoArray

try:
    from osgeo import gdal
    from osgeo import gdalnumeric
except ImportError:
    import gdal
    import gdalnumeric
from geopandas import GeoDataFrame, GeoSeries
from pandas import DataFrame
28 29 30 31
from py_tools_ds.convenience.object_oriented import alias_property
from py_tools_ds.geo.coord_calc import get_corner_coordinates
from py_tools_ds.geo.coord_grid import snap_bounds_to_pixGrid
from py_tools_ds.geo.coord_trafo import mapXY2imXY, imXY2mapXY, transform_any_prj, reproject_shapelyGeometry
32
from py_tools_ds.geo.projection import prj_equal, WKT2EPSG, EPSG2WKT, isLocal
33 34
from py_tools_ds.geo.raster.conversion import raster2polygon
from py_tools_ds.geo.vector.topology \
35
    import get_footprint_polygon, polyVertices_outside_poly, fill_holes_within_poly
36 37
from py_tools_ds.geo.vector.geometry import boxObj
from py_tools_ds.io.raster.gdal import get_GDAL_ds_inmem
38
from py_tools_ds.compatibility.gdal import get_gdal_func
39
from py_tools_ds.numeric.numbers import is_number
40
from py_tools_ds.numeric.array import get_array_tilebounds
41 42 43 44

#  internal imports
from .subsetting import get_array_at_mapPos

45
if PY3:
46
    # noinspection PyCompatibility
47 48 49
    from builtins import TimeoutError, FileNotFoundError
else:
    from py_tools_ds.compatibility.python.exceptions import TimeoutError, FileNotFoundError
50

51
__author__ = 'Daniel Scheffler'
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76


class GeoArray(object):
    def __init__(self, path_or_array, geotransform=None, projection=None, bandnames=None, nodata=None, progress=True,
                 q=False):
        # type: (any, tuple, str, list, float, bool, bool) -> None
        """This class creates a fast Python interface for geodata - either on disk or in memory. It can be instanced with
        a file path or with a numpy array and the corresponding geoinformation. Instances can always be indexed like
        normal numpy arrays, no matter if GeoArray has been instanced from file or from an in-memory array. GeoArray
        provides a wide range of geo-related attributes belonging to the dataset as well as some functions for quickly
        visualizing the data as a map, a simple image or an interactive image.

        :param path_or_array:   a numpy.ndarray or a valid file path
        :param geotransform:    GDAL geotransform of the given array or file on disk
        :param projection:      projection of the given array or file on disk as WKT string
                                (only needed if GeoArray is instanced with an array)
        :param bandnames:       names of the bands within the input array, e.g. ['mask_1bit', 'mask_clouds'],
                                (default: ['B1', 'B2', 'B3', ...])
        :param nodata:          nodata value
        :param progress:        show progress bars (default: True)
        :param q:               quiet mode (default: False)
        """

        # TODO implement compatibility to GDAL VRTs
        if not (isinstance(path_or_array, (str, np.ndarray, GeoArray)) or
77
           issubclass(getattr(path_or_array, '__class__'), GeoArray)):
78
            raise ValueError("%s parameter 'arg' takes only string, np.ndarray or GeoArray(and subclass) instances. "
79
                             "Got %s." % (self.__class__.__name__, type(path_or_array)))
80 81

        if path_or_array is None:
82
            raise ValueError("The %s parameter 'path_or_array' must not be None!" % self.__class__.__name__)
83 84 85 86 87

        if isinstance(path_or_array, str):
            assert ' ' not in path_or_array, "The given path contains whitespaces. This is not supported by GDAL."

            if not os.path.exists(path_or_array):
88
                raise FileNotFoundError(path_or_array)
89

90 91
        if isinstance(path_or_array, GeoArray) or issubclass(getattr(path_or_array, '__class__'), GeoArray):
            self.__dict__ = path_or_array.__dict__.copy()
92
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
93 94 95 96 97 98
            self.geotransform = geotransform or self.geotransform
            self.projection = projection or self.projection
            self.bandnames = bandnames or list(self.bandnames.values())
            self._nodata = nodata if nodata is not None else self._nodata
            self.progress = False if progress is False else self.progress
            self.q = q if q is not None else self.q
99 100

        else:
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
            self.arg = path_or_array
            self._arr = path_or_array if isinstance(path_or_array, np.ndarray) else None
            self.filePath = path_or_array if isinstance(path_or_array, str) and path_or_array else None
            self.basename = os.path.splitext(os.path.basename(self.filePath))[0] if not self.is_inmem else 'IN_MEM'
            self.progress = progress
            self.q = q
            self._arr_cache = None  # dict containing key 'pos' and 'arr_cached'
            self._geotransform = None
            self._projection = None
            self._shape = None
            self._dtype = None
            self._nodata = nodata
            self._mask_nodata = None
            self._mask_baddata = None
116 117
            self._footprint_poly = None
            self._gdalDataset_meta_already_set = False
118 119
            self._metadata = None
            self._bandnames = None
120 121

            if bandnames:
122
                self.bandnames = bandnames  # use property in order to validate given value
123
            if geotransform:
124
                self.geotransform = geotransform  # use property in order to validate given value
125
            if projection:
126
                self.projection = projection  # use property in order to validate given value
127 128 129 130 131 132 133 134 135 136

            if self.filePath:
                self.set_gdalDataset_meta()

