baseclasses.py 71.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# -*- coding: utf-8 -*-

import os
import warnings
from collections import OrderedDict

import numpy as np
from matplotlib import pyplot as plt
from osgeo import gdal_array
# custom
from shapely.geometry import Polygon
from shapely.wkt import loads as shply_loads
from six import PY3

# mpl_toolkits.basemap -> imported when GeoArray.show_map() is used
# dill -> imported when dumping GeoArray

try:
    from osgeo import gdal
    from osgeo import gdalnumeric
except ImportError:
    import gdal
    import gdalnumeric
from geopandas import GeoDataFrame, GeoSeries
from pandas import DataFrame
26
27
28
29
30
31
32
from py_tools_ds.convenience.object_oriented import alias_property
from py_tools_ds.geo.coord_calc import get_corner_coordinates
from py_tools_ds.geo.coord_grid import snap_bounds_to_pixGrid
from py_tools_ds.geo.coord_trafo import mapXY2imXY, imXY2mapXY, transform_any_prj, reproject_shapelyGeometry
from py_tools_ds.geo.projection import prj_equal, WKT2EPSG, EPSG2WKT
from py_tools_ds.geo.raster.conversion import raster2polygon
from py_tools_ds.geo.vector.topology \
33
    import get_footprint_polygon, polyVertices_outside_poly, fill_holes_within_poly
34
35
from py_tools_ds.geo.vector.geometry import boxObj
from py_tools_ds.io.raster.gdal import get_GDAL_ds_inmem
36
from py_tools_ds.compatibility.gdal import get_gdal_func
37
from py_tools_ds.numeric.numbers import is_number
38
39
40
41

#  internal imports
from .subsetting import get_array_at_mapPos

42
if PY3:
43
    # noinspection PyCompatibility
44
45
46
    from builtins import TimeoutError, FileNotFoundError
else:
    from py_tools_ds.compatibility.python.exceptions import TimeoutError, FileNotFoundError
47

48
__author__ = 'Daniel Scheffler'
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73


class GeoArray(object):
    def __init__(self, path_or_array, geotransform=None, projection=None, bandnames=None, nodata=None, progress=True,
                 q=False):
        # type: (any, tuple, str, list, float, bool, bool) -> None
        """This class creates a fast Python interface for geodata - either on disk or in memory. It can be instanced with
        a file path or with a numpy array and the corresponding geoinformation. Instances can always be indexed like
        normal numpy arrays, no matter if GeoArray has been instanced from file or from an in-memory array. GeoArray
        provides a wide range of geo-related attributes belonging to the dataset as well as some functions for quickly
        visualizing the data as a map, a simple image or an interactive image.

        :param path_or_array:   a numpy.ndarray or a valid file path
        :param geotransform:    GDAL geotransform of the given array or file on disk
        :param projection:      projection of the given array or file on disk as WKT string
                                (only needed if GeoArray is instanced with an array)
        :param bandnames:       names of the bands within the input array, e.g. ['mask_1bit', 'mask_clouds'],
                                (default: ['B1', 'B2', 'B3', ...])
        :param nodata:          nodata value
        :param progress:        show progress bars (default: True)
        :param q:               quiet mode (default: False)
        """

        # TODO implement compatibility to GDAL VRTs
        if not (isinstance(path_or_array, (str, np.ndarray, GeoArray)) or
74
           issubclass(getattr(path_or_array, '__class__'), GeoArray)):
75
            raise ValueError("%s parameter 'arg' takes only string, np.ndarray or GeoArray(and subclass) instances. "
76
                             "Got %s." % (self.__class__.__name__, type(path_or_array)))
77
78

        if path_or_array is None:
79
            raise ValueError("The %s parameter 'path_or_array' must not be None!" % self.__class__.__name__)
80
81
82
83
84

        if isinstance(path_or_array, str):
            assert ' ' not in path_or_array, "The given path contains whitespaces. This is not supported by GDAL."

            if not os.path.exists(path_or_array):
85
                raise FileNotFoundError(path_or_array)
86

87
88
        if isinstance(path_or_array, GeoArray) or issubclass(getattr(path_or_array, '__class__'), GeoArray):
            self.__dict__ = path_or_array.__dict__.copy()
89
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
90
91
92
93
94
95
            self.geotransform = geotransform or self.geotransform
            self.projection = projection or self.projection
            self.bandnames = bandnames or list(self.bandnames.values())
            self._nodata = nodata if nodata is not None else self._nodata
            self.progress = False if progress is False else self.progress
            self.q = q if q is not None else self.q
96
97

        else:
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
            self.arg = path_or_array
            self._arr = path_or_array if isinstance(path_or_array, np.ndarray) else None
            self.filePath = path_or_array if isinstance(path_or_array, str) and path_or_array else None
            self.basename = os.path.splitext(os.path.basename(self.filePath))[0] if not self.is_inmem else 'IN_MEM'
            self.progress = progress
            self.q = q
            self._arr_cache = None  # dict containing key 'pos' and 'arr_cached'
            self._geotransform = None
            self._projection = None
            self._shape = None
            self._dtype = None
            self._nodata = nodata
            self._mask_nodata = None
            self._mask_baddata = None
113
114
            self._footprint_poly = None
            self._gdalDataset_meta_already_set = False
115
116
            self._metadata = None
            self._bandnames = None
117
118

            if bandnames:
119
                self.bandnames = bandnames  # use property in order to validate given value
120
            if geotransform:
121
                self.geotransform = geotransform  # use property in order to validate given value
122
            if projection:
123
                self.projection = projection  # use property in order to validate given value
124
125
126
127
128
129
130
131
132
133

            if self.filePath:
                self.set_gdalDataset_meta()

    @property
    def arr(self):
        return self._arr

    @arr.setter
    def arr(self, ndarray):
134
135
        assert isinstance(ndarray, np.ndarray), "'arr' can only be set to a numpy array! Got %s." % type(ndarray)
        # assert ndarray.shape == self.shape, "'arr' can only be set to a numpy array with shape %s. Received %s. " \
136
137
138
139
140
        #                                    "If you need to change the dimensions, create a new instance of %s." \
        #                                    %(self.shape, ndarray.shape, self.__class__.__name__)
        #  THIS would avoid warping like this: geoArr.arr, geoArr.gt, geoArr.prj = warp(...)

        if ndarray.shape != self.shape:
141
            self.flush_cache()  # the cached array is not useful anymore
142
143
144
145
146

        self._arr = ndarray

    @property
    def bandnames(self):
147
        if self._bandnames and len(self._bandnames) == self.bands:
148
149
150
151
152
153
154
155
156
157
158
            return self._bandnames
        else:
            self._bandnames = OrderedDict(('B%s' % band, i) for i, band in enumerate(range(1, self.bands + 1)))
            return self._bandnames

