baseclasses.py 80.5 KB
Newer Older
1 2 3 4
# -*- coding: utf-8 -*-

import os
import warnings
5
from pkgutil import find_loader
6
from collections import OrderedDict
Daniel Scheffler's avatar
Daniel Scheffler committed
7
from copy import deepcopy
8
from typing import Union  # noqa F401
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

import numpy as np
from matplotlib import pyplot as plt
from osgeo import gdal_array
# custom
from shapely.geometry import Polygon
from shapely.wkt import loads as shply_loads
from six import PY3

# mpl_toolkits.basemap -> imported when GeoArray.show_map() is used
# dill -> imported when dumping GeoArray

try:
    from osgeo import gdal
    from osgeo import gdalnumeric
except ImportError:
    import gdal
    import gdalnumeric
27 28 29 30
from py_tools_ds.convenience.object_oriented import alias_property
from py_tools_ds.geo.coord_calc import get_corner_coordinates
from py_tools_ds.geo.coord_grid import snap_bounds_to_pixGrid
from py_tools_ds.geo.coord_trafo import mapXY2imXY, imXY2mapXY, transform_any_prj, reproject_shapelyGeometry
31
from py_tools_ds.geo.projection import prj_equal, WKT2EPSG, EPSG2WKT, isLocal
32 33
from py_tools_ds.geo.raster.conversion import raster2polygon
from py_tools_ds.geo.vector.topology \
34
    import get_footprint_polygon, polyVertices_outside_poly, fill_holes_within_poly
35 36
from py_tools_ds.geo.vector.geometry import boxObj
from py_tools_ds.io.raster.gdal import get_GDAL_ds_inmem
37
from py_tools_ds.compatibility.gdal import get_gdal_func
38
from py_tools_ds.numeric.numbers import is_number
39
from py_tools_ds.numeric.array import get_array_tilebounds
40 41 42

#  internal imports
from .subsetting import get_array_at_mapPos
43
from .metadata import GDAL_Metadata
44

45
if PY3:
46
    # noinspection PyCompatibility
47 48 49
    from builtins import TimeoutError, FileNotFoundError
else:
    from py_tools_ds.compatibility.python.exceptions import TimeoutError, FileNotFoundError
50

51
__author__ = 'Daniel Scheffler'
52 53 54


class GeoArray(object):
Daniel Scheffler's avatar
Daniel Scheffler committed
55 56 57 58 59 60 61
    """
    This class creates a fast Python interface for geodata - either on disk or in memory. It can be instanced
    with a file path or with a numpy array and the corresponding geoinformation. Instances can always be indexed
    like normal numpy arrays, no matter if GeoArray has been instanced from file or from an in-memory array.
    GeoArray provides a wide range of geo-related attributes belonging to the dataset as well as some functions for
    quickly visualizing the data as a map, a simple image or an interactive image.
    """
62 63
    def __init__(self, path_or_array, geotransform=None, projection=None, bandnames=None, nodata=None, progress=True,
                 q=False):
64
        # type: (Union[str, np.ndarray], tuple, str, list, float, bool, bool) -> None
Daniel Scheffler's avatar
Daniel Scheffler committed
65
        """Get an instance of GeoArray.
66 67 68 69 70 71 72 73 74 75 76 77 78 79

        :param path_or_array:   a numpy.ndarray or a valid file path
        :param geotransform:    GDAL geotransform of the given array or file on disk
        :param projection:      projection of the given array or file on disk as WKT string
                                (only needed if GeoArray is instanced with an array)
        :param bandnames:       names of the bands within the input array, e.g. ['mask_1bit', 'mask_clouds'],
                                (default: ['B1', 'B2', 'B3', ...])
        :param nodata:          nodata value
        :param progress:        show progress bars (default: True)
        :param q:               quiet mode (default: False)
        """

        # TODO implement compatibility to GDAL VRTs
        if not (isinstance(path_or_array, (str, np.ndarray, GeoArray)) or
80
           issubclass(getattr(path_or_array, '__class__'), GeoArray)):
81
            raise ValueError("%s parameter 'arg' takes only string, np.ndarray or GeoArray(and subclass) instances. "
82
                             "Got %s." % (self.__class__.__name__, type(path_or_array)))
83 84

        if path_or_array is None:
85
            raise ValueError("The %s parameter 'path_or_array' must not be None!" % self.__class__.__name__)
86 87 88 89 90

        if isinstance(path_or_array, str):
            assert ' ' not in path_or_array, "The given path contains whitespaces. This is not supported by GDAL."

            if not os.path.exists(path_or_array):
91
                raise FileNotFoundError(path_or_array)
92

93 94
        if isinstance(path_or_array, GeoArray) or issubclass(getattr(path_or_array, '__class__'), GeoArray):
            self.__dict__ = path_or_array.__dict__.copy()
95
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
96 97
            self.geotransform = geotransform or self.geotransform
            self.projection = projection or self.projection
98
            self.bandnames = bandnames or list(self.bandnames.keys())
99 100 101
            self._nodata = nodata if nodata is not None else self._nodata
            self.progress = False if progress is False else self.progress
            self.q = q if q is not None else self.q
102 103

        else:
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
            self.arg = path_or_array
            self._arr = path_or_array if isinstance(path_or_array, np.ndarray) else None
            self.filePath = path_or_array if isinstance(path_or_array, str) and path_or_array else None
            self.basename = os.path.splitext(os.path.basename(self.filePath))[0] if not self.is_inmem else 'IN_MEM'
            self.progress = progress
            self.q = q
            self._arr_cache = None  # dict containing key 'pos' and 'arr_cached'
            self._geotransform = None
            self._projection = None
            self._shape = None
            self._dtype = None
            self._nodata = nodata
            self._mask_nodata = None
            self._mask_baddata = None
119 120
            self._footprint_poly = None
            self._gdalDataset_meta_already_set = False
121 122
            self._metadata = None
            self._bandnames = None
123 124

            if bandnames:
125
                self.bandnames = bandnames  # use property in order to validate given value
126
            if geotransform:
127
                self.geotransform = geotransform  # use property in order to validate given value
128
            if projection:
129
                self.projection = projection  # use property in order to validate given value
130 131 132 133 134 135 136 137 138 139

            if self.filePath:
                self.set_gdalDataset_meta()