    @property
    def arr(self):
        return self._arr

    @arr.setter
    def arr(self, ndarray):
137 138
        assert isinstance(ndarray, np.ndarray), "'arr' can only be set to a numpy array! Got %s." % type(ndarray)
        # assert ndarray.shape == self.shape, "'arr' can only be set to a numpy array with shape %s. Received %s. " \
139 140 141 142 143
        #                                    "If you need to change the dimensions, create a new instance of %s." \
        #                                    %(self.shape, ndarray.shape, self.__class__.__name__)
        #  THIS would avoid warping like this: geoArr.arr, geoArr.gt, geoArr.prj = warp(...)

        if ndarray.shape != self.shape:
144
            self.flush_cache()  # the cached array is not useful anymore
145 146 147 148 149

        self._arr = ndarray

    @property
    def bandnames(self):
150
        if self._bandnames and len(self._bandnames) == self.bands:
151 152 153 154 155 156 157 158 159 160 161
            return self._bandnames
        else:
            self._bandnames = OrderedDict(('B%s' % band, i) for i, band in enumerate(range(1, self.bands + 1)))
            return self._bandnames

    @bandnames.setter
    def bandnames(self, list_bandnames):
        # type: (list) -> None

        if list_bandnames:
            assert isinstance(list_bandnames, list), "A list must be given when setting the 'bandnames' attribute. " \
162
                                                     "Received %s." % type(list_bandnames)
163 164 165 166 167
            assert len(list_bandnames) == self.bands, \
                'Number of given bandnames does not match number of bands in array.'
            assert len(list(set([type(b) for b in list_bandnames]))) == 1 and type(list_bandnames[0] == 'str'), \
                "'bandnames must be a set of strings. Got other datetypes in there.'"
            bN_dict = OrderedDict((band, i) for i, band in enumerate(list_bandnames))
168 169
            assert len(
                bN_dict) == self.bands, 'Bands must not have the same name. Received band list: %s' % list_bandnames
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

            self._bandnames = bN_dict

    @property
    def is_inmem(self):
        """Check if associated image array is completely loaded into memory."""

        return isinstance(self.arr, np.ndarray)

    @property
    def shape(self):
        """Get the array shape of the associated image array."""

        if self.is_inmem:
            return self.arr.shape
        else:
            if self._shape:
                return self._shape
            else:
                self.set_gdalDataset_meta()
                return self._shape

    @property
    def ndim(self):
        """Get the number dimensions of the associated image array."""
        return len(self.shape)

    @property
    def rows(self):
        """Get the number of rows of the associated image array."""

        return self.shape[0]

    @property
    def columns(self):
        """Get the number of columns of the associated image array."""

        return self.shape[1]

    cols = alias_property('columns')

    @property
    def bands(self):
        """Get the number of bands of the associated image array."""

215
        return self.shape[2] if len(self.shape) > 2 else 1
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

    @property
    def dtype(self):
        """Get the numpy data type of the associated image array."""

        if self._dtype:
            return self._dtype
        elif self.is_inmem:
            return self.arr.dtype
        else:
            self.set_gdalDataset_meta()
            return self._dtype

    @property
    def geotransform(self):
231
        """Get the GDAL GeoTransform of the associated image, e.g., (283500.0, 5.0, 0.0, 4464500.0, 0.0, -5.0)"""
232 233 234 235 236 237 238

        if self._geotransform:
            return self._geotransform
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
            return self._geotransform
        else:
239
            return [0, 1, 0, 0, 0, -1]
240 241 242

    @geotransform.setter
    def geotransform(self, gt):
243 244
        assert isinstance(gt, (list, tuple)) and len(gt) == 6,\
            'geotransform must be a list with 6 numbers. Got %s.' % str(gt)
245

246
        for i in gt:
247
            assert is_number(i), "geotransform must contain only numbers. Got '%s' (type: %s)." % (i, type(i))
248

249
        self._geotransform = gt
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

    gt = alias_property('geotransform')

    @property
    def xgsd(self):
        """Get the X resolution in units of the given or detected projection."""

        return self.geotransform[1]

    @property
    def ygsd(self):
        """Get the Y resolution in units of the given or detected projection."""

        return abs(self.geotransform[5])

    @property
    def xygrid_specs(self):
        """
        Get the specifications for the X/Y coordinate grid, e.g. [[15,30], [0,30]] for a coordinate with its origin
        at X/Y[15,0] and a GSD of X/Y[15,30].
        """

272
        def get_grid(gt, xgsd, ygsd): return [[gt[0], gt[0] + xgsd], [gt[3], gt[3] - ygsd]]
273 274 275 276 277 278 279 280 281 282 283 284 285
        return get_grid(self.geotransform, self.xgsd, self.ygsd)

    @property
    def projection(self):
        """
        Get the projection of the associated image. Setting the projection is only allowed if GeoArray has been
        instanced from memory or the associated file on disk has no projection.
        """

        if self._projection:
            return self._projection
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
286
            return self._projection  # or "LOCAL_CS[\"MAP\"]"
287
        else:
288
            return ''  # '"LOCAL_CS[\"MAP\"]"
289 290 291 292

    @projection.setter
    def projection(self, prj):
        if self.filePath:
293
            assert self.projection is None or prj_equal(self.projection, prj), \
294
                "Cannot set %s.projection to the given value because it does not match the projection from the file " \
295
                "on disk." % self.__class__.__name__
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
        else:
            self._projection = prj

    prj = alias_property('projection')

    @property
    def epsg(self):
        """Get the EPSG code of the projection of the GeoArray."""

        return WKT2EPSG(self.projection)

    @epsg.setter
    def epsg(self, epsg_code):
        self.projection = EPSG2WKT(epsg_code)