    @bandnames.setter
    def bandnames(self, list_bandnames):
        # type: (list) -> None

        if list_bandnames:
            assert isinstance(list_bandnames, list), "A list must be given when setting the 'bandnames' attribute. " \
159
                                                     "Received %s." % type(list_bandnames)
160
161
162
163
164
            assert len(list_bandnames) == self.bands, \
                'Number of given bandnames does not match number of bands in array.'
            assert len(list(set([type(b) for b in list_bandnames]))) == 1 and type(list_bandnames[0] == 'str'), \
                "'bandnames must be a set of strings. Got other datetypes in there.'"
            bN_dict = OrderedDict((band, i) for i, band in enumerate(list_bandnames))
165
166
            assert len(
                bN_dict) == self.bands, 'Bands must not have the same name. Received band list: %s' % list_bandnames
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

            self._bandnames = bN_dict

    @property
    def is_inmem(self):
        """Check if associated image array is completely loaded into memory."""

        return isinstance(self.arr, np.ndarray)

    @property
    def shape(self):
        """Get the array shape of the associated image array."""

        if self.is_inmem:
            return self.arr.shape
        else:
            if self._shape:
                return self._shape
            else:
                self.set_gdalDataset_meta()
                return self._shape

    @property
    def ndim(self):
        """Get the number dimensions of the associated image array."""
        return len(self.shape)

    @property
    def rows(self):
        """Get the number of rows of the associated image array."""

        return self.shape[0]

    @property
    def columns(self):
        """Get the number of columns of the associated image array."""

        return self.shape[1]

    cols = alias_property('columns')

    @property
    def bands(self):
        """Get the number of bands of the associated image array."""

212
        return self.shape[2] if len(self.shape) > 2 else 1
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

    @property
    def dtype(self):
        """Get the numpy data type of the associated image array."""

        if self._dtype:
            return self._dtype
        elif self.is_inmem:
            return self.arr.dtype
        else:
            self.set_gdalDataset_meta()
            return self._dtype

    @property
    def geotransform(self):
228
        """Get the GDAL GeoTransform of the associated image, e.g., (283500.0, 5.0, 0.0, 4464500.0, 0.0, -5.0)"""
229
230
231
232
233
234
235

        if self._geotransform:
            return self._geotransform
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
            return self._geotransform
        else:
236
            return [0, 1, 0, 0, 0, -1]
237
238
239

    @geotransform.setter
    def geotransform(self, gt):
240
241
        assert isinstance(gt, (list, tuple)) and len(gt) == 6,\
            'geotransform must be a list with 6 numbers. Got %s.' % str(gt)
242

243
        for i in gt:
244
            assert is_number(i), "geotransform must contain only numbers. Got '%s' (type: %s)." % (i, type(i))
245

246
        self._geotransform = gt
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

    gt = alias_property('geotransform')

    @property
    def xgsd(self):
        """Get the X resolution in units of the given or detected projection."""

        return self.geotransform[1]

    @property
    def ygsd(self):
        """Get the Y resolution in units of the given or detected projection."""

        return abs(self.geotransform[5])

    @property
    def xygrid_specs(self):
        """
        Get the specifications for the X/Y coordinate grid, e.g. [[15,30], [0,30]] for a coordinate with its origin
        at X/Y[15,0] and a GSD of X/Y[15,30].
        """

269
        def get_grid(gt, xgsd, ygsd): return [[gt[0], gt[0] + xgsd], [gt[3], gt[3] - ygsd]]
270
271
272
273
274
275
276
277
278
279
280
281
282
        return get_grid(self.geotransform, self.xgsd, self.ygsd)

    @property
    def projection(self):
        """
        Get the projection of the associated image. Setting the projection is only allowed if GeoArray has been
        instanced from memory or the associated file on disk has no projection.
        """

        if self._projection:
            return self._projection
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
283
            return self._projection  # or "LOCAL_CS[\"MAP\"]"
284
        else:
285
            return ''  # '"LOCAL_CS[\"MAP\"]"
286
287
288
289

    @projection.setter
    def projection(self, prj):
        if self.filePath:
290
            assert self.projection is None or prj_equal(self.projection, prj), \
291
                "Cannot set %s.projection to the given value because it does not match the projection from the file " \
292
                "on disk." % self.__class__.__name__
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        else:
            self._projection = prj

    prj = alias_property('projection')

    @property
    def epsg(self):
        """Get the EPSG code of the projection of the GeoArray."""

        return WKT2EPSG(self.projection)

    @epsg.setter
    def epsg(self, epsg_code):
        self.projection = EPSG2WKT(epsg_code)

    @property
    def box(self):
        mapPoly = get_footprint_polygon(get_corner_coordinates(gt=self.geotransform, cols=self.columns, rows=self.rows))
        return boxObj(gt=self.geotransform, prj=self.projection, mapPoly=mapPoly)

    @property
    def nodata(self):
        """
        Get the nodata value of the GeoArray. If GeoArray has been instanced with a file path the file is checked
        for an existing nodata value. Otherwise (if no value is exlicitly given during object instanciation) the nodata
        value is tried to be automatically detected.
        """

        if self._nodata is not None:
            return self._nodata
        else:
            # try to get nodata value from file
            if not self.is_inmem:
                self.set_gdalDataset_meta()
            if self._nodata is None:
Daniel Scheffler's avatar
Bugfix    
Daniel Scheffler committed
328
                self._nodata = self.find_noDataVal()
329
330
331
332
333
334
                if self._nodata == 'ambiguous':
                    warnings.warn('Nodata value could not be clearly identified. It has been set to None.')
                    self._nodata = None
                else:
                    if self._nodata is not None and not self.q:
                        print("Automatically detected nodata value for %s '%s': %s"
335
                              % (self.__class__.__name__, self.basename, self._nodata))
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
            return self._nodata

    @nodata.setter
    def nodata(self, value):
        self._nodata = value

    @property
    def mask_nodata(self):
        """
        Get the nodata mask of the associated image array. It is calculated using all image bands.
        """

        if self._mask_nodata is not None:
            return self._mask_nodata
        else:
351
            self.calc_mask_nodata()  # sets self._mask_nodata
352
353
354
355
356
357
358
359
360
361
362
            return self._mask_nodata

    @mask_nodata.setter
    def mask_nodata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import NoDataMask
363
364
            geoArr_mask = NoDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
365
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
366
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
367
368
369
370

            assert geoArr_mask.bands == 1, \
                'Expected one single band as nodata mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided nodata mask must have the same number of ' \
371
                                                            'rows and columns as the %s itself.' % imName
372
373
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given nodata mask for %s must match the geotransform of the %s itself. ' \
374
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
375
376
            assert not geoArr_mask.prj or prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given nodata mask for the %s must match the projection of the %s itself.' \
377
                % (imName, self.__class__.__name__)
378
379

            self._mask_nodata = geoArr_mask
380
381
382
383
384
385
        else:
            del self.mask_nodata

    @mask_nodata.deleter
    def mask_nodata(self):
        self._mask_nodata = None
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