    @property
    def arr(self):
        return self._arr

    @arr.setter
    def arr(self, ndarray):
140 141
        assert isinstance(ndarray, np.ndarray), "'arr' can only be set to a numpy array! Got %s." % type(ndarray)
        # assert ndarray.shape == self.shape, "'arr' can only be set to a numpy array with shape %s. Received %s. " \
142 143 144 145 146
        #                                    "If you need to change the dimensions, create a new instance of %s." \
        #                                    %(self.shape, ndarray.shape, self.__class__.__name__)
        #  THIS would avoid warping like this: geoArr.arr, geoArr.gt, geoArr.prj = warp(...)

        if ndarray.shape != self.shape:
147
            self.flush_cache()  # the cached array is not useful anymore
148 149 150 151 152

        self._arr = ndarray

    @property
    def bandnames(self):
153
        if self._bandnames and len(self._bandnames) == self.bands:
154 155
            return self._bandnames
        else:
156
            del self.bandnames  # runs deleter which sets it to default values
157 158 159 160 161 162 163
            return self._bandnames

    @bandnames.setter
    def bandnames(self, list_bandnames):
        # type: (list) -> None

        if list_bandnames:
164 165 166 167 168 169 170 171
            if not isinstance(list_bandnames, list):
                raise TypeError("A list must be given when setting the 'bandnames' attribute. "
                                "Received %s." % type(list_bandnames))
            if len(list_bandnames) != self.bands:
                raise ValueError('Number of given bandnames does not match number of bands in array.')
            if len(list(set([type(b) for b in list_bandnames]))) != 1 or not isinstance(list_bandnames[0], str):
                raise ValueError("'bandnames must be a set of strings. Got other datatypes in there.'")

172
            bN_dict = OrderedDict((band, i) for i, band in enumerate(list_bandnames))
173 174 175

            if len(bN_dict) != self.bands:
                raise ValueError('Bands must different names. Received band list: %s' % list_bandnames)
176 177 178

            self._bandnames = bN_dict

179
            try:
180
                self.metadata.band_meta['band_names'] = list_bandnames
181 182 183
            except AttributeError:
                # in case self._metadata is None
                pass
184 185 186 187 188 189 190
        else:
            del self.bandnames

    @bandnames.deleter
    def bandnames(self):
        self._bandnames = OrderedDict(('B%s' % band, i) for i, band in enumerate(range(1, self.bands + 1)))
        if self._metadata is not None:
191
            self.metadata.band_meta['band_names'] = list(self._bandnames.keys())
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    @property
    def is_inmem(self):
        """Check if associated image array is completely loaded into memory."""
        return isinstance(self.arr, np.ndarray)

    @property
    def shape(self):
        """Get the array shape of the associated image array."""
        if self.is_inmem:
            return self.arr.shape
        else:
            if self._shape:
                return self._shape
            else:
                self.set_gdalDataset_meta()
                return self._shape

    @property
    def ndim(self):
        """Get the number dimensions of the associated image array."""
        return len(self.shape)

    @property
    def rows(self):
        """Get the number of rows of the associated image array."""

        return self.shape[0]

    @property
    def columns(self):
        """Get the number of columns of the associated image array."""

        return self.shape[1]

    cols = alias_property('columns')

    @property
    def bands(self):
        """Get the number of bands of the associated image array."""

233
        return self.shape[2] if len(self.shape) > 2 else 1
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248

    @property
    def dtype(self):
        """Get the numpy data type of the associated image array."""

        if self._dtype:
            return self._dtype
        elif self.is_inmem:
            return self.arr.dtype
        else:
            self.set_gdalDataset_meta()
            return self._dtype

    @property
    def geotransform(self):
249
        """Get the GDAL GeoTransform of the associated image, e.g., (283500.0, 5.0, 0.0, 4464500.0, 0.0, -5.0)"""
250 251 252 253 254 255 256

        if self._geotransform:
            return self._geotransform
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
            return self._geotransform
        else:
257
            return [0, 1, 0, 0, 0, -1]
258 259 260

    @geotransform.setter
    def geotransform(self, gt):
261
        # type: (Union[list, tuple]) -> None
262 263
        assert isinstance(gt, (list, tuple)) and len(gt) == 6,\
            'geotransform must be a list with 6 numbers. Got %s.' % str(gt)
264

265
        for i in gt:
266
            assert is_number(i), "geotransform must contain only numbers. Got '%s' (type: %s)." % (i, type(i))
267

268
        self._geotransform = gt
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

    gt = alias_property('geotransform')

    @property
    def xgsd(self):
        """Get the X resolution in units of the given or detected projection."""

        return self.geotransform[1]

    @property
    def ygsd(self):
        """Get the Y resolution in units of the given or detected projection."""

        return abs(self.geotransform[5])

    @property
    def xygrid_specs(self):
        """
        Get the specifications for the X/Y coordinate grid, e.g. [[15,30], [0,30]] for a coordinate with its origin
        at X/Y[15,0] and a GSD of X/Y[15,30].
        """