    @property
    def box(self):
        mapPoly = get_footprint_polygon(get_corner_coordinates(gt=self.geotransform, cols=self.columns, rows=self.rows))
        return boxObj(gt=self.geotransform, prj=self.projection, mapPoly=mapPoly)

    @property
    def nodata(self):
        """
        Get the nodata value of the GeoArray. If GeoArray has been instanced with a file path the file is checked
        for an existing nodata value. Otherwise (if no value is exlicitly given during object instanciation) the nodata
        value is tried to be automatically detected.
        """

        if self._nodata is not None:
            return self._nodata
        else:
            # try to get nodata value from file
            if not self.is_inmem:
                self.set_gdalDataset_meta()
            if self._nodata is None:
Daniel Scheffler's avatar
Bugfix  
Daniel Scheffler committed
331
                self._nodata = self.find_noDataVal()
332 333 334 335 336 337
                if self._nodata == 'ambiguous':
                    warnings.warn('Nodata value could not be clearly identified. It has been set to None.')
                    self._nodata = None
                else:
                    if self._nodata is not None and not self.q:
                        print("Automatically detected nodata value for %s '%s': %s"
338
                              % (self.__class__.__name__, self.basename, self._nodata))
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
            return self._nodata

    @nodata.setter
    def nodata(self, value):
        self._nodata = value

    @property
    def mask_nodata(self):
        """
        Get the nodata mask of the associated image array. It is calculated using all image bands.
        """

        if self._mask_nodata is not None:
            return self._mask_nodata
        else:
354
            self.calc_mask_nodata()  # sets self._mask_nodata
355 356 357 358 359 360 361 362 363 364 365
            return self._mask_nodata

    @mask_nodata.setter
    def mask_nodata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import NoDataMask
366 367
            geoArr_mask = NoDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
368
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
369
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
370 371 372 373

            assert geoArr_mask.bands == 1, \
                'Expected one single band as nodata mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided nodata mask must have the same number of ' \
374
                                                            'rows and columns as the %s itself.' % imName
375 376
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given nodata mask for %s must match the geotransform of the %s itself. ' \
377
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
378 379
            assert not geoArr_mask.prj or prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given nodata mask for the %s must match the projection of the %s itself.' \
380
                % (imName, self.__class__.__name__)
381 382

            self._mask_nodata = geoArr_mask
383 384 385 386 387 388
        else:
            del self.mask_nodata

    @mask_nodata.deleter
    def mask_nodata(self):
        self._mask_nodata = None
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

    @property
    def mask_baddata(self):
        """
        Returns the bad data mask for the associated image array if it has been explicitly previously. It can be set
         by passing a file path, a numpy array or an instance of GeoArray to the setter of this property.
        """

        return self._mask_baddata

    @mask_baddata.setter
    def mask_baddata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import BadDataMask
408 409
            geoArr_mask = BadDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
410
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
411
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
412 413 414 415

            assert geoArr_mask.bands == 1, \
                'Expected one single band as bad data mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided bad data mask must have the same number of ' \
416
                                                            'rows and columns as the %s itself.' % imName
417 418
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given bad data mask for %s must match the geotransform of the %s itself. ' \
419
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
420 421
            assert prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given bad data mask for the %s must match the projection of the %s itself.' \
422
                % (imName, self.__class__.__name__)
423 424

            self._mask_baddata = geoArr_mask
425 426 427 428 429 430
        else:
            del self.mask_baddata

    @mask_baddata.deleter
    def mask_baddata(self):
        self._mask_baddata = None
431 432 433 434 435 436 437 438 439 440

    @property
    def footprint_poly(self):
        # FIXME should return polygon in image coordinates if no projection is available
        """
        Get the footprint polygon of the associated image array (returns an instance of shapely.geometry.Polygon.
        """

        if self._footprint_poly is None:
            assert self.mask_nodata is not None, 'A nodata mask is needed for calculating the footprint polygon. '
441
            if False in self.mask_nodata[:]:
442 443 444 445
                # do not run raster2polygon if whole image is filled with data
                self._footprint_poly = self.box.mapPoly
            else:
                try:
446 447
                    multipolygon = raster2polygon(self.mask_nodata.astype(np.uint8), self.gt, self.prj, exact=False,
                                                  progress=self.progress, q=self.q, maxfeatCount=10, timeout=3)
448
                    self._footprint_poly = fill_holes_within_poly(multipolygon)
449
                except (RuntimeError, TimeoutError):
450 451 452 453
                    if not self.q:
                        warnings.warn("\nCalculation of footprint polygon failed for %s '%s'. Using outer bounds. One "
                                      "reason could be that the nodata value appears within the actual image (not only "
                                      "as fill value). To avoid this use another nodata value. Current nodata value is "
454
                                      "%s." % (self.__class__.__name__, self.basename, self.nodata))
455 456 457
                    self._footprint_poly = self.box.mapPoly

            # validation
458 459 460 461
            assert not polyVertices_outside_poly(self._footprint_poly, self.box.mapPoly), \
                "Computing footprint polygon for %s '%s' failed. The resulting polygon is partly or completely " \
                "outside of the image bounds." % (self.__class__.__name__, self.basename)
            # assert self._footprint_poly
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
            # for XY in self.corner_coord:
            #    assert self.GeoArray.box.mapPoly.contains(Point(XY)) or self.GeoArray.box.mapPoly.touches(Point(XY)), \
            #        "The corner position '%s' is outside of the %s." % (XY, self.imName)

        return self._footprint_poly

    @footprint_poly.setter
    def footprint_poly(self, poly):
        if isinstance(poly, Polygon):
            self._footprint_poly = poly
        elif isinstance(poly, str):
            self._footprint_poly = shply_loads(poly)
        else:
            raise ValueError("'footprint_poly' can only be set from a shapely polygon or a WKT string.")