    @property
    def mask_baddata(self):
        """
        Returns the bad data mask for the associated image array if it has been explicitly previously. It can be set
         by passing a file path, a numpy array or an instance of GeoArray to the setter of this property.
        """

        return self._mask_baddata

    @mask_baddata.setter
    def mask_baddata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import BadDataMask
405
406
            geoArr_mask = BadDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
407
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
408
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
409
410
411
412

            assert geoArr_mask.bands == 1, \
                'Expected one single band as bad data mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided bad data mask must have the same number of ' \
413
                                                            'rows and columns as the %s itself.' % imName
414
415
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given bad data mask for %s must match the geotransform of the %s itself. ' \
416
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
417
418
            assert prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given bad data mask for the %s must match the projection of the %s itself.' \
419
                % (imName, self.__class__.__name__)
420
421

            self._mask_baddata = geoArr_mask
422
423
424
425
426
427
        else:
            del self.mask_baddata

    @mask_baddata.deleter
    def mask_baddata(self):
        self._mask_baddata = None
428
429
430
431
432
433
434
435
436
437

    @property
    def footprint_poly(self):
        # FIXME should return polygon in image coordinates if no projection is available
        """
        Get the footprint polygon of the associated image array (returns an instance of shapely.geometry.Polygon.
        """

        if self._footprint_poly is None:
            assert self.mask_nodata is not None, 'A nodata mask is needed for calculating the footprint polygon. '
438
            if False in self.mask_nodata[:]:
439
440
441
442
                # do not run raster2polygon if whole image is filled with data
                self._footprint_poly = self.box.mapPoly
            else:
                try:
443
444
                    multipolygon = raster2polygon(self.mask_nodata.astype(np.uint8), self.gt, self.prj, exact=False,
                                                  progress=self.progress, q=self.q, maxfeatCount=10, timeout=3)
445
                    self._footprint_poly = fill_holes_within_poly(multipolygon)
446
                except (RuntimeError, TimeoutError):
447
448
449
450
                    if not self.q:
                        warnings.warn("\nCalculation of footprint polygon failed for %s '%s'. Using outer bounds. One "
                                      "reason could be that the nodata value appears within the actual image (not only "
                                      "as fill value). To avoid this use another nodata value. Current nodata value is "
451
                                      "%s." % (self.__class__.__name__, self.basename, self.nodata))
452
453
454
                    self._footprint_poly = self.box.mapPoly

            # validation
455
456
457
458
            assert not polyVertices_outside_poly(self._footprint_poly, self.box.mapPoly), \
                "Computing footprint polygon for %s '%s' failed. The resulting polygon is partly or completely " \
                "outside of the image bounds." % (self.__class__.__name__, self.basename)
            # assert self._footprint_poly
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
            # for XY in self.corner_coord:
            #    assert self.GeoArray.box.mapPoly.contains(Point(XY)) or self.GeoArray.box.mapPoly.touches(Point(XY)), \
            #        "The corner position '%s' is outside of the %s." % (XY, self.imName)

        return self._footprint_poly

    @footprint_poly.setter
    def footprint_poly(self, poly):
        if isinstance(poly, Polygon):
            self._footprint_poly = poly
        elif isinstance(poly, str):
            self._footprint_poly = shply_loads(poly)
        else:
            raise ValueError("'footprint_poly' can only be set from a shapely polygon or a WKT string.")

    @property
    def metadata(self):
        """
        Returns a GeoDataFrame containing all available metadata (read from file if available).
        Use 'metadata[band_index].to_dict()' to get a metadata dictionary for a specific band.
        Use 'metadata.loc[row_name].to_dict()' to get all metadata values of the same key for all bands as dictionary.
        Use 'metadata.loc[row_name, band_index] = value' to set a new value.

        :return:  geopandas.GeoDataFrame
        """

        if self._metadata is not None:
            return self._metadata
        else:
            default = GeoDataFrame(columns=range(self.bands))
489
            # for bn,idx in self.bandnames.items():
490
491
492
493
494
495
496
497
498
499
            #    default.loc['band_index',bn] = idx
            self._metadata = default
            if not self.is_inmem:
                self.set_gdalDataset_meta()
                return self._metadata
            else:
                return self._metadata

    @metadata.setter
    def metadata(self, GDF):
500
        assert isinstance(GDF, (GeoDataFrame, DataFrame)) and len(GDF.columns) == self.bands, \
501
            "%s.metadata can only be set with an instance of geopandas.GeoDataFrame of which the column number " \
502
            "corresponds to the band number of %s." % (self.__class__.__name__, self.__class__.__name__)
503
504
505
506
507
        self._metadata = GDF

    meta = alias_property('metadata')

    def __getitem__(self, given):
508
        if isinstance(given, (int, float, slice)) and self.ndim == 3:
509
510
511
512
513
514
515
516
517
518
519
520
521
            # handle 'given' as index for 3rd (bands) dimension
            if self.is_inmem:
                return self.arr[:, :, given]
            else:
                return self.from_path(self.arg, [given])

        elif isinstance(given, str):
            # behave like a dictionary and return the corresponding band
            if self.bandnames:
                if given not in self.bandnames:
                    raise ValueError("'%s' is not a known band. Known bands are: %s"
                                     % (given, ', '.join(list(self.bandnames.keys()))))
                if self.is_inmem:
522
                    return self.arr if self.ndim == 2 else self.arr[:, :, self.bandnames[given]]
523
524
525
526
                else:
                    return self.from_path(self.arg, [self.bandnames[given]])
            else:
                raise ValueError('String indices are only supported if %s has been instanced with bandnames given.'
527
                                 % self.__class__.__name__)
528
529
530
531
532
533
534

        elif isinstance(given, (tuple, list)):
            # handle requests like geoArr[[1,2],[3,4]  -> not implemented in from_path if array is not in mem
            types = [type(i) for i in given]
            if list in types or tuple in types:
                self.to_mem()

535
            if len(given) == 3:
536
537

                # handle strings in the 3rd dim of 'given' -> convert them to a band index
538
                if isinstance(given[2], str):
539
540
541
542
543
544
545
546
                    if self.bandnames:
                        if given[2] not in self.bandnames:
                            raise ValueError("'%s' is not a known band. Known bands are: %s"
                                             % (given[2], ', '.join(list(self.bandnames.keys()))))

                        band_idx = self.bandnames[given[2]]
                        # NOTE: the string in the 3rd is ignored if ndim==2 and band_idx==0
                        if self.is_inmem:
547
                            return self.arr if (self.ndim == 2 and band_idx == 0) else self.arr[:, :, band_idx]
548
                        else:
549
550
                            getitem_params = \
                                given[:2] if (self.ndim == 2 and band_idx == 0) else given[:2] + (band_idx,)
551
552
553
554
555
556
557
                            return self.from_path(self.arg, getitem_params)
                    else:
                        raise ValueError(
                            'String indices are only supported if %s has been instanced with bandnames given.'
                            % self.__class__.__name__)

                # in case a third dim is requested from 2D-array -> ignore 3rd dim if 3rd dim is 0
558
                elif self.ndim == 2 and given[2] == 0:
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
                    if self.is_inmem:
                        return self.arr[given[:2]]
                    else:
                        return self.from_path(self.arg, given[:2])

        # if nothing has been returned until here -> behave like a numpy array
        if self.is_inmem:
            return self.arr[given]
        else:
            getitem_params = [given] if isinstance(given, slice) else given
            return self.from_path(self.arg, getitem_params)

    def __setitem__(self, idx, array2set):
        """Overwrites the pixel values of GeoArray.arr with the given array.