291
        def get_grid(gt, xgsd, ygsd): return [[gt[0], gt[0] + xgsd], [gt[3], gt[3] - ygsd]]
292 293 294 295 296 297 298 299 300 301 302 303 304
        return get_grid(self.geotransform, self.xgsd, self.ygsd)

    @property
    def projection(self):
        """
        Get the projection of the associated image. Setting the projection is only allowed if GeoArray has been
        instanced from memory or the associated file on disk has no projection.
        """

        if self._projection:
            return self._projection
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
305
            return self._projection  # or "LOCAL_CS[\"MAP\"]"
306
        else:
307
            return ''  # '"LOCAL_CS[\"MAP\"]"
308 309 310

    @projection.setter
    def projection(self, prj):
311
        # type: (str) -> None
312
        if self.filePath and self.projection:
313
            assert self.projection is None or prj_equal(self.projection, prj), \
314
                "Cannot set %s.projection to the given value because it does not match the projection from the file " \
315
                "on disk." % self.__class__.__name__
316 317 318 319 320 321 322 323 324 325 326 327 328
        else:
            self._projection = prj

    prj = alias_property('projection')

    @property
    def epsg(self):
        """Get the EPSG code of the projection of the GeoArray."""

        return WKT2EPSG(self.projection)

    @epsg.setter
    def epsg(self, epsg_code):
329
        # type: (int) -> None
330 331 332 333 334 335 336
        self.projection = EPSG2WKT(epsg_code)

    @property
    def box(self):
        mapPoly = get_footprint_polygon(get_corner_coordinates(gt=self.geotransform, cols=self.columns, rows=self.rows))
        return boxObj(gt=self.geotransform, prj=self.projection, mapPoly=mapPoly)

337 338 339 340 341 342 343 344
    @property
    def is_map_geo(self):
        # type: () -> bool
        """
        Returns 'True' if the GeoArray instance has a valid geoinformation with map instead of image coordinates.
        """
        return self.gt and list(self.gt) != [0, 1, 0, 0, 0, -1] and self.prj

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
    @property
    def nodata(self):
        """
        Get the nodata value of the GeoArray. If GeoArray has been instanced with a file path the file is checked
        for an existing nodata value. Otherwise (if no value is exlicitly given during object instanciation) the nodata
        value is tried to be automatically detected.
        """

        if self._nodata is not None:
            return self._nodata
        else:
            # try to get nodata value from file
            if not self.is_inmem:
                self.set_gdalDataset_meta()
            if self._nodata is None:
360
                self.find_noDataVal()
361 362 363 364 365 366
                if self._nodata == 'ambiguous':
                    warnings.warn('Nodata value could not be clearly identified. It has been set to None.')
                    self._nodata = None
                else:
                    if self._nodata is not None and not self.q:
                        print("Automatically detected nodata value for %s '%s': %s"
367
                              % (self.__class__.__name__, self.basename, self._nodata))
368 369 370 371
            return self._nodata

    @nodata.setter
    def nodata(self, value):
372
        # type: (Union[int, None]) -> None
373 374
        self._nodata = value

375 376 377
        if self._metadata and value is not None:
            self.metadata.global_meta.update({'data ignore value': str(value)})

378 379 380 381 382 383 384 385 386
    @property
    def mask_nodata(self):
        """
        Get the nodata mask of the associated image array. It is calculated using all image bands.
        """

        if self._mask_nodata is not None:
            return self._mask_nodata
        else:
387
            self.calc_mask_nodata()  # sets self._mask_nodata
388 389 390 391 392 393 394 395 396 397 398
            return self._mask_nodata

    @mask_nodata.setter
    def mask_nodata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import NoDataMask
399 400
            geoArr_mask = NoDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
401
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
402
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
403 404 405 406

            assert geoArr_mask.bands == 1, \
                'Expected one single band as nodata mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided nodata mask must have the same number of ' \
407
                                                            'rows and columns as the %s itself.' % imName
408 409
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given nodata mask for %s must match the geotransform of the %s itself. ' \
410
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
411 412
            assert not geoArr_mask.prj or prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given nodata mask for the %s must match the projection of the %s itself.' \
413
                % (imName, self.__class__.__name__)
414 415

            self._mask_nodata = geoArr_mask
416 417 418 419 420 421
        else:
            del self.mask_nodata

    @mask_nodata.deleter
    def mask_nodata(self):
        self._mask_nodata = None
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

    @property
    def mask_baddata(self):
        """
        Returns the bad data mask for the associated image array if it has been explicitly previously. It can be set
         by passing a file path, a numpy array or an instance of GeoArray to the setter of this property.
        """

        return self._mask_baddata

    @mask_baddata.setter
    def mask_baddata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import BadDataMask
441 442
            geoArr_mask = BadDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
443
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
444
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
445 446 447 448

            assert geoArr_mask.bands == 1, \
                'Expected one single band as bad data mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided bad data mask must have the same number of ' \
449
                                                            'rows and columns as the %s itself.' % imName
450 451
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given bad data mask for %s must match the geotransform of the %s itself. ' \
452
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
453 454
            assert prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given bad data mask for the %s must match the projection of the %s itself.' \
455
                % (imName, self.__class__.__name__)
456 457

            self._mask_baddata = geoArr_mask
458 459 460 461 462 463
        else:
            del self.mask_baddata

    @mask_baddata.deleter
    def mask_baddata(self):
        self._mask_baddata = None
464 465 466 467 468 469 470 471 472 473