    @property
    def metadata(self):
        """
        Returns a GeoDataFrame containing all available metadata (read from file if available).
        Use 'metadata[band_index].to_dict()' to get a metadata dictionary for a specific band.
        Use 'metadata.loc[row_name].to_dict()' to get all metadata values of the same key for all bands as dictionary.
        Use 'metadata.loc[row_name, band_index] = value' to set a new value.

        :return:  geopandas.GeoDataFrame
        """

        if self._metadata is not None:
            return self._metadata
        else:
            default = GeoDataFrame(columns=range(self.bands))
492
            # for bn,idx in self.bandnames.items():
493 494 495 496 497 498 499 500 501 502
            #    default.loc['band_index',bn] = idx
            self._metadata = default
            if not self.is_inmem:
                self.set_gdalDataset_meta()
                return self._metadata
            else:
                return self._metadata

    @metadata.setter
    def metadata(self, GDF):
503
        assert isinstance(GDF, (GeoDataFrame, DataFrame)) and len(GDF.columns) == self.bands, \
504
            "%s.metadata can only be set with an instance of geopandas.GeoDataFrame of which the column number " \
505
            "corresponds to the band number of %s." % (self.__class__.__name__, self.__class__.__name__)
506 507 508 509 510
        self._metadata = GDF

    meta = alias_property('metadata')

    def __getitem__(self, given):
511
        if isinstance(given, (int, float, slice)) and self.ndim == 3:
512 513 514 515 516 517 518 519 520 521 522 523 524
            # handle 'given' as index for 3rd (bands) dimension
            if self.is_inmem:
                return self.arr[:, :, given]
            else:
                return self.from_path(self.arg, [given])

        elif isinstance(given, str):
            # behave like a dictionary and return the corresponding band
            if self.bandnames:
                if given not in self.bandnames:
                    raise ValueError("'%s' is not a known band. Known bands are: %s"
                                     % (given, ', '.join(list(self.bandnames.keys()))))
                if self.is_inmem:
525
                    return self.arr if self.ndim == 2 else self.arr[:, :, self.bandnames[given]]
526 527 528 529
                else:
                    return self.from_path(self.arg, [self.bandnames[given]])
            else:
                raise ValueError('String indices are only supported if %s has been instanced with bandnames given.'
530
                                 % self.__class__.__name__)
531 532 533 534 535 536 537

        elif isinstance(given, (tuple, list)):
            # handle requests like geoArr[[1,2],[3,4]  -> not implemented in from_path if array is not in mem
            types = [type(i) for i in given]
            if list in types or tuple in types:
                self.to_mem()

538
            if len(given) == 3:
539 540

                # handle strings in the 3rd dim of 'given' -> convert them to a band index
541
                if isinstance(given[2], str):
542 543 544 545 546 547 548 549
                    if self.bandnames:
                        if given[2] not in self.bandnames:
                            raise ValueError("'%s' is not a known band. Known bands are: %s"
                                             % (given[2], ', '.join(list(self.bandnames.keys()))))

                        band_idx = self.bandnames[given[2]]
                        # NOTE: the string in the 3rd is ignored if ndim==2 and band_idx==0
                        if self.is_inmem:
550
                            return self.arr if (self.ndim == 2 and band_idx == 0) else self.arr[:, :, band_idx]
551
                        else:
552 553
                            getitem_params = \
                                given[:2] if (self.ndim == 2 and band_idx == 0) else given[:2] + (band_idx,)
554 555 556 557 558 559 560
                            return self.from_path(self.arg, getitem_params)
                    else:
                        raise ValueError(
                            'String indices are only supported if %s has been instanced with bandnames given.'
                            % self.__class__.__name__)

                # in case a third dim is requested from 2D-array -> ignore 3rd dim if 3rd dim is 0
561
                elif self.ndim == 2 and given[2] == 0:
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
                    if self.is_inmem:
                        return self.arr[given[:2]]
                    else:
                        return self.from_path(self.arg, given[:2])

        # if nothing has been returned until here -> behave like a numpy array
        if self.is_inmem:
            return self.arr[given]
        else:
            getitem_params = [given] if isinstance(given, slice) else given
            return self.from_path(self.arg, getitem_params)

    def __setitem__(self, idx, array2set):
        """Overwrites the pixel values of GeoArray.arr with the given array.

        :param idx:         <int, list, slice> the index position to overwrite
        :param array2set:   <np.ndarray> array to be set. Must be compatible to the given index position.
        :return:
        """

        if self.is_inmem:
            self.arr[idx] = array2set
        else:
            raise NotImplementedError('Item assignment for %s instances that are not in memory is not yet supported.'
586
                                      % self.__class__.__name__)
587 588 589

    def __getattr__(self, attr):
        # check if the requested attribute can not be present because GeoArray has been instanced with an array
590 591
        if attr not in self.__dir__() and not self.is_inmem and attr in ['shape', 'dtype', 'geotransform',
                                                                         'projection']:
592 593
            self.set_gdalDataset_meta()

594 595 596
        if attr in self.__dir__():  # __dir__() includes also methods and properties
            return self.__getattribute__(attr)  # __getattribute__ avoids infinite loop
        elif hasattr(np.array([]), attr):
597 598
            return self[:].__getattribute__(attr)
        else:
599
            raise AttributeError("%s object has no attribute '%s'." % (self.__class__.__name__, attr))
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

    def __getstate__(self):
        """Defines how the attributes of GMS object are pickled."""