        :param idx:         <int, list, slice> the index position to overwrite
        :param array2set:   <np.ndarray> array to be set. Must be compatible to the given index position.
        :return:
        """

        if self.is_inmem:
            self.arr[idx] = array2set
        else:
            raise NotImplementedError('Item assignment for %s instances that are not in memory is not yet supported.'
583
                                      % self.__class__.__name__)
584
585
586

    def __getattr__(self, attr):
        # check if the requested attribute can not be present because GeoArray has been instanced with an array
587
588
        if attr not in self.__dir__() and not self.is_inmem and attr in ['shape', 'dtype', 'geotransform',
                                                                         'projection']:
589
590
            self.set_gdalDataset_meta()

591
592
593
        if attr in self.__dir__():  # __dir__() includes also methods and properties
            return self.__getattribute__(attr)  # __getattribute__ avoids infinite loop
        elif hasattr(np.array([]), attr):
594
595
            return self[:].__getattribute__(attr)
        else:
596
            raise AttributeError("%s object has no attribute '%s'." % (self.__class__.__name__, attr))
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

    def __getstate__(self):
        """Defines how the attributes of GMS object are pickled."""

        # clean array cache in order to avoid cache pickling
        self.flush_cache()

        return self.__dict__

    def __setstate__(self, state):
        """Defines how the attributes of GMS object are unpickled.
        NOTE: This method has been implemented because otherwise pickled and unpickled instances show recursion errors
        within __getattr__ when requesting any attribute.
        """

        self.__dict__ = state

    def calc_mask_nodata(self, fromBand=None, overwrite=False):
        """Calculates a no data mask with (values: 0=nodata; 1=data)

        :param fromBand:  <int> index of the band to be used (if None, all bands are used)
        :param overwrite: <bool> whether to overwrite existing nodata mask that has already been calculated
        :return:
        """

        if self._mask_nodata is None or overwrite:
            assert self.ndim in [2, 3], "Only 2D or 3D arrays are supported. Got a %sD array." % self.ndim
624
            arr = self[:, :, fromBand] if self.ndim == 3 and fromBand is not None else self[:]
625
626
627

            if self.nodata is None:
                self.mask_nodata = np.ones((self.rows, self.cols), np.bool)
628
629
630
631
            elif np.isnan(self.nodata):
                self.mask_nodata = \
                    np.invert(np.isnan(arr)) if arr.ndim == 2 else \
                    np.all(np.invert(np.isnan(arr)), axis=2)
632
            else:
633
                self.mask_nodata = \
634
635
                    np.ma.masked_not_equal(arr, self.nodata).mask if arr.ndim == 2 else \
                    np.all(np.ma.masked_not_equal(arr, self.nodata).mask, axis=2)
636

637
638
639
640
641
642
643
644
    def find_noDataVal(self, bandIdx=0, sz=3):
        """Tries to derive no data value from homogenious corner pixels within 3x3 windows (by default).
        :param bandIdx:
        :param sz: window size in which corner pixels are analysed
        """
        wins = [self[0:sz, 0:sz, bandIdx], self[0:sz, -sz:, bandIdx],
                self[-sz:, -sz:, bandIdx], self[-sz:, 0:sz, bandIdx]]  # UL, UR, LR, LL

645
646
        means, stds = [np.mean(win) for win in wins], [np.std(win) for win in wins]
        possVals = [mean for mean, std in zip(means, stds) if std == 0 or np.isnan(std)]
647
648
649
650
        # possVals==[]: all corners are filled with data; np.std(possVals)==0: noDataVal clearly identified

        if possVals:
            if np.std(possVals) != 0:
651
652
653
654
655
656
                if np.isnan(np.std(possVals)):
                    # at least one of the possible values is np.nan
                    nodata = np.nan
                else:
                    # different possible nodata values have been found in the image corner
                    nodata = 'ambiguous'
657
658
659
660
661
            else:
                if len(possVals) <= 2:
                    # each window in each corner
                    warnings.warn("\nAutomatic nodata value detection returned the value %s for GeoArray '%s' but this "
                                  "seems to be unreliable (occurs in only %s). To avoid automatic detection, just pass "
662
663
664
                                  "the correct nodata value."
                                  % (possVals[0], self.basename, ('2 image corners' if len(possVals) == 2 else
                                                                  '1 image corner')))
665
                nodata = possVals[0]
666
        else:
667
668
669
            nodata = None

        return nodata
670

671
672
673
674
675
676
677
678
679
680
    def set_gdalDataset_meta(self):
        """Retrieves GDAL metadata from file. This function is only executed once to avoid overwriting of user defined
         attributes, that are defined after object instanciation.

        :return:
        """

        if not self._gdalDataset_meta_already_set:
            assert self.filePath
            ds = gdal.Open(self.filePath)
681
682
683
            if not ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

684
            # set private class variables (in order to avoid recursion error)
685
686
            self._shape = tuple([ds.RasterYSize, ds.RasterXSize] + ([ds.RasterCount] if ds.RasterCount > 1 else []))
            self._dtype = gdal_array.GDALTypeCodeToNumericTypeCode(ds.GetRasterBand(1).DataType)
687
            self._geotransform = list(ds.GetGeoTransform())
688
689

            # for some reason GDAL reads arbitrary geotransforms as (0, 1, 0, 0, 0, 1) instead of (0, 1, 0, 0, 0, -1)
690
            self._geotransform[5] = -abs(self._geotransform[5])  # => force ygsd to be negative
691

692
693
694
            # temp conversion to EPSG needed because GDAL seems to modify WKT string when writing file to disk
            # (e.g. using gdal_merge) -> conversion to EPSG and back undos that
            self._projection = EPSG2WKT(WKT2EPSG(ds.GetProjection()))
695

696
697
698
699
            if 'nodata' not in self._initParams or self._initParams['nodata'] is None:
                band = ds.GetRasterBand(1)
                # FIXME this does not support different nodata values within the same file
                self._nodata = band.GetNoDataValue()
700

701
            # read global domain metadata
702
703
            # TODO check to specifically use the 'ENVI' metadata domain ds.GetMetadata('ENVI')
            global_meta = ds.GetMetadata()
704

705
706
            # read band domain metadata
            for b in range(self.bands):
707
708
                band = ds.GetRasterBand(b + 1)
                meta_gs = GeoSeries(band.GetMetadata())
709

710
711
712
713
714
715
                # add band names if available
                if 'Band_%s' % str(b + 1) in global_meta.keys():
                    meta_gs['band_name'] = global_meta['Band_%s' % str(b + 1)]

                # TODO add the remaining global metadata

716
717
718
719
720
                # avoid double-call of set_gdalDataset_meta by setting self._metadata to default value
                self._metadata = \
                    self._metadata if self._metadata is not None else GeoDataFrame(columns=range(self.bands))

                # fill metadata
721
                self.metadata[b] = meta_gs
722
                del band
723

724
            del ds
725
726
727
728
729
730
731
732
733
734
735
736
737
738

        self._gdalDataset_meta_already_set = True

    def from_path(self, path, getitem_params=None):
        # type: (str, list) -> np.ndarray
        """Read a GDAL compatible raster image from disk, with respect to the given image position.
        NOTE: If the requested array position is already in cache, it is returned from there.

