baseclasses.py 68.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# -*- coding: utf-8 -*-

import os
import warnings
from collections import OrderedDict

import numpy as np
from matplotlib import pyplot as plt
from osgeo import gdal_array
# custom
from shapely.geometry import Polygon
from shapely.wkt import loads as shply_loads
from six import PY3

# mpl_toolkits.basemap -> imported when GeoArray.show_map() is used
# dill -> imported when dumping GeoArray

try:
    from osgeo import gdal
    from osgeo import gdalnumeric
except ImportError:
    import gdal
    import gdalnumeric
from geopandas import GeoDataFrame, GeoSeries
from pandas import DataFrame
26 27 28 29 30 31 32
from py_tools_ds.convenience.object_oriented import alias_property
from py_tools_ds.geo.coord_calc import get_corner_coordinates
from py_tools_ds.geo.coord_grid import snap_bounds_to_pixGrid
from py_tools_ds.geo.coord_trafo import mapXY2imXY, imXY2mapXY, transform_any_prj, reproject_shapelyGeometry
from py_tools_ds.geo.projection import prj_equal, WKT2EPSG, EPSG2WKT
from py_tools_ds.geo.raster.conversion import raster2polygon
from py_tools_ds.geo.vector.topology \
33
    import get_footprint_polygon, polyVertices_outside_poly, fill_holes_within_poly
34 35
from py_tools_ds.geo.vector.geometry import boxObj
from py_tools_ds.io.raster.gdal import get_GDAL_ds_inmem
36 37 38 39 40
from py_tools_ds.compatibility.gdal import get_gdal_func

#  internal imports
from .subsetting import get_array_at_mapPos

41 42 43 44
if PY3:
    from builtins import TimeoutError, FileNotFoundError
else:
    from py_tools_ds.compatibility.python.exceptions import TimeoutError, FileNotFoundError
45

46
__author__ = 'Daniel Scheffler'
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71


class GeoArray(object):
    def __init__(self, path_or_array, geotransform=None, projection=None, bandnames=None, nodata=None, progress=True,
                 q=False):
        # type: (any, tuple, str, list, float, bool, bool) -> None
        """This class creates a fast Python interface for geodata - either on disk or in memory. It can be instanced with
        a file path or with a numpy array and the corresponding geoinformation. Instances can always be indexed like
        normal numpy arrays, no matter if GeoArray has been instanced from file or from an in-memory array. GeoArray
        provides a wide range of geo-related attributes belonging to the dataset as well as some functions for quickly
        visualizing the data as a map, a simple image or an interactive image.

        :param path_or_array:   a numpy.ndarray or a valid file path
        :param geotransform:    GDAL geotransform of the given array or file on disk
        :param projection:      projection of the given array or file on disk as WKT string
                                (only needed if GeoArray is instanced with an array)
        :param bandnames:       names of the bands within the input array, e.g. ['mask_1bit', 'mask_clouds'],
                                (default: ['B1', 'B2', 'B3', ...])
        :param nodata:          nodata value
        :param progress:        show progress bars (default: True)
        :param q:               quiet mode (default: False)
        """

        # TODO implement compatibility to GDAL VRTs
        if not (isinstance(path_or_array, (str, np.ndarray, GeoArray)) or
72
           issubclass(getattr(path_or_array, '__class__'), GeoArray)):
73
            raise ValueError("%s parameter 'arg' takes only string, np.ndarray or GeoArray(and subclass) instances. "
74
                             "Got %s." % (self.__class__.__name__, type(path_or_array)))
75 76

        if path_or_array is None:
77
            raise ValueError("The %s parameter 'path_or_array' must not be None!" % self.__class__.__name__)
78 79 80 81 82

        if isinstance(path_or_array, str):
            assert ' ' not in path_or_array, "The given path contains whitespaces. This is not supported by GDAL."

            if not os.path.exists(path_or_array):
83
                raise FileNotFoundError(path_or_array)
84