        # clean array cache in order to avoid cache pickling
        self.flush_cache()

        return self.__dict__

    def __setstate__(self, state):
        """Defines how the attributes of GMS object are unpickled.
        NOTE: This method has been implemented because otherwise pickled and unpickled instances show recursion errors
        within __getattr__ when requesting any attribute.
        """

        self.__dict__ = state

    def calc_mask_nodata(self, fromBand=None, overwrite=False):
        """Calculates a no data mask with (values: 0=nodata; 1=data)

        :param fromBand:  <int> index of the band to be used (if None, all bands are used)
        :param overwrite: <bool> whether to overwrite existing nodata mask that has already been calculated
        :return:
        """

        if self._mask_nodata is None or overwrite:
            assert self.ndim in [2, 3], "Only 2D or 3D arrays are supported. Got a %sD array." % self.ndim
627
            arr = self[:, :, fromBand] if self.ndim == 3 and fromBand is not None else self[:]
628 629 630

            if self.nodata is None:
                self.mask_nodata = np.ones((self.rows, self.cols), np.bool)
631 632 633 634
            elif np.isnan(self.nodata):
                self.mask_nodata = \
                    np.invert(np.isnan(arr)) if arr.ndim == 2 else \
                    np.all(np.invert(np.isnan(arr)), axis=2)
635
            else:
636
                self.mask_nodata = \
637 638
                    np.ma.masked_not_equal(arr, self.nodata).mask if arr.ndim == 2 else \
                    np.all(np.ma.masked_not_equal(arr, self.nodata).mask, axis=2)
639

640 641 642 643 644 645 646 647
    def find_noDataVal(self, bandIdx=0, sz=3):
        """Tries to derive no data value from homogenious corner pixels within 3x3 windows (by default).
        :param bandIdx:
        :param sz: window size in which corner pixels are analysed
        """
        wins = [self[0:sz, 0:sz, bandIdx], self[0:sz, -sz:, bandIdx],
                self[-sz:, -sz:, bandIdx], self[-sz:, 0:sz, bandIdx]]  # UL, UR, LR, LL

648 649
        means, stds = [np.mean(win) for win in wins], [np.std(win) for win in wins]
        possVals = [mean for mean, std in zip(means, stds) if std == 0 or np.isnan(std)]
650 651 652 653
        # possVals==[]: all corners are filled with data; np.std(possVals)==0: noDataVal clearly identified

        if possVals:
            if np.std(possVals) != 0:
654 655 656 657 658 659
                if np.isnan(np.std(possVals)):
                    # at least one of the possible values is np.nan
                    nodata = np.nan
                else:
                    # different possible nodata values have been found in the image corner
                    nodata = 'ambiguous'
660 661 662 663 664
            else:
                if len(possVals) <= 2:
                    # each window in each corner
                    warnings.warn("\nAutomatic nodata value detection returned the value %s for GeoArray '%s' but this "
                                  "seems to be unreliable (occurs in only %s). To avoid automatic detection, just pass "
665 666 667
                                  "the correct nodata value."
                                  % (possVals[0], self.basename, ('2 image corners' if len(possVals) == 2 else
                                                                  '1 image corner')))
668
                nodata = possVals[0]
669
        else:
670 671 672
            nodata = None

        return nodata
673

674 675 676 677 678 679 680 681 682 683
    def set_gdalDataset_meta(self):
        """Retrieves GDAL metadata from file. This function is only executed once to avoid overwriting of user defined
         attributes, that are defined after object instanciation.

        :return:
        """

        if not self._gdalDataset_meta_already_set:
            assert self.filePath
            ds = gdal.Open(self.filePath)
684 685 686
            if not ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

687
            # set private class variables (in order to avoid recursion error)
688 689
            self._shape = tuple([ds.RasterYSize, ds.RasterXSize] + ([ds.RasterCount] if ds.RasterCount > 1 else []))
            self._dtype = gdal_array.GDALTypeCodeToNumericTypeCode(ds.GetRasterBand(1).DataType)
690
            self._geotransform = list(ds.GetGeoTransform())
691 692

            # for some reason GDAL reads arbitrary geotransforms as (0, 1, 0, 0, 0, 1) instead of (0, 1, 0, 0, 0, -1)
693
            self._geotransform[5] = -abs(self._geotransform[5])  # => force ygsd to be negative
694

695 696
            # temp conversion to EPSG needed because GDAL seems to modify WKT string when writing file to disk
            # (e.g. using gdal_merge) -> conversion to EPSG and back undos that
697 698
            wkt = ds.GetProjection()
            self._projection = EPSG2WKT(WKT2EPSG(wkt)) if not isLocal(wkt) else ''
699

700 701 702 703
            if 'nodata' not in self._initParams or self._initParams['nodata'] is None:
                band = ds.GetRasterBand(1)
                # FIXME this does not support different nodata values within the same file
                self._nodata = band.GetNoDataValue()
704

705
            # read global domain metadata
706 707
            # TODO check to specifically use the 'ENVI' metadata domain ds.GetMetadata('ENVI')
            global_meta = ds.GetMetadata()
708

709 710
            # read band domain metadata
            for b in range(self.bands):
711 712
                band = ds.GetRasterBand(b + 1)
                meta_gs = GeoSeries(band.GetMetadata())
713

714 715 716 717 718 719
                # add band names if available
                if 'Band_%s' % str(b + 1) in global_meta.keys():
                    meta_gs['band_name'] = global_meta['Band_%s' % str(b + 1)]

                # TODO add the remaining global metadata

720 721 722 723 724
                # avoid double-call of set_gdalDataset_meta by setting self._metadata to default value
                self._metadata = \
                    self._metadata if self._metadata is not None else GeoDataFrame(columns=range(self.bands))

                # fill metadata
725
                self.metadata[b] = meta_gs
726
                del band
727

728
            del ds
729 730 731 732 733 734 735 736 737 738 739 740 741 742

        self._gdalDataset_meta_already_set = True

    def from_path(self, path, getitem_params=None):
        # type: (str, list) -> np.ndarray
        """Read a GDAL compatible raster image from disk, with respect to the given image position.
        NOTE: If the requested array position is already in cache, it is returned from there.