        :param path:            <str> the file path of the image to read
        :param getitem_params:  <list> a list of slices in the form [row_slice, col_slice, band_slice]
        :return out_arr:        <np.ndarray> the output array
        """

        ds = gdal.Open(path)
739
740
741
        if not ds:
            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

742
        R, C, B = ds.RasterYSize, ds.RasterXSize, ds.RasterCount
743
        del ds
744

745
        # convert getitem_params to subset area to be read ##
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
        rS, rE, cS, cE, bS, bE, bL = [None] * 7

        # populate rS, rE, cS, cE, bS, bE, bL
        if getitem_params:
            if len(getitem_params) >= 2:
                givenR, givenC = getitem_params[:2]
                if isinstance(givenR, slice):
                    rS = givenR.start
                    rE = givenR.stop - 1 if givenR.stop is not None else None
                elif isinstance(givenR, int):
                    rS = givenR
                    rE = givenR
                if isinstance(givenC, slice):
                    cS = givenC.start
                    cE = givenC.stop - 1 if givenC.stop is not None else None
                elif isinstance(givenC, int):
                    cS = givenC
                    cE = givenC
            if len(getitem_params) in [1, 3]:
                givenB = getitem_params[2] if len(getitem_params) == 3 else getitem_params[0]
                if isinstance(givenB, slice):
                    bS = givenB.start
                    bE = givenB.stop - 1 if givenB.stop is not None else None
                elif isinstance(givenB, int):
                    bS = givenB
                    bE = givenB
772
                elif isinstance(givenB, (tuple, list)):
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
                    typesInGivenB = [type(i) for i in givenB]
                    assert len(list(set(typesInGivenB))) == 1, \
                        'Mixed data types within the list of bands are not supported.'
                    if isinstance(givenB[0], int):
                        bL = list(givenB)
                    elif isinstance(givenB[0], str):
                        bL = [self.bandnames[i] for i in givenB]
                elif type(givenB) in [str]:
                    bL = [self.bandnames[givenB]]

        # set defaults for not given values
        rS = rS if rS is not None else 0
        rE = rE if rE is not None else R - 1
        cS = cS if cS is not None else 0
        cE = cE if cE is not None else C - 1
        bS = bS if bS is not None else 0
        bE = bE if bE is not None else B - 1
        bL = list(range(bS, bE + 1)) if not bL else bL

        # convert negative to positive ones
        rS = rS if rS >= 0 else self.rows + rS
        rE = rE if rE >= 0 else self.rows + rE
        cS = cS if cS >= 0 else self.columns + cS
        cE = cE if cE >= 0 else self.columns + cE
        bS = bS if bS >= 0 else self.bands + bS
        bE = bE if bE >= 0 else self.bands + bE
799
        bL = [b if b >= 0 else (self.bands + b) for b in bL]
800
801

        # validate subset area bounds to be read
802
803
804
805
806
807
808
        def msg(v, idx, sz):
            # FIXME numpy raises that error ONLY for the 2nd axis
            return '%s is out of bounds for axis %s with size %s' % (v, idx, sz)

        for val, axIdx, axSize in zip([rS, rE, cS, cE, bS, bE], [0, 0, 1, 1, 2, 2], [R, R, C, C, B, B]):
            if not 0 <= val <= axSize - 1:
                raise ValueError(msg(val, axIdx, axSize))
809
810

        # summarize requested array position in arr_pos
811
        # NOTE: # bandlist must be string because truth value of an array with more than one element is ambiguous
812
813
814
        arr_pos = dict(rS=rS, rE=rE, cS=cS, cE=cE, bS=bS, bE=bE, bL=bL)

        # check if the requested array position is already in cache -> if yes, return it from there
815
        if self._arr_cache is not None and self._arr_cache['pos'] == arr_pos:
816
            out_arr = self._arr_cache['arr_cached']
817
818
819
820
821
822
823

        else:
            # TODO insert a multiprocessing.Lock here in order to prevent IO bottlenecks?
            # read subset area from disk
            if bL == list(range(0, B)):
                tempArr = gdalnumeric.LoadFile(path, cS, rS, cE - cS + 1, rE - rS + 1)
                out_arr = np.swapaxes(np.swapaxes(tempArr, 0, 2), 0, 1) if B > 1 else tempArr
824
825
                if out_arr is None:
                    raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
826
827
828
829
            else:
                ds = gdal.Open(path)
                if len(bL) == 1:
                    band = ds.GetRasterBand(bL[0] + 1)
830
                    out_arr = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
831
832
                    if out_arr is None:
                        raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
833
                    del band
834
835
836
837
838
                else:
                    out_arr = np.empty((rE - rS + 1, cE - cS + 1, len(bL)))
                    for i, bIdx in enumerate(bL):
                        band = ds.GetRasterBand(bIdx + 1)
                        out_arr[:, :, i] = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
839
840
                        if out_arr is None:
                            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
841
                        del band
842

843
                del ds
844
845

            # only set self.arr if the whole cube has been read (in order to avoid sudden shape changes)
846
            if out_arr.shape == self.shape:
847
848
849
850
851
                self.arr = out_arr

            # write _arr_cache
            self._arr_cache = dict(pos=arr_pos, arr_cached=out_arr)

852
853
        return out_arr  # TODO implement check of returned datatype (e.g. NoDataMask should always return np.bool
        # TODO -> would be np.int8 if an int8 file is read from disk
854
855
856
857
858
859
860
861

    def save(self, out_path, fmt='ENVI', creationOptions=None):
        # type: (str, str, list) -> None
        """Write the raster data to disk.