    @property
    def footprint_poly(self):
        # FIXME should return polygon in image coordinates if no projection is available
        """
        Get the footprint polygon of the associated image array (returns an instance of shapely.geometry.Polygon.
        """

        if self._footprint_poly is None:
            assert self.mask_nodata is not None, 'A nodata mask is needed for calculating the footprint polygon. '
474
            if False not in self.mask_nodata[:]:
475 476 477 478
                # do not run raster2polygon if whole image is filled with data
                self._footprint_poly = self.box.mapPoly
            else:
                try:
479 480
                    multipolygon = raster2polygon(self.mask_nodata.astype(np.uint8), self.gt, self.prj, exact=False,
                                                  progress=self.progress, q=self.q, maxfeatCount=10, timeout=3)
481
                    self._footprint_poly = fill_holes_within_poly(multipolygon)
482
                except (RuntimeError, TimeoutError):
483 484 485 486
                    if not self.q:
                        warnings.warn("\nCalculation of footprint polygon failed for %s '%s'. Using outer bounds. One "
                                      "reason could be that the nodata value appears within the actual image (not only "
                                      "as fill value). To avoid this use another nodata value. Current nodata value is "
487
                                      "%s." % (self.__class__.__name__, self.basename, self.nodata))
488 489 490
                    self._footprint_poly = self.box.mapPoly

            # validation
491 492 493 494
            assert not polyVertices_outside_poly(self._footprint_poly, self.box.mapPoly), \
                "Computing footprint polygon for %s '%s' failed. The resulting polygon is partly or completely " \
                "outside of the image bounds." % (self.__class__.__name__, self.basename)
            # assert self._footprint_poly
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
            # for XY in self.corner_coord:
            #    assert self.GeoArray.box.mapPoly.contains(Point(XY)) or self.GeoArray.box.mapPoly.touches(Point(XY)), \
            #        "The corner position '%s' is outside of the %s." % (XY, self.imName)

        return self._footprint_poly

    @footprint_poly.setter
    def footprint_poly(self, poly):
        if isinstance(poly, Polygon):
            self._footprint_poly = poly
        elif isinstance(poly, str):
            self._footprint_poly = shply_loads(poly)
        else:
            raise ValueError("'footprint_poly' can only be set from a shapely polygon or a WKT string.")

    @property
    def metadata(self):
        """
        Returns a GeoDataFrame containing all available metadata (read from file if available).
        Use 'metadata[band_index].to_dict()' to get a metadata dictionary for a specific band.
        Use 'metadata.loc[row_name].to_dict()' to get all metadata values of the same key for all bands as dictionary.
        Use 'metadata.loc[row_name, band_index] = value' to set a new value.

        :return:  geopandas.GeoDataFrame
        """

        if self._metadata is not None:
            return self._metadata
        else:
524
            default = GDAL_Metadata(nbands=self.bands, nodata_allbands=self._nodata)
525

526 527 528 529 530 531 532 533
            self._metadata = default
            if not self.is_inmem:
                self.set_gdalDataset_meta()
                return self._metadata
            else:
                return self._metadata

    @metadata.setter
534 535 536 537 538 539
    def metadata(self, meta):
        if not isinstance(meta, GDAL_Metadata) or meta.bands != self.bands:
            raise ValueError("%s.metadata can only be set with an instance of geoarray.metadata.GDAL_Metadata of "
                             "which the band number corresponds to the band number of %s."
                             % (self.__class__.__name__, self.__class__.__name__))
        self._metadata = meta
540 541 542 543

    meta = alias_property('metadata')

    def __getitem__(self, given):
544
        if isinstance(given, (int, float, slice, np.integer, np.floating)) and self.ndim == 3:
545 546 547 548 549 550 551 552 553 554 555 556 557
            # handle 'given' as index for 3rd (bands) dimension
            if self.is_inmem:
                return self.arr[:, :, given]
            else:
                return self.from_path(self.arg, [given])

        elif isinstance(given, str):
            # behave like a dictionary and return the corresponding band
            if self.bandnames:
                if given not in self.bandnames:
                    raise ValueError("'%s' is not a known band. Known bands are: %s"
                                     % (given, ', '.join(list(self.bandnames.keys()))))
                if self.is_inmem:
558
                    return self.arr if self.ndim == 2 else self.arr[:, :, self.bandnames[given]]
559 560 561 562
                else:
                    return self.from_path(self.arg, [self.bandnames[given]])
            else:
                raise ValueError('String indices are only supported if %s has been instanced with bandnames given.'
563
                                 % self.__class__.__name__)
564 565 566 567 568 569 570

        elif isinstance(given, (tuple, list)):
            # handle requests like geoArr[[1,2],[3,4]  -> not implemented in from_path if array is not in mem
            types = [type(i) for i in given]
            if list in types or tuple in types:
                self.to_mem()

571
            if len(given) == 3:
572 573

                # handle strings in the 3rd dim of 'given' -> convert them to a band index
574
                if isinstance(given[2], str):
575 576 577 578 579 580 581 582
                    if self.bandnames:
                        if given[2] not in self.bandnames:
                            raise ValueError("'%s' is not a known band. Known bands are: %s"
                                             % (given[2], ', '.join(list(self.bandnames.keys()))))

                        band_idx = self.bandnames[given[2]]
                        # NOTE: the string in the 3rd is ignored if ndim==2 and band_idx==0
                        if self.is_inmem:
583
                            return self.arr if (self.ndim == 2 and band_idx == 0) else self.arr[:, :, band_idx]
584
                        else:
585 586
                            getitem_params = \
                                given[:2] if (self.ndim == 2 and band_idx == 0) else given[:2] + (band_idx,)
587 588 589 590 591 592 593
                            return self.from_path(self.arg, getitem_params)
                    else:
                        raise ValueError(
                            'String indices are only supported if %s has been instanced with bandnames given.'
                            % self.__class__.__name__)

                # in case a third dim is requested from 2D-array -> ignore 3rd dim if 3rd dim is 0
594
                elif self.ndim == 2 and given[2] == 0:
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
                    if self.is_inmem:
                        return self.arr[given[:2]]
                    else:
                        return self.from_path(self.arg, given[:2])

        # if nothing has been returned until here -> behave like a numpy array
        if self.is_inmem:
            return self.arr[given]
        else:
            getitem_params = [given] if isinstance(given, slice) else given
            return self.from_path(self.arg, getitem_params)

    def __setitem__(self, idx, array2set):
        """Overwrites the pixel values of GeoArray.arr with the given array.