        :param path:            <str> the file path of the image to read
        :param getitem_params:  <list> a list of slices in the form [row_slice, col_slice, band_slice]
        :return out_arr:        <np.ndarray> the output array
        """

        ds = gdal.Open(path)
743 744 745
        if not ds:
            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

746
        R, C, B = ds.RasterYSize, ds.RasterXSize, ds.RasterCount
747
        del ds
748

749
        # convert getitem_params to subset area to be read ##
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
        rS, rE, cS, cE, bS, bE, bL = [None] * 7

        # populate rS, rE, cS, cE, bS, bE, bL
        if getitem_params:
            if len(getitem_params) >= 2:
                givenR, givenC = getitem_params[:2]
                if isinstance(givenR, slice):
                    rS = givenR.start
                    rE = givenR.stop - 1 if givenR.stop is not None else None
                elif isinstance(givenR, int):
                    rS = givenR
                    rE = givenR
                if isinstance(givenC, slice):
                    cS = givenC.start
                    cE = givenC.stop - 1 if givenC.stop is not None else None
                elif isinstance(givenC, int):
                    cS = givenC
                    cE = givenC
            if len(getitem_params) in [1, 3]:
                givenB = getitem_params[2] if len(getitem_params) == 3 else getitem_params[0]
                if isinstance(givenB, slice):
                    bS = givenB.start
                    bE = givenB.stop - 1 if givenB.stop is not None else None
                elif isinstance(givenB, int):
                    bS = givenB
                    bE = givenB
776
                elif isinstance(givenB, (tuple, list)):
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
                    typesInGivenB = [type(i) for i in givenB]
                    assert len(list(set(typesInGivenB))) == 1, \
                        'Mixed data types within the list of bands are not supported.'
                    if isinstance(givenB[0], int):
                        bL = list(givenB)
                    elif isinstance(givenB[0], str):
                        bL = [self.bandnames[i] for i in givenB]
                elif type(givenB) in [str]:
                    bL = [self.bandnames[givenB]]

        # set defaults for not given values
        rS = rS if rS is not None else 0
        rE = rE if rE is not None else R - 1
        cS = cS if cS is not None else 0
        cE = cE if cE is not None else C - 1
        bS = bS if bS is not None else 0
        bE = bE if bE is not None else B - 1
        bL = list(range(bS, bE + 1)) if not bL else bL

        # convert negative to positive ones
        rS = rS if rS >= 0 else self.rows + rS
        rE = rE if rE >= 0 else self.rows + rE
        cS = cS if cS >= 0 else self.columns + cS
        cE = cE if cE >= 0 else self.columns + cE
        bS = bS if bS >= 0 else self.bands + bS
        bE = bE if bE >= 0 else self.bands + bE
803
        bL = [b if b >= 0 else (self.bands + b) for b in bL]
804 805

        # validate subset area bounds to be read
806 807 808 809 810 811 812
        def msg(v, idx, sz):
            # FIXME numpy raises that error ONLY for the 2nd axis
            return '%s is out of bounds for axis %s with size %s' % (v, idx, sz)

        for val, axIdx, axSize in zip([rS, rE, cS, cE, bS, bE], [0, 0, 1, 1, 2, 2], [R, R, C, C, B, B]):
            if not 0 <= val <= axSize - 1:
                raise ValueError(msg(val, axIdx, axSize))
813 814

        # summarize requested array position in arr_pos
815
        # NOTE: # bandlist must be string because truth value of an array with more than one element is ambiguous
816 817 818
        arr_pos = dict(rS=rS, rE=rE, cS=cS, cE=cE, bS=bS, bE=bE, bL=bL)

        # check if the requested array position is already in cache -> if yes, return it from there
819
        if self._arr_cache is not None and self._arr_cache['pos'] == arr_pos:
820
            out_arr = self._arr_cache['arr_cached']
821 822 823 824 825 826 827

        else:
            # TODO insert a multiprocessing.Lock here in order to prevent IO bottlenecks?
            # read subset area from disk
            if bL == list(range(0, B)):
                tempArr = gdalnumeric.LoadFile(path, cS, rS, cE - cS + 1, rE - rS + 1)
                out_arr = np.swapaxes(np.swapaxes(tempArr, 0, 2), 0, 1) if B > 1 else tempArr
828 829
                if out_arr is None:
                    raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
830 831 832 833
            else:
                ds = gdal.Open(path)
                if len(bL) == 1:
                    band = ds.GetRasterBand(bL[0] + 1)
834
                    out_arr = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
835 836
                    if out_arr is None:
                        raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
837
                    del band
838 839 840 841 842
                else:
                    out_arr = np.empty((rE - rS + 1, cE - cS + 1, len(bL)))
                    for i, bIdx in enumerate(bL):
                        band = ds.GetRasterBand(bIdx + 1)
                        out_arr[:, :, i] = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
843 844
                        if out_arr is None:
                            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
845
                        del band
846

847
                del ds
848 849

            # only set self.arr if the whole cube has been read (in order to avoid sudden shape changes)
850
            if out_arr.shape == self.shape:
851 852 853 854 855
                self.arr = out_arr

            # write _arr_cache
            self._arr_cache = dict(pos=arr_pos, arr_cached=out_arr)

856 857
        return out_arr  # TODO implement check of returned datatype (e.g. NoDataMask should always return np.bool
        # TODO -> would be np.int8 if an int8 file is read from disk
858 859 860 861 862 863 864 865

    def save(self, out_path, fmt='ENVI', creationOptions=None):
        # type: (str, str, list) -> None
        """Write the raster data to disk.