        :param out_path:        <str> output path
        :param fmt:             <str> the output format / GDAL driver code to be used for output creation, e.g. 'ENVI'
                                Refer to http://www.gdal.org/formats_list.html to get a full list of supported formats.
862
863
        :param creationOptions: <list> GDAL creation options,
                                e.g., ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
864
865
866
        """

        if not self.q:
867
868
            print('Writing GeoArray of size %s to %s.' % (self.shape, out_path))
        assert self.ndim in [2, 3], 'Only 2D- or 3D arrays are supported.'
869
870
871
872
873
874
875
876
877
878

        driver = gdal.GetDriverByName(fmt)
        if driver is None:
            raise Exception("'%s' is not a supported GDAL driver. Refer to www.gdal.org/formats_list.html for full "
                            "list of GDAL driver codes." % fmt)

        if not os.path.isdir(os.path.dirname(out_path)):
            os.makedirs(os.path.dirname(out_path))

        if self.is_inmem:
879
880
            ds = get_GDAL_ds_inmem(self.arr, self.geotransform, self.projection,
                                   self.nodata)  # expects rows,columns,bands
881
882
883

            # set metadata
            if not self.metadata.empty:
884
885
886
                global_meta = {}

                # set band domain metadata
887
                for bidx in range(self.bands):
888
                    band = ds.GetRasterBand(bidx + 1)
889
                    meta2write = self.metadata[bidx].to_dict()
890
                    meta2write = dict((k, v) for k, v in meta2write.items() if v is not np.nan)
891
892

                    if 'band_name' in meta2write:
893
                        global_meta['Band_%s' % str(bidx + 1)] = meta2write['band_name']
894
895
                        del meta2write['band_name']

896
                    band.SetMetadata(meta2write)
897
                    del band
898

899
900
901
                # set global domain metadata
                ds.SetMetadata(global_meta)

902
903
904
905
906
                # get ENVI metadata domain
                # ds_orig = gdal.Open(self.filePath)
                # envi_meta_domain = ds_orig.GetMetadata('ENVI')
                # ds.SetMetadata(envi_meta_domain, 'ENVI')
                # ds_orig = None
907

908
909
            driver.CreateCopy(out_path, ds, options=creationOptions if creationOptions else [])

910
911
912
913
            # rows, columns, bands => bands, rows, columns
            # out_arr = self.arr if self.ndim == 2 else np.swapaxes(np.swapaxes(self.arr, 0, 2), 1, 2)
            # gdalnumeric.SaveArray(out_arr, out_path, format=fmt, prototype=ds) # expects bands,rows,columns
            del ds
914
915
916

        else:
            src_ds = gdal.Open(self.filePath)
917
918
919
            if not src_ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

920
921
            gdal_Translate = get_gdal_func('Translate')
            gdal_Translate(out_path, src_ds, format=fmt, creationOptions=creationOptions)
922
            del src_ds
923
924
925
926
927
928
929
930
931

        if not os.path.exists(out_path):
            raise Exception(gdal.GetLastErrorMsg())

    def dump(self, out_path):
        # type: (str) -> None
        """Serialize the whole object instance to disk using dill."""

        import dill
932
933
        with open(out_path, 'wb') as outF:
            dill.dump(self, outF)
934
935
936
937
938
939
940
941
942

    def _get_plottable_image(self, xlim=None, ylim=None, band=None, boundsMap=None, boundsMapPrj=None, res_factor=None,
                             nodataVal=None, out_prj=None):
        # handle limits
        if boundsMap:
            boundsMapPrj = boundsMapPrj if boundsMapPrj else self.prj
            image2plot, gt, prj = self.get_mapPos(boundsMap, boundsMapPrj, band2get=band,
                                                  fillVal=nodataVal if nodataVal is not None else self.nodata)
        else:
943
944
            cS, cE = xlim if isinstance(xlim, (tuple, list)) else (0, self.columns)
            rS, rE = ylim if isinstance(ylim, (tuple, list)) else (0, self.rows)
945
946

            image2plot = self[rS:rE, cS:cE, band] if band is not None else self[rS:rE, cS:cE]
947
            gt, prj = self.geotransform, self.projection
948

949
        transOpt = ['SRC_METHOD=NO_GEOTRANSFORM'] if tuple(gt) == (0, 1, 0, 0, 0, -1) else None
950
        xdim, ydim = None, None
951
        nodataVal = nodataVal if nodataVal is not None else self.nodata
952
953

        if res_factor != 1. and image2plot.shape[0] * image2plot.shape[1] > 1e6:  # shape > 1000*1000
954
955
956
957
            # sample image down / normalize
            xdim, ydim = \
                (self.columns * res_factor, self.rows * res_factor) if res_factor else \
                tuple((np.array([self.columns, self.rows]) / (np.array([self.columns, self.rows]).max() / 1000)))
958
959
960
            xdim, ydim = int(xdim), int(ydim)

        if xdim or ydim or out_prj:
961
            from py_tools_ds.geo.raster.reproject import warp_ndarray
962
963
964
965
966
            image2plot, gt, prj = warp_ndarray(image2plot, self.geotransform, self.projection,
                                               out_XYdims=(xdim, ydim), in_nodata=nodataVal, out_nodata=nodataVal,
                                               transformerOptions=transOpt, out_prj=out_prj, q=True)
            if transOpt and 'NO_GEOTRANSFORM' in ','.join(transOpt):
                image2plot = np.flipud(image2plot)
967
968
                gt = list(gt)
                gt[3] = 0
969
970
971
972
973
974
975

            if xdim or ydim:
                print('Note: array has been downsampled to %s x %s for faster visualization.' % (xdim, ydim))

        return image2plot, gt, prj

    def show(self, xlim=None, ylim=None, band=None, boundsMap=None, boundsMapPrj=None, figsize=None,
976
977
             interpolation='none', vmin=None, vmax=None, pmin=2, pmax=98, cmap=None, nodataVal=None,
             res_factor=None, interactive=False):
978
979
980
981
982
983
984
985
986
987
        """Plots the desired array position into a figure.

        :param xlim:            [start_column, end_column]
        :param ylim:            [start_row, end_row]
        :param band:            the band index of the band to be plotted (if None and interactive==True all bands are
                                shown, otherwise the first band is chosen)
        :param boundsMap:       xmin, ymin, xmax, ymax
        :param boundsMapPrj:
        :param figsize:
        :param interpolation:
988
989
990
991
        :param vmin:            darkest pixel value to be included in stretching
        :param vmax:            brightest pixel value to be included in stretching
        :param pmin:            percentage to be used for excluding the darkest pixels from stretching (default: 2)
        :param pmax:            percentage to be used for excluding the brightest pixels from stretching (default: 98)
992
993
        :param cmap:
        :param nodataVal:
Daniel Scheffler's avatar
Daniel Scheffler committed
994
995
        :param res_factor:      <float> resolution factor for downsampling of the image to be plotted in order to save
                                plotting time and memory (default=None -> downsampling is performed to 1000x1000)
996
997
998
999
1000
1001
1002
1003
        :param interactive:     <bool> activates interactive plotting based on 'holoviews' library.
                                NOTE: this deactivates the magic '% matplotlib inline' in Jupyter Notebook
        :return:
        """

        band = (band if band is not None else 0) if not interactive else band

        # get image to plot
1004
        nodataVal = nodataVal if nodataVal is not None else self.nodata
Daniel Scheffler's avatar
Daniel Scheffler committed
1005
1006
1007
        image2plot, gt, prj = \
            self._get_plottable_image(xlim, ylim, band, boundsMap=boundsMap, boundsMapPrj=boundsMapPrj,
                                      res_factor=res_factor, nodataVal=nodataVal)
1008
1009