85 86
        if isinstance(path_or_array, GeoArray) or issubclass(getattr(path_or_array, '__class__'), GeoArray):
            self.__dict__ = path_or_array.__dict__.copy()
87
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
88 89 90 91 92 93
            self.geotransform = geotransform or self.geotransform
            self.projection = projection or self.projection
            self.bandnames = bandnames or list(self.bandnames.values())
            self._nodata = nodata if nodata is not None else self._nodata
            self.progress = False if progress is False else self.progress
            self.q = q if q is not None else self.q
94 95

        else:
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
            self.arg = path_or_array
            self._arr = path_or_array if isinstance(path_or_array, np.ndarray) else None
            self.filePath = path_or_array if isinstance(path_or_array, str) and path_or_array else None
            self.basename = os.path.splitext(os.path.basename(self.filePath))[0] if not self.is_inmem else 'IN_MEM'
            self.progress = progress
            self.q = q
            self._arr_cache = None  # dict containing key 'pos' and 'arr_cached'
            self._geotransform = None
            self._projection = None
            self._shape = None
            self._dtype = None
            self._nodata = nodata
            self._mask_nodata = None
            self._mask_baddata = None
111 112
            self._footprint_poly = None
            self._gdalDataset_meta_already_set = False
113 114
            self._metadata = None
            self._bandnames = None
115 116

            if bandnames:
117
                self.bandnames = bandnames  # use property in order to validate given value
118
            if geotransform:
119
                self.geotransform = geotransform  # use property in order to validate given value
120
            if projection:
121
                self.projection = projection  # use property in order to validate given value
122 123 124 125 126 127 128 129 130 131

            if self.filePath:
                self.set_gdalDataset_meta()

    @property
    def arr(self):
        return self._arr

    @arr.setter
    def arr(self, ndarray):
132 133
        assert isinstance(ndarray, np.ndarray), "'arr' can only be set to a numpy array! Got %s." % type(ndarray)
        # assert ndarray.shape == self.shape, "'arr' can only be set to a numpy array with shape %s. Received %s. " \
134 135 136 137 138
        #                                    "If you need to change the dimensions, create a new instance of %s." \
        #                                    %(self.shape, ndarray.shape, self.__class__.__name__)
        #  THIS would avoid warping like this: geoArr.arr, geoArr.gt, geoArr.prj = warp(...)

        if ndarray.shape != self.shape:
139
            self.flush_cache()  # the cached array is not useful anymore
140 141 142 143 144

        self._arr = ndarray

    @property
    def bandnames(self):
145
        if self._bandnames and len(self._bandnames) == self.bands:
146 147 148 149 150 151 152 153 154 155 156
            return self._bandnames
        else:
            self._bandnames = OrderedDict(('B%s' % band, i) for i, band in enumerate(range(1, self.bands + 1)))
            return self._bandnames

    @bandnames.setter
    def bandnames(self, list_bandnames):
        # type: (list) -> None

        if list_bandnames:
            assert isinstance(list_bandnames, list), "A list must be given when setting the 'bandnames' attribute. " \
157
                                                     "Received %s." % type(list_bandnames)
158 159 160 161 162
            assert len(list_bandnames) == self.bands, \
                'Number of given bandnames does not match number of bands in array.'
            assert len(list(set([type(b) for b in list_bandnames]))) == 1 and type(list_bandnames[0] == 'str'), \
                "'bandnames must be a set of strings. Got other datetypes in there.'"
            bN_dict = OrderedDict((band, i) for i, band in enumerate(list_bandnames))
163 164
            assert len(
                bN_dict) == self.bands, 'Bands must not have the same name. Received band list: %s' % list_bandnames
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

            self._bandnames = bN_dict

    @property
    def is_inmem(self):
        """Check if associated image array is completely loaded into memory."""

        return isinstance(self.arr, np.ndarray)

    @property
    def shape(self):
        """Get the array shape of the associated image array."""

        if self.is_inmem:
            return self.arr.shape
        else:
            if self._shape:
                return self._shape
            else:
                self.set_gdalDataset_meta()
                return self._shape

    @property
    def ndim(self):
        """Get the number dimensions of the associated image array."""
        return len(self.shape)

    @property
    def rows(self):
        """Get the number of rows of the associated image array."""

        return self.shape[0]

    @property
    def columns(self):
        """Get the number of columns of the associated image array."""

        return self.shape[1]

    cols = alias_property('columns')

    @property
    def bands(self):
        """Get the number of bands of the associated image array."""