        :param idx:         <int, list, slice> the index position to overwrite
        :param array2set:   <np.ndarray> array to be set. Must be compatible to the given index position.
        :return:
        """

        if self.is_inmem:
            self.arr[idx] = array2set
        else:
            raise NotImplementedError('Item assignment for %s instances that are not in memory is not yet supported.'
619
                                      % self.__class__.__name__)
620 621 622

    def __getattr__(self, attr):
        # check if the requested attribute can not be present because GeoArray has been instanced with an array
623 624
        attrsNot2Link2np = ['__deepcopy__']   # attributes we don't want to inherit from numpy.ndarray

625 626
        if attr not in self.__dir__() and not self.is_inmem and attr in ['shape', 'dtype', 'geotransform',
                                                                         'projection']:
627 628
            self.set_gdalDataset_meta()

629 630
        if attr in self.__dir__():  # __dir__() includes also methods and properties
            return self.__getattribute__(attr)  # __getattribute__ avoids infinite loop
631
        elif attr not in attrsNot2Link2np and hasattr(np.array([]), attr):
632 633
            return self[:].__getattribute__(attr)
        else:
634
            raise AttributeError("%s object has no attribute '%s'." % (self.__class__.__name__, attr))
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654

    def __getstate__(self):
        """Defines how the attributes of GMS object are pickled."""

        # clean array cache in order to avoid cache pickling
        self.flush_cache()

        return self.__dict__

    def __setstate__(self, state):
        """Defines how the attributes of GMS object are unpickled.
        NOTE: This method has been implemented because otherwise pickled and unpickled instances show recursion errors
        within __getattr__ when requesting any attribute.
        """

        self.__dict__ = state

    def calc_mask_nodata(self, fromBand=None, overwrite=False):
        """Calculates a no data mask with (values: 0=nodata; 1=data)

655 656 657
        NOTE:   Only pixel containing the nodata values in ALL bands are recognized as nodata pixel. If they contain a
                pixel value different from the nodata value in any band they are good data pixels.

658 659 660 661 662 663 664
        :param fromBand:  <int> index of the band to be used (if None, all bands are used)
        :param overwrite: <bool> whether to overwrite existing nodata mask that has already been calculated
        :return:
        """

        if self._mask_nodata is None or overwrite:
            assert self.ndim in [2, 3], "Only 2D or 3D arrays are supported. Got a %sD array." % self.ndim
665
            arr = self[:, :, fromBand] if self.ndim == 3 and fromBand is not None else self[:]
666

667 668 669
            min_v, max_v = np.min(arr), np.max(arr)
            if (min_v == max_v == self.nodata) or (np.isnan(min_v) and np.isnan(max_v) and np.isnan(self.nodata)):
                self.mask_nodata = np.full(arr.shape[:2], False)
670
            else:
671 672 673 674 675
                if self.nodata is None:
                    self.mask_nodata = np.ones((self.rows, self.cols), np.bool)
                elif np.isnan(self.nodata):
                    self.mask_nodata = \
                        np.invert(np.isnan(arr)) if arr.ndim == 2 else \
676
                        np.any(np.invert(np.isnan(arr)), axis=2)
677 678 679
                else:
                    self.mask_nodata = \
                        np.ma.masked_not_equal(arr, self.nodata).mask if arr.ndim == 2 else \
680
                        np.any(np.ma.masked_not_equal(arr, self.nodata).mask, axis=2)
681

682 683 684 685 686 687 688 689
    def find_noDataVal(self, bandIdx=0, sz=3):
        """Tries to derive no data value from homogenious corner pixels within 3x3 windows (by default).
        :param bandIdx:
        :param sz: window size in which corner pixels are analysed
        """
        wins = [self[0:sz, 0:sz, bandIdx], self[0:sz, -sz:, bandIdx],
                self[-sz:, -sz:, bandIdx], self[-sz:, 0:sz, bandIdx]]  # UL, UR, LR, LL

690 691
        means, stds = [np.mean(win) for win in wins], [np.std(win) for win in wins]
        possVals = [mean for mean, std in zip(means, stds) if std == 0 or np.isnan(std)]
692 693 694 695
        # possVals==[]: all corners are filled with data; np.std(possVals)==0: noDataVal clearly identified

        if possVals:
            if np.std(possVals) != 0:
696 697 698 699 700 701
                if np.isnan(np.std(possVals)):
                    # at least one of the possible values is np.nan
                    nodata = np.nan
                else:
                    # different possible nodata values have been found in the image corner
                    nodata = 'ambiguous'
702 703 704 705 706
            else:
                if len(possVals) <= 2:
                    # each window in each corner
                    warnings.warn("\nAutomatic nodata value detection returned the value %s for GeoArray '%s' but this "
                                  "seems to be unreliable (occurs in only %s). To avoid automatic detection, just pass "
707 708 709
                                  "the correct nodata value."
                                  % (possVals[0], self.basename, ('2 image corners' if len(possVals) == 2 else
                                                                  '1 image corner')))
710
                nodata = possVals[0]
711
        else:
712 713
            nodata = None

714
        self.nodata = nodata
715
        return nodata
716

717 718 719 720 721 722 723 724 725 726
    def set_gdalDataset_meta(self):
        """Retrieves GDAL metadata from file. This function is only executed once to avoid overwriting of user defined
         attributes, that are defined after object instanciation.