        :param out_path:        <str> output path
        :param fmt:             <str> the output format / GDAL driver code to be used for output creation, e.g. 'ENVI'
                                Refer to http://www.gdal.org/formats_list.html to get a full list of supported formats.
866 867
        :param creationOptions: <list> GDAL creation options,
                                e.g., ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
868 869 870
        """

        if not self.q:
871 872
            print('Writing GeoArray of size %s to %s.' % (self.shape, out_path))
        assert self.ndim in [2, 3], 'Only 2D- or 3D arrays are supported.'
873 874 875 876 877 878 879 880 881 882

        driver = gdal.GetDriverByName(fmt)
        if driver is None:
            raise Exception("'%s' is not a supported GDAL driver. Refer to www.gdal.org/formats_list.html for full "
                            "list of GDAL driver codes." % fmt)

        if not os.path.isdir(os.path.dirname(out_path)):
            os.makedirs(os.path.dirname(out_path))

        if self.is_inmem:
883 884
            ds = get_GDAL_ds_inmem(self.arr, self.geotransform, self.projection,
                                   self.nodata)  # expects rows,columns,bands
885 886 887

            # set metadata
            if not self.metadata.empty:
888 889 890
                global_meta = {}

                # set band domain metadata
891
                for bidx in range(self.bands):
892
                    band = ds.GetRasterBand(bidx + 1)
893
                    meta2write = self.metadata[bidx].to_dict()
894
                    meta2write = dict((k, v) for k, v in meta2write.items() if v is not np.nan)
895 896

                    if 'band_name' in meta2write:
897
                        global_meta['Band_%s' % str(bidx + 1)] = meta2write['band_name']
898 899
                        del meta2write['band_name']

900
                    band.SetMetadata(meta2write)
901
                    del band
902

903 904 905
                # set global domain metadata
                ds.SetMetadata(global_meta)

906 907 908 909 910
                # get ENVI metadata domain
                # ds_orig = gdal.Open(self.filePath)
                # envi_meta_domain = ds_orig.GetMetadata('ENVI')
                # ds.SetMetadata(envi_meta_domain, 'ENVI')
                # ds_orig = None
911

912 913
            driver.CreateCopy(out_path, ds, options=creationOptions if creationOptions else [])

914 915 916 917
            # rows, columns, bands => bands, rows, columns
            # out_arr = self.arr if self.ndim == 2 else np.swapaxes(np.swapaxes(self.arr, 0, 2), 1, 2)
            # gdalnumeric.SaveArray(out_arr, out_path, format=fmt, prototype=ds) # expects bands,rows,columns
            del ds
918 919 920

        else:
            src_ds = gdal.Open(self.filePath)
921 922 923
            if not src_ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

924 925
            gdal_Translate = get_gdal_func('Translate')
            gdal_Translate(out_path, src_ds, format=fmt, creationOptions=creationOptions)
926
            del src_ds
927 928 929 930 931 932 933 934 935

        if not os.path.exists(out_path):
            raise Exception(gdal.GetLastErrorMsg())

    def dump(self, out_path):
        # type: (str) -> None
        """Serialize the whole object instance to disk using dill."""

        import dill
936 937
        with open(out_path, 'wb') as outF:
            dill.dump(self, outF)
938 939 940 941 942 943 944 945 946

    def _get_plottable_image(self, xlim=None, ylim=None, band=None, boundsMap=None, boundsMapPrj=None, res_factor=None,
                             nodataVal=None, out_prj=None):
        # handle limits
        if boundsMap:
            boundsMapPrj = boundsMapPrj if boundsMapPrj else self.prj
            image2plot, gt, prj = self.get_mapPos(boundsMap, boundsMapPrj, band2get=band,
                                                  fillVal=nodataVal if nodataVal is not None else self.nodata)
        else:
947 948
            cS, cE = xlim if isinstance(xlim, (tuple, list)) else (0, self.columns)
            rS, rE = ylim if isinstance(ylim, (tuple, list)) else (0, self.rows)
949 950

            image2plot = self[rS:rE, cS:cE, band] if band is not None else self[rS:rE, cS:cE]
951
            gt, prj = self.geotransform, self.projection
952

953
        transOpt = ['SRC_METHOD=NO_GEOTRANSFORM'] if tuple(gt) == (0, 1, 0, 0, 0, -1) else None
954
        xdim, ydim = None, None
955
        nodataVal = nodataVal if nodataVal is not None else self.nodata
956 957

        if res_factor != 1. and image2plot.shape[0] * image2plot.shape[1] > 1e6:  # shape > 1000*1000
958 959 960 961
            # sample image down / normalize
            xdim, ydim = \
                (self.columns * res_factor, self.rows * res_factor) if res_factor else \
                tuple((np.array([self.columns, self.rows]) / (np.array([self.columns, self.rows]).max() / 1000)))
962 963 964
            xdim, ydim = int(xdim), int(ydim)