210
        return self.shape[2] if len(self.shape) > 2 else 1
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

    @property
    def dtype(self):
        """Get the numpy data type of the associated image array."""

        if self._dtype:
            return self._dtype
        elif self.is_inmem:
            return self.arr.dtype
        else:
            self.set_gdalDataset_meta()
            return self._dtype

    @property
    def geotransform(self):
226
        """Get the GDAL GeoTransform of the associated image, e.g., (283500.0, 5.0, 0.0, 4464500.0, 0.0, -5.0)"""
227 228 229 230 231 232 233

        if self._geotransform:
            return self._geotransform
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
            return self._geotransform
        else:
234
            return [0, 1, 0, 0, 0, -1]
235 236 237

    @geotransform.setter
    def geotransform(self, gt):
238 239
        assert isinstance(gt, (list, tuple)) and len(gt) == 6,\
            'geotransform must be a list with 6 numbers. Got %s.' % str(gt)
240

241 242
        for i in gt:
            assert isinstance(i, (int, float)), "geotransform must contain only numbers. Got '%s'." % i
243

244
        self._geotransform = gt
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

    gt = alias_property('geotransform')

    @property
    def xgsd(self):
        """Get the X resolution in units of the given or detected projection."""

        return self.geotransform[1]

    @property
    def ygsd(self):
        """Get the Y resolution in units of the given or detected projection."""

        return abs(self.geotransform[5])

    @property
    def xygrid_specs(self):
        """
        Get the specifications for the X/Y coordinate grid, e.g. [[15,30], [0,30]] for a coordinate with its origin
        at X/Y[15,0] and a GSD of X/Y[15,30].
        """

267
        def get_grid(gt, xgsd, ygsd): return [[gt[0], gt[0] + xgsd], [gt[3], gt[3] - ygsd]]
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
        return get_grid(self.geotransform, self.xgsd, self.ygsd)

    @property
    def projection(self):
        """
        Get the projection of the associated image. Setting the projection is only allowed if GeoArray has been
        instanced from memory or the associated file on disk has no projection.
        """

        if self._projection:
            return self._projection
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
            return self._projection
        else:
            return ''

    @projection.setter
    def projection(self, prj):
        if self.filePath:
288
            assert self.projection is None or prj_equal(self.projection, prj), \
289
                "Cannot set %s.projection to the given value because it does not match the projection from the file " \
290
                "on disk." % self.__class__.__name__
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        else:
            self._projection = prj

    prj = alias_property('projection')

    @property
    def epsg(self):
        """Get the EPSG code of the projection of the GeoArray."""

        return WKT2EPSG(self.projection)

    @epsg.setter
    def epsg(self, epsg_code):
        self.projection = EPSG2WKT(epsg_code)

    @property
    def box(self):
        mapPoly = get_footprint_polygon(get_corner_coordinates(gt=self.geotransform, cols=self.columns, rows=self.rows))
        return boxObj(gt=self.geotransform, prj=self.projection, mapPoly=mapPoly)

    @property
    def nodata(self):
        """
        Get the nodata value of the GeoArray. If GeoArray has been instanced with a file path the file is checked
        for an existing nodata value. Otherwise (if no value is exlicitly given during object instanciation) the nodata
        value is tried to be automatically detected.
        """

        if self._nodata is not None:
            return self._nodata
        else:
            # try to get nodata value from file
            if not self.is_inmem:
                self.set_gdalDataset_meta()
            if self._nodata is None:
Daniel Scheffler's avatar
Bugfix  
Daniel Scheffler committed
326
                self._nodata = self.find_noDataVal()
327 328 329 330 331 332
                if self._nodata == 'ambiguous':
                    warnings.warn('Nodata value could not be clearly identified. It has been set to None.')
                    self._nodata = None
                else:
                    if self._nodata is not None and not self.q:
                        print("Automatically detected nodata value for %s '%s': %s"
333
                              % (self.__class__.__name__, self.basename, self._nodata))
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
            return self._nodata

    @nodata.setter
    def nodata(self, value):
        self._nodata = value

    @property
    def mask_nodata(self):
        """
        Get the nodata mask of the associated image array. It is calculated using all image bands.
        """

        if self._mask_nodata is not None:
            return self._mask_nodata
        else:
349
            self.calc_mask_nodata()  # sets self._mask_nodata
350 351 352 353 354 355 356 357 358 359 360
            return self._mask_nodata

    @mask_nodata.setter
    def mask_nodata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import NoDataMask
361 362
            geoArr_mask = NoDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
363
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
364
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
365 366 367 368

            assert geoArr_mask.bands == 1, \
                'Expected one single band as nodata mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided nodata mask must have the same number of ' \
369
                                                            'rows and columns as the %s itself.' % imName
370 371
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given nodata mask for %s must match the geotransform of the %s itself. ' \
372
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
373 374
            assert not geoArr_mask.prj or prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given nodata mask for the %s must match the projection of the %s itself.' \
375
                % (imName, self.__class__.__name__)
376 377

            self._mask_nodata = geoArr_mask
378 379 380 381 382 383
        else:
            del self.mask_nodata