        # set color palette
1010
1011
        palette = cmap if cmap else plt.cm.gray
        if nodataVal is not None and np.std(image2plot) != 0:  # do not show nodata
1012
            image2plot = np.ma.masked_equal(image2plot, nodataVal)
1013
            vmin_auto, vmax_auto = \
1014
                np.nanpercentile(image2plot.compressed(), pmin), np.nanpercentile(image2plot.compressed(), pmax)
1015
1016
            palette.set_bad('aqua', 0)
        else:
1017
            vmin_auto, vmax_auto = np.nanpercentile(image2plot, pmin), np.nanpercentile(image2plot, pmax)
1018
1019
1020
1021

        vmin = vmin if vmin is not None else vmin_auto
        vmax = vmax if vmax is not None else vmax_auto

1022
        palette.set_over('1')
1023
1024
        palette.set_under('0')

1025
        if interactive and image2plot.ndim == 3:
1026
1027
1028
1029
1030
1031
1032
            import holoviews as hv
            from skimage.exposure import rescale_intensity
            hv.notebook_extension('matplotlib')

            cS, cE = xlim if isinstance(xlim, (tuple, list)) else (0, self.columns - 1)
            rS, rE = ylim if isinstance(ylim, (tuple, list)) else (0, self.rows - 1)

1033
            image2plot = np.array(rescale_intensity(image2plot, in_range=(vmin, vmax)))
1034

1035
1036
1037
1038
1039
1040
1041
            def get_hv_image(b):
                # FIXME ylabels have the wrong order
                return hv.Image(image2plot[:, :, b] if b is not None else image2plot,
                                bounds=(cS, rS, cE, rE))(
                    style={'cmap': 'gray'}, plot={'fig_inches': 4 if figsize is None else figsize, 'show_grid': True})

            # hvIm = hv.Image(image2plot)(style={'cmap': 'gray'}, figure_inches=figsize)
1042
1043
1044
1045
1046
1047
1048
            hmap = hv.HoloMap([(band, get_hv_image(band)) for band in range(image2plot.shape[2])], kdims=['band'])

            return hmap

        else:
            if interactive:
                warnings.warn('Currently there is no interactive mode for single-band arrays. '
1049
                              'Switching to standard matplotlib figure..')  # TODO implement zoomable fig
1050
1051
1052
1053
1054

            # show image
            plt.figure(figsize=figsize)
            rows, cols = image2plot.shape[:2]
            plt.imshow(image2plot, palette, interpolation=interpolation, extent=(0, cols, rows, 0),
1055
                       vmin=vmin, vmax=vmax, )  # compressed excludes nodata values
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
            plt.show()

    def show_map(self, xlim=None, ylim=None, band=0, boundsMap=None, boundsMapPrj=None, ax=None, figsize=None,
                 interpolation='none', vmin=None, vmax=None, cmap=None, nodataVal=None, res_factor=None,
                 return_map=False, zoomable=False):
        """

        :param xlim:
        :param ylim:
        :param band:            band index (starting with 0)
        :param boundsMap:       xmin, ymin, xmax, ymax
        :param boundsMapPrj:
        :param ax:              allows to pass a matplotlib axis object where figure is plotted into
        :param figsize:
        :param interpolation:
        :param vmin:
        :param vmax:
        :param cmap:
        :param nodataVal:
Daniel Scheffler's avatar
Daniel Scheffler committed
1075
1076
        :param res_factor:      <float> resolution factor for downsampling of the image to be plotted in order to save
                                plotting time and memory (default=None -> downsampling is performed to 1000x1000)
1077
1078
1079
1080
1081
        :param return_map:
        :param zoomable:        <bool> enable or disable zooming via mpld3
        :return:
        """

1082
1083
1084
        try:
            from mpl_toolkits.basemap import Basemap
        except ImportError:
1085
1086
            warnings.warn('This function requires Basemap. You need to install basemap manually (see www./'
                          'matplotlib.org/basemap) if you want to plot maps. It is not automatically installed.')
1087
            raise
1088
        try:
1089
            # noinspection PyUnresolvedReferences
1090
1091
1092
1093
1094
            import mpld3
            if zoomable:
                mpld3.enable_notebook()
            else:
                mpld3.disable_notebook()
1095
        except ImportError:
1096
1097
1098
1099
            if zoomable:
                zoomable = False
                warnings.warn('mpld3 is not available. Zooming disabled.')

1100
1101
        assert self.geotransform and tuple(self.geotransform) != (0, 1, 0, 0, 0, -1), \
            'A valid geotransform is needed for a map visualization. Got %s.' % list(self.geotransform)
1102
        assert self.projection, "A projection is needed for a map visualization. Got '%s'." % self.projection
1103
1104

        # get image to plot
1105
        nodataVal = nodataVal if nodataVal is not None else self.nodata
1106
1107
1108
1109
1110
        image2plot, gt, prj = self._get_plottable_image(xlim, ylim, band, boundsMap=boundsMap,
                                                        boundsMapPrj=boundsMapPrj, res_factor=res_factor,
                                                        nodataVal=nodataVal, out_prj='epsg:4326')

        # calculate corner coordinates of plot
1111
        # if boundsMap:
1112
1113
1114
1115
1116
        #    boundsMapPrj = boundsMapPrj if boundsMapPrj else self.prj
        #    if not prj_equal(boundsMapPrj, 4326):
        #        boundsMap = reproject_shapelyGeometry(box(*boundsMap), boundsMapPrj, 4626).bounds
        #    xmin, ymin, xmax, ymax = boundsMap
        #    UL_XY, UR_XY, LR_XY, LL_XY = (xmin,ymax), (xmax, ymax), (xmax,ymin), (xmin, ymin)
1117
1118
1119
        # else:
        UL_XY, UR_XY, LR_XY, LL_XY = [(YX[1], YX[0]) for YX in GeoArray(image2plot, gt, prj).box.boxMapYX]
        center_lon, center_lat = (UL_XY[0] + UR_XY[0]) / 2., (UL_XY[1] + LL_XY[1]) / 2.
1120
1121
1122
1123
1124
1125

        # create map
        fig = plt.figure(figsize=figsize)
        plt.subplots_adjust(left=0.05, right=0.95, top=0.90, bottom=0.05, wspace=0.15, hspace=0.05)
        ax = ax if ax is not None else plt.subplot(111)

1126
        m = Basemap(projection='tmerc', resolution=None, lon_0=center_lon, lat_0=center_lat,
1127
1128
1129
1130
                    urcrnrlon=UR_XY[0], urcrnrlat=UR_XY[1], llcrnrlon=LL_XY[0], llcrnrlat=LL_XY[1])