        :return:
        """

        if not self._gdalDataset_meta_already_set:
            assert self.filePath
            ds = gdal.Open(self.filePath)
727 728 729
            if not ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

730
            # set private class variables (in order to avoid recursion error)
731 732
            self._shape = tuple([ds.RasterYSize, ds.RasterXSize] + ([ds.RasterCount] if ds.RasterCount > 1 else []))
            self._dtype = gdal_array.GDALTypeCodeToNumericTypeCode(ds.GetRasterBand(1).DataType)
733
            self._geotransform = list(ds.GetGeoTransform())
734 735

            # for some reason GDAL reads arbitrary geotransforms as (0, 1, 0, 0, 0, 1) instead of (0, 1, 0, 0, 0, -1)
736
            self._geotransform[5] = -abs(self._geotransform[5])  # => force ygsd to be negative
737

738 739
            # temp conversion to EPSG needed because GDAL seems to modify WKT string when writing file to disk
            # (e.g. using gdal_merge) -> conversion to EPSG and back undos that
740 741
            wkt = ds.GetProjection()
            self._projection = EPSG2WKT(WKT2EPSG(wkt)) if not isLocal(wkt) else ''
742

743 744 745
            if 'nodata' not in self._initParams or self._initParams['nodata'] is None:
                band = ds.GetRasterBand(1)
                # FIXME this does not support different nodata values within the same file
746
                self.nodata = band.GetNoDataValue()
747

748 749 750
            # set metadata attribute
            if self.is_inmem or not self.filePath:
                # metadata cannot be read from disk -> set it to the default
751
                self._metadata = GDAL_Metadata(nbands=self.bands, nodata_allbands=self._nodata)
752

753 754
            else:
                self._metadata = GDAL_Metadata(filePath=self.filePath)
755

756
            del ds
757 758 759 760 761 762 763 764 765 766 767 768 769 770

        self._gdalDataset_meta_already_set = True

    def from_path(self, path, getitem_params=None):
        # type: (str, list) -> np.ndarray
        """Read a GDAL compatible raster image from disk, with respect to the given image position.
        NOTE: If the requested array position is already in cache, it is returned from there.

        :param path:            <str> the file path of the image to read
        :param getitem_params:  <list> a list of slices in the form [row_slice, col_slice, band_slice]
        :return out_arr:        <np.ndarray> the output array
        """

        ds = gdal.Open(path)
771 772 773
        if not ds:
            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

774
        R, C, B = ds.RasterYSize, ds.RasterXSize, ds.RasterCount
775
        del ds
776

777
        # convert getitem_params to subset area to be read #
778 779 780 781
        rS, rE, cS, cE, bS, bE, bL = [None] * 7

        # populate rS, rE, cS, cE, bS, bE, bL
        if getitem_params:
782
            # populate rS, rE, cS, cE
783 784 785 786 787
            if len(getitem_params) >= 2:
                givenR, givenC = getitem_params[:2]
                if isinstance(givenR, slice):
                    rS = givenR.start
                    rE = givenR.stop - 1 if givenR.stop is not None else None
788
                elif isinstance(givenR, (int, np.integer)):
789 790 791 792 793
                    rS = givenR
                    rE = givenR
                if isinstance(givenC, slice):
                    cS = givenC.start
                    cE = givenC.stop - 1 if givenC.stop is not None else None
794
                elif isinstance(givenC, (int, np.integer)):
795 796
                    cS = givenC
                    cE = givenC
797 798

            # populate bS, bE, bL
799 800 801 802 803
            if len(getitem_params) in [1, 3]:
                givenB = getitem_params[2] if len(getitem_params) == 3 else getitem_params[0]
                if isinstance(givenB, slice):
                    bS = givenB.start
                    bE = givenB.stop - 1 if givenB.stop is not None else None
804
                elif isinstance(givenB, (int, np.integer)):
805 806
                    bS = givenB
                    bE = givenB
807
                elif isinstance(givenB, (tuple, list)):
808 809 810
                    typesInGivenB = [type(i) for i in givenB]
                    assert len(list(set(typesInGivenB))) == 1, \
                        'Mixed data types within the list of bands are not supported.'
811
                    if isinstance(givenB[0], (int, np.integer)):
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
                        bL = list(givenB)
                    elif isinstance(givenB[0], str):
                        bL = [self.bandnames[i] for i in givenB]
                elif type(givenB) in [str]:
                    bL = [self.bandnames[givenB]]

        # set defaults for not given values
        rS = rS if rS is not None else 0
        rE = rE if rE is not None else R - 1
        cS = cS if cS is not None else 0
        cE = cE if cE is not None else C - 1
        bS = bS if bS is not None else 0
        bE = bE if bE is not None else B - 1
        bL = list(range(bS, bE + 1)) if not bL else bL

        # convert negative to positive ones
        rS = rS if rS >= 0 else self.rows + rS
        rE = rE if rE >= 0 else self.rows + rE
        cS = cS if cS >= 0 else self.columns + cS
        cE = cE if cE >= 0 else self.columns + cE
        bS = bS if bS >= 0 else self.bands + bS
        bE = bE if bE >= 0 else self.bands + bE
834
        bL = [b if b >= 0 else (self.bands + b) for b in bL]
835 836

        # validate subset area bounds to be read
837 838 839 840 841 842 843
        def msg(v, idx, sz):
            # FIXME numpy raises that error ONLY for the 2nd axis
            return '%s is out of bounds for axis %s with size %s' % (v, idx, sz)

        for val, axIdx, axSize in zip([rS, rE, cS, cE, bS, bE], [0, 0, 1, 1, 2, 2], [R, R, C, C, B, B]):
            if not 0 <= val <= axSize - 1:
                raise ValueError(msg(val, axIdx, axSize))
844 845

        # summarize requested array position in arr_pos
846
        # NOTE: # bandlist must be string because truth value of an array with more than one element is ambiguous
847 848
        arr_pos = dict(rS=rS, rE=rE, cS=cS, cE=cE, bS=bS, bE=bE, bL=bL)

849 850
        def _ensure_np_shape_consistency_3D_2D(arr):
            """Ensure numpy output shape consistency according to the given indexing parameters.
851 852 853 854 855 856 857 858

            This may require 3D to 2D conversion in case out_arr can be represented by a 2D array AND index has been
            provided as integer (avoids shapes like (1,2,2). It also may require 2D to 3D conversion in case only one
            band has been requested and the 3rd dimension has been provided as a slice.