        if xdim or ydim or out_prj:
965
            from py_tools_ds.geo.raster.reproject import warp_ndarray
966 967 968 969 970
            image2plot, gt, prj = warp_ndarray(image2plot, self.geotransform, self.projection,
                                               out_XYdims=(xdim, ydim), in_nodata=nodataVal, out_nodata=nodataVal,
                                               transformerOptions=transOpt, out_prj=out_prj, q=True)
            if transOpt and 'NO_GEOTRANSFORM' in ','.join(transOpt):
                image2plot = np.flipud(image2plot)
971 972
                gt = list(gt)
                gt[3] = 0
973 974 975 976 977 978 979

            if xdim or ydim:
                print('Note: array has been downsampled to %s x %s for faster visualization.' % (xdim, ydim))

        return image2plot, gt, prj

    def show(self, xlim=None, ylim=None, band=None, boundsMap=None, boundsMapPrj=None, figsize=None,
980 981
             interpolation='none', vmin=None, vmax=None, pmin=2, pmax=98, cmap=None, nodataVal=None,
             res_factor=None, interactive=False):
982 983 984 985 986 987 988 989 990 991
        """Plots the desired array position into a figure.

        :param xlim:            [start_column, end_column]
        :param ylim:            [start_row, end_row]
        :param band:            the band index of the band to be plotted (if None and interactive==True all bands are
                                shown, otherwise the first band is chosen)
        :param boundsMap:       xmin, ymin, xmax, ymax
        :param boundsMapPrj:
        :param figsize:
        :param interpolation:
992 993 994 995
        :param vmin:            darkest pixel value to be included in stretching
        :param vmax:            brightest pixel value to be included in stretching
        :param pmin:            percentage to be used for excluding the darkest pixels from stretching (default: 2)
        :param pmax:            percentage to be used for excluding the brightest pixels from stretching (default: 98)
996 997
        :param cmap:
        :param nodataVal:
Daniel Scheffler's avatar
Daniel Scheffler committed
998 999
        :param res_factor:      <float> resolution factor for downsampling of the image to be plotted in order to save
                                plotting time and memory (default=None -> downsampling is performed to 1000x1000)
1000 1001 1002 1003 1004 1005 1006 1007
        :param interactive:     <bool> activates interactive plotting based on 'holoviews' library.
                                NOTE: this deactivates the magic '% matplotlib inline' in Jupyter Notebook
        :return:
        """

        band = (band if band is not None else 0) if not interactive else band

        # get image to plot
1008
        nodataVal = nodataVal if nodataVal is not None else self.nodata
Daniel Scheffler's avatar
Daniel Scheffler committed
1009 1010 1011
        image2plot, gt, prj = \
            self._get_plottable_image(xlim, ylim, band, boundsMap=boundsMap, boundsMapPrj=boundsMapPrj,
                                      res_factor=res_factor, nodataVal=nodataVal)
1012 1013

        # set color palette
1014 1015
        palette = cmap if cmap else plt.cm.gray
        if nodataVal is not None and np.std(image2plot) != 0:  # do not show nodata
1016
            image2plot = np.ma.masked_equal(image2plot, nodataVal)
1017
            vmin_auto, vmax_auto = \
1018
                np.nanpercentile(image2plot.compressed(), pmin), np.nanpercentile(image2plot.compressed(), pmax)
1019 1020
            palette.set_bad('aqua', 0)
        else:
1021
            vmin_auto, vmax_auto = np.nanpercentile(image2plot, pmin), np.nanpercentile(image2plot, pmax)
1022 1023 1024 1025

        vmin = vmin if vmin is not None else vmin_auto
        vmax = vmax if vmax is not None else vmax_auto

1026
        palette.set_over('1')
1027 1028
        palette.set_under('0')

1029 1030 1031 1032 1033 1034
        # check availability of holoviews
        if not util.find_spec('holoviews'):
            warnings.warn("Interactive mode requires holoviews. Install it by running, e.g., "
                          "'conda install --yes -c ioam bokeh holoviews'. Using non-interactive mode.")
            interactive = False

1035
        if interactive and image2plot.ndim == 3:
1036 1037 1038 1039 1040 1041 1042
            import holoviews as hv
            from skimage.exposure import rescale_intensity
            hv.notebook_extension('matplotlib')

            cS, cE = xlim if isinstance(xlim, (tuple, list)) else (0, self.columns - 1)
            rS, rE = ylim if isinstance(ylim, (tuple, list)) else (0, self.rows - 1)

1043
            image2plot = np.array(rescale_intensity(image2plot, in_range=(vmin, vmax)))
1044

1045 1046 1047 1048 1049 1050 1051
            def get_hv_image(b):
                # FIXME ylabels have the wrong order
                return hv.Image(image2plot[:, :, b] if b is not None else image2plot,
                                bounds=(cS, rS, cE, rE))(
                    style={'cmap': 'gray'}, plot={'fig_inches': 4 if figsize is None else figsize, 'show_grid': True})

            # hvIm = hv.Image(image2plot)(style={'cmap': 'gray'}, figure_inches=figsize)
1052 1053 1054 1055 1056 1057 1058
            hmap = hv.HoloMap([(band, get_hv_image(band)) for band in range(image2plot.shape[2])], kdims=['band'])

            return hmap

        else:
            if interactive:
                warnings.warn('Currently there is no interactive mode for single-band arrays. '
1059
                              'Switching to standard matplotlib figure..')  # TODO implement zoomable fig
1060 1061 1062 1063 1064

            # show image
            plt.figure(figsize=figsize)
            rows, cols = image2plot.shape[:2]
            plt.imshow(image2plot, palette, interpolation=interpolation, extent=(0, cols, rows, 0),