        # set color palette
        palette = cmap if cmap else plt.cm.gray
1131
        if nodataVal is not None and np.std(image2plot) != 0:  # do not show nodata
1132
            image2plot = np.ma.masked_equal(image2plot, nodataVal)
1133
1134
            vmin_auto, vmax_auto = \
                np.nanpercentile(image2plot.compressed(), 2), np.nanpercentile(image2plot.compressed(), 98)
1135
1136
            palette.set_bad('aqua', 0)
        else:
1137
            vmin_auto, vmax_auto = np.nanpercentile(image2plot, 2), np.nanpercentile(image2plot, 98)
1138
1139
        vmin = vmin if vmin is not None else vmin_auto
        vmax = vmax if vmax is not None else vmax_auto
1140
        palette.set_over('1')
1141
1142
1143
1144
1145
1146
1147
1148
1149
        palette.set_under('0')

        # add image to map (y-axis must be inverted for basemap)
        if zoomable:
            m.imshow(image2plot, palette, interpolation=interpolation, vmin=vmin, vmax=vmax)
        else:
            m.imshow(np.flipud(image2plot), palette, interpolation=interpolation, vmin=vmin, vmax=vmax)

        # add coordinate grid lines
1150
1151
        parallels = np.arange(-90, 90., 0.25)  # TODO make this adjustable
        # parallels = np.arange(-90, 90., 0.1)
1152
1153
1154
        m.drawparallels(parallels, labels=[1, 0, 0, 0], fontsize=12, linewidth=0.4)

        meridians = np.arange(-180., 180., 0.25)
1155
        # meridians = np.arange(-180., 180., 0.1)
1156
1157
1158
        m.drawmeridians(meridians, labels=[0, 0, 0, 1], fontsize=12, linewidth=0.4)

        if return_map:
1159
            return fig, ax, m
1160
1161
1162
1163
1164
1165
        else:
            plt.show()

    def show_map_utm(self, xlim=None, ylim=None, band=0, figsize=None, interpolation='none', cmap=None,
                     nodataVal=None, vmin=None, vmax=None, res_factor=None, return_map=False):

1166
1167
1168
        try:
            from mpl_toolkits.basemap import Basemap
        except ImportError:
1169
1170
            warnings.warn('This function requires Basemap. You need to install basemap manually (see www./'
                          'matplotlib.org/basemap) if you want to plot maps. It is not automatically installed.')
1171
            raise
1172
1173
1174
1175
        warnings.warn(UserWarning('This function is still under construction and may not work as expected!'))
        # TODO debug this function

        # get image to plot
1176
        nodataVal = nodataVal if nodataVal is not None else self.nodata
1177
1178
1179
1180
        image2plot, gt, prj = self._get_plottable_image(xlim, ylim, band, res_factor, nodataVal)

        # calculate corner coordinates of plot
        box2plot = GeoArray(image2plot, gt, prj).box
1181
        # UL_XY, UR_XY, LR_XY, LL_XY = [(YX[1], YX[0]) for YX in GeoArray(image2plot, gt, prj).box.boxMapYX]
1182
        # Xarr, Yarr = self.box.get_coordArray_MapXY(prj=EPSG2WKT(4326))
1183
1184
        UL_XY, UR_XY, LR_XY, LL_XY = [transform_any_prj(self.projection, 'epsg:4326', x, y) for y, x in
                                      box2plot.boxMapYX]
1185
        center_X, center_Y = (UL_XY[0] + UR_XY[0]) / 2., (UL_XY[1] + LL_XY[1]) / 2.
1186
        center_lon, center_lat = transform_any_prj(prj, 'epsg:4326', center_X, center_Y)
1187
1188
1189
1190
1191
1192
1193
        print(center_lon, center_lat)

        # create map
        fig = plt.figure(figsize=figsize)
        plt.subplots_adjust(left=0.05, right=0.95, top=0.90, bottom=0.05, wspace=0.15, hspace=0.05)
        ax = plt.subplot(111)
        print(UL_XY, UR_XY, LR_XY, LL_XY)
1194
1195
        #        m = Basemap(projection='tmerc', resolution=None, lon_0=center_lon, lat_0=center_lat,
        #                    urcrnrx=UR_XY[0], urcrnry=UR_XY[1], llcrnrx=LL_XY[0], llcrnry=LL_XY[1])
1196
1197
        m = Basemap(projection='tmerc', resolution=None, lon_0=center_lon, lat_0=center_lat,
                    urcrnrlon=UR_XY[0], urcrnrlat=UR_XY[1], llcrnrlon=LL_XY[0], llcrnrlat=LL_XY[1],
1198
                    k_0=0.9996, rsphere=(6378137.00, 6356752.314245179), suppress_ticks=False)
1199
1200
1201
1202
        # m.pcolormesh(Xarr, Yarr, self[:], cmap=plt.cm.jet)

        # set color palette
        palette = cmap if cmap else plt.cm.gray
1203
        if nodataVal is not None:  # do not show nodata
1204
            image2plot = np.ma.masked_equal(image2plot, nodataVal)
1205
1206
            vmin_auto, vmax_auto = \
                np.nanpercentile(image2plot.compressed(), 2), np.nanpercentile(image2plot.compressed(), 98)
1207
1208
            palette.set_bad('aqua', 0)
        else:
1209
            vmin_auto, vmax_auto = np.nanpercentile(image2plot, 2), np.nanpercentile(image2plot, 98)
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
        vmin = vmin if vmin is not None else vmin_auto
        vmax = vmax if vmax is not None else vmax_auto
        palette.set_over('1')
        palette.set_under('0')

        # add image to map (y-axis must be inverted for basemap)
        m.imshow(np.flipud(image2plot), palette, interpolation=interpolation, vmin=vmin, vmax=vmax)

        # add coordinate grid lines
        parallels = np.arange(-90, 90., 0.25)
        m.drawparallels(parallels, labels=[1, 0, 0, 0], fontsize=12, linewidth=0.4)

        meridians = np.arange(-180., 180., 0.25)
        m.drawmeridians(meridians, labels=[0, 0, 0, 1], fontsize=12, linewidth=0.4)

        if return_map:
            return fig, ax, m
        else:
            plt.show()

    def show_footprint(self):
        """This method is intended to be called from Jupyter Notebook and shows a web map containing the calculated
        footprint of GeoArray.
        """

        try:
1236
1237
            import folium
            import geojson
1238
1239
1240
1241
1242
1243
1244
1245
1246
        except ImportError:
            folium, geojson = None, None
        if not folium or not geojson:
            raise ImportError(
                "This method requires the libraries 'folium' and 'geojson'. They can be installed with "
                "the shell command 'pip install folium geojson'.")

        lonlatPoly = reproject_shapelyGeometry(self.footprint_poly, self.epsg, 4326)

1247
        m = folium.Map(location=tuple(np.array(lonlatPoly.centroid.coords.xy).flatten())[::-1])