            NOTE: -> numpy also returns a 2D array in that case
            NOTE: if array is indexed with a slice -> keep it a 3D array
            """
859 860 861 862
            # a single value -> return as float/int
            if arr.ndim == 2 and arr.size == 1:
                arr = arr[0, 0]

863 864 865 866 867 868 869 870 871
            # 2D -> 3D
            if arr.ndim == 2 and isinstance(getitem_params, (tuple, list)) and len(getitem_params) == 3 and \
                    isinstance(getitem_params[2], slice):
                arr = arr[:, :, np.newaxis]

            # 3D -> 2D
            if 1 in arr.shape:
                outshape = []
                for i, sh in enumerate(arr.shape):
872
                    if sh == 1 and isinstance(getitem_params[i], (int, np.integer, float, np.floating)):
873 874 875 876 877 878 879 880
                        pass
                    else:
                        outshape.append(sh)

                arr = arr.reshape(*outshape)

            return arr

881
        # check if the requested array position is already in cache -> if yes, return it from there
882
        if self._arr_cache is not None and self._arr_cache['pos'] == arr_pos:
883
            out_arr = self._arr_cache['arr_cached']
884
            out_arr = _ensure_np_shape_consistency_3D_2D(out_arr)
885 886 887 888 889 890 891

        else:
            # TODO insert a multiprocessing.Lock here in order to prevent IO bottlenecks?
            # read subset area from disk
            if bL == list(range(0, B)):
                tempArr = gdalnumeric.LoadFile(path, cS, rS, cE - cS + 1, rE - rS + 1)
                out_arr = np.swapaxes(np.swapaxes(tempArr, 0, 2), 0, 1) if B > 1 else tempArr
892 893
                if out_arr is None:
                    raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
894 895 896 897
            else:
                ds = gdal.Open(path)
                if len(bL) == 1:
                    band = ds.GetRasterBand(bL[0] + 1)
898
                    out_arr = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
899 900
                    if out_arr is None:
                        raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
901
                    del band
902 903 904 905 906
                else:
                    out_arr = np.empty((rE - rS + 1, cE - cS + 1, len(bL)))
                    for i, bIdx in enumerate(bL):
                        band = ds.GetRasterBand(bIdx + 1)
                        out_arr[:, :, i] = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
907 908
                        if out_arr is None:
                            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
909
                        del band
910

911
                del ds
912

913
            out_arr = _ensure_np_shape_consistency_3D_2D(out_arr)
914

915
            # only set self.arr if the whole cube has been read (in order to avoid sudden shape changes)
916
            if out_arr.shape == self.shape:
917 918 919 920 921
                self.arr = out_arr

            # write _arr_cache
            self._arr_cache = dict(pos=arr_pos, arr_cached=out_arr)

922 923
        return out_arr  # TODO implement check of returned datatype (e.g. NoDataMask should always return np.bool
        # TODO -> would be np.int8 if an int8 file is read from disk
924 925 926 927 928 929 930 931

    def save(self, out_path, fmt='ENVI', creationOptions=None):
        # type: (str, str, list) -> None
        """Write the raster data to disk.

        :param out_path:        <str> output path
        :param fmt:             <str> the output format / GDAL driver code to be used for output creation, e.g. 'ENVI'
                                Refer to http://www.gdal.org/formats_list.html to get a full list of supported formats.
932 933
        :param creationOptions: <list> GDAL creation options,
                                e.g., ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
934 935 936
        """

        if not self.q:
937 938
            print('Writing GeoArray of size %s to %s.' % (self.shape, out_path))
        assert self.ndim in [2, 3], 'Only 2D- or 3D arrays are supported.'
939 940 941 942 943 944 945 946 947

        driver = gdal.GetDriverByName(fmt)
        if driver is None:
            raise Exception("'%s' is not a supported GDAL driver. Refer to www.gdal.org/formats_list.html for full "
                            "list of GDAL driver codes." % fmt)

        if not os.path.isdir(os.path.dirname(out_path)):
            os.makedirs(os.path.dirname(out_path))

948 949
        envi_metadict = self.metadata.to_ENVI_metadict()

950
        if self.is_inmem:
Daniel Scheffler's avatar
Daniel Scheffler committed
951 952 953 954 955
            ds_inmem = get_GDAL_ds_inmem(self.arr, self.geotransform, self.projection,
                                         self.nodata)  # expects rows,columns,bands

            # write dataset
            ds_out = driver.CreateCopy(out_path, ds_inmem, options=creationOptions if creationOptions else [])
956 957 958 959 960 961

            # # rows, columns, bands => bands, rows, columns
            # out_arr = self.arr if self.ndim == 2 else np.swapaxes(np.swapaxes(self.arr, 0, 2), 1, 2)
            # gdalnumeric.SaveArray(out_arr, out_path, format=fmt, prototype=ds_inmem)  # expects bands,rows,columns
            # ds_out = gdal.Open(out_path)

Daniel Scheffler's avatar
Daniel Scheffler committed
962
            del ds_inmem
963

964 965 966 967
            ################
            # set metadata #
            ################

Daniel Scheffler's avatar
Daniel Scheffler committed
968
            # NOTE:  The dataset has to be written BEFORE metadata are added. Otherwise, metadata are not written.
969 970 971

            # ENVI #
            ########
972 973
            if fmt == 'ENVI':
                ds_out.SetMetadata(envi_metadict, 'ENVI')
974

975
                if 'band_names' in envi_metadict:
976 977
                    for bidx in range(self.bands):
                        band = ds_out.GetRasterBand(bidx + 1)
978 979 980 981
                        bandname = self.metadata.band_meta['band_names'][bidx].strip()
                        band.SetDescription(bandname)

                        assert band.GetDescription() == bandname
982 983 984 985
                        del band

                if 'description' in envi_metadict:
                    ds_out.SetDescription(envi_metadict['description'])
986

987 988
                ds_out.FlushCache()
                gdal.Unlink(out_path + '.aux.xml')
989

990
            elif self.metadata.all_meta:
991 992 993
                # set global domain metadata
                if self.metadata.global_meta:
                    ds_out.SetMetadata(dict((k, repr(v)) for k, v in self.metadata.global_meta.items()))
994

995 996
                if 'description' in envi_metadict:
                    ds_out.SetDescription(envi_metadict['description'])
997

998 999
                # set band domain metadata
                bandmeta_dict = self.metadata.to_DataFrame().astype(str).to_dict()
1000

1001 1002 1003 1004 1005
                for bidx in range(self.bands):
                    band = ds_out.GetRasterBand(bidx + 1)
                    bandmeta = bandmeta_dict[bidx]
                    # meta2write = dict((k, repr(v)) for k, v in self.metadata.band_meta.items() if v is not np.nan)
                    band.SetMetadata(bandmeta)
1006

1007 1008
                    if 'band_names' in envi_metadict:
                        band.SetDescription(self.metadata.band_meta['band_names'][bidx].strip())
1009

1010 1011
                    band.FlushCache()
                    del band
1012

Daniel Scheffler's avatar
Daniel Scheffler committed
1013 1014
            ds_out.FlushCache()
            del ds_out
1015 1016 1017

        else:
            src_ds = gdal.Open(self.filePath)
1018 1019 1020
            if not src_ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

1021 1022
            gdal_Translate = get_gdal_func('Translate')
            gdal_Translate(out_path, src_ds, format=fmt, creationOptions=creationOptions)
1023
            del src_ds
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033
            # add band names
            if 'band_names' in envi_metadict:
                ds_out = gdal.Open(out_path)

                for bidx in range(self.bands):
                    band = ds_out.GetRasterBand(bidx + 1)
                    band.SetDescription(self.metadata.band_meta['band_names'][bidx])
                    del band

1034 1035 1036 1037 1038 1039 1040 1041
        if not os.path.exists(out_path):
            raise Exception(gdal.GetLastErrorMsg())

    def dump(self, out_path):
        # type: (str) -> None
        """Serialize the whole object instance to disk using dill."""

        import dill
1042 1043
        with open(out_path, 'wb') as outF:
            dill.dump(self, outF)
1044 1045 1046 1047 1048 1049 1050 1051 1052

    def _get_plottable_image(self, xlim=None, ylim=None, band=None, boundsMap=None, boundsMapPrj=None, res_factor=None,
                             nodataVal=None, out_prj=None):
        # handle limits
        if boundsMap:
            boundsMapPrj = boundsMapPrj if boundsMapPrj else self.prj
            image2plot, gt, prj = self.get_mapPos(boundsMap, boundsMapPrj, band2get=band,
                                                  fillVal=nodataVal if nodataVal is not None else self.nodata)
        else:
1053 1054
            cS, cE = xlim if isinstance(xlim, (tuple, list)) else (0, self.columns)
            rS, rE = ylim if isinstance(ylim, (tuple, list)) else (0, self.rows)
1055 1056

            image2plot = self[rS:rE, cS:cE, band] if band is not None else self[rS:rE, cS:cE]
1057
            gt, prj = self.geotransform, self.projection
1058

1059
        transOpt = ['SRC_METHOD=NO_GEOTRANSFORM'] if tuple(gt) == (0, 1, 0, 0, 0, -1) else None
1060
        xdim, ydim = None, None
1061 1062 1063 1064
        in_nodata = nodataVal if nodataVal is not None else self.nodata
        out_nodata = in_nodata if in_nodata is not None else -9999
        if not np.can_cast(out_nodata, image2plot.dtype):
            image2plot = image2plot.astype(np.int32)
1065

1066 1067
        # rotated images always have to be resampled for plotting
        if gt[2] or gt[4]:
Daniel Scheffler's avatar
Fix.  
Daniel Scheffler committed
1068
            out_prj = out_prj or self.projection
1069

1070
        if res_factor != 1. and image2plot.shape[0] * image2plot.shape[1] > 1e6:  # shape > 1000*1000
1071 1072 1073 1074
            # sample image down / normalize
            xdim, ydim = \
                (self.columns * res_factor, self.rows * res_factor) if res_factor else \
                tuple((np.array([self.columns, self.rows]) / (np.array([self.columns, self.rows]).max() / 1000)))
1075 1076 1077
            xdim, ydim = int(xdim), int(ydim)

        if xdim or ydim or out_prj:
1078
            from py_tools_ds.geo.raster.reproject import warp_ndarray
1079
            image2plot, gt, prj = warp_ndarray(image2plot, self.geotransform, self.projection,
1080 1081 1082 1083 1084 1085
                                               out_XYdims=(xdim, ydim),
                                               in_nodata