    @mask_nodata.deleter
    def mask_nodata(self):
        self._mask_nodata = None
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

    @property
    def mask_baddata(self):
        """
        Returns the bad data mask for the associated image array if it has been explicitly previously. It can be set
         by passing a file path, a numpy array or an instance of GeoArray to the setter of this property.
        """

        return self._mask_baddata

    @mask_baddata.setter
    def mask_baddata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import BadDataMask
403 404
            geoArr_mask = BadDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
405
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
406
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
407 408 409 410

            assert geoArr_mask.bands == 1, \
                'Expected one single band as bad data mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided bad data mask must have the same number of ' \
411
                                                            'rows and columns as the %s itself.' % imName
412 413
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given bad data mask for %s must match the geotransform of the %s itself. ' \
414
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
415 416
            assert prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given bad data mask for the %s must match the projection of the %s itself.' \
417
                % (imName, self.__class__.__name__)
418 419

            self._mask_baddata = geoArr_mask
420 421 422 423 424 425
        else:
            del self.mask_baddata

    @mask_baddata.deleter
    def mask_baddata(self):
        self._mask_baddata = None
426 427 428 429 430 431 432 433 434 435

    @property
    def footprint_poly(self):
        # FIXME should return polygon in image coordinates if no projection is available
        """
        Get the footprint polygon of the associated image array (returns an instance of shapely.geometry.Polygon.
        """

        if self._footprint_poly is None:
            assert self.mask_nodata is not None, 'A nodata mask is needed for calculating the footprint polygon. '
436
            if np.std(self.mask_nodata[:]) == 0:
437 438 439 440
                # do not run raster2polygon if whole image is filled with data
                self._footprint_poly = self.box.mapPoly
            else:
                try:
441 442
                    multipolygon = raster2polygon(self.mask_nodata.astype(np.uint8), self.gt, self.prj, exact=False,
                                                  progress=self.progress, q=self.q, maxfeatCount=10, timeout=3)
443
                    self._footprint_poly = fill_holes_within_poly(multipolygon)
444
                except (RuntimeError, TimeoutError):
445 446 447 448
                    if not self.q:
                        warnings.warn("\nCalculation of footprint polygon failed for %s '%s'. Using outer bounds. One "
                                      "reason could be that the nodata value appears within the actual image (not only "
                                      "as fill value). To avoid this use another nodata value. Current nodata value is "
449
                                      "%s." % (self.__class__.__name__, self.basename, self.nodata))
450 451 452
                    self._footprint_poly = self.box.mapPoly

            # validation
453 454 455 456
            assert not polyVertices_outside_poly(self._footprint_poly, self.box.mapPoly), \
                "Computing footprint polygon for %s '%s' failed. The resulting polygon is partly or completely " \
                "outside of the image bounds." % (self.__class__.__name__, self.basename)
            # assert self._footprint_poly
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
            # for XY in self.corner_coord:
            #    assert self.GeoArray.box.mapPoly.contains(Point(XY)) or self.GeoArray.box.mapPoly.touches(Point(XY)), \
            #        "The corner position '%s' is outside of the %s." % (XY, self.imName)

        return self._footprint_poly

    @footprint_poly.setter
    def footprint_poly(self, poly):
        if isinstance(poly, Polygon):
            self._footprint_poly = poly
        elif isinstance(poly, str):
            self._footprint_poly = shply_loads(poly)
        else:
            raise ValueError("'footprint_poly' can only be set from a shapely polygon or a WKT string.")

    @property
    def metadata(self):
        """
        Returns a GeoDataFrame containing all available metadata (read from file if available).
        Use 'metadata[band_index].to_dict()' to get a metadata dictionary for a specific band.
        Use 'metadata.loc[row_name].to_dict()' to get all metadata values of the same key for all bands as dictionary.
        Use 'metadata.loc[row_name, band_index] = value' to set a new value.

        :return:  geopandas.GeoDataFrame
        """

        if self._metadata is not None:
            return self._metadata
        else:
            default = GeoDataFrame(columns=range(self.bands))
487
            # for bn,idx in self.bandnames.items():
488 489 490 491 492 493 494 495 496 497
            #    default.loc['band_index',bn] = idx
            self._metadata = default
            if not self.is_inmem:
                self.set_gdalDataset_meta()
                return self._metadata
            else:
                return self._metadata

    @metadata.setter
    def metadata(self, GDF):
498
        assert isinstance(GDF, (GeoDataFrame, DataFrame)) and len(GDF.columns) == self.bands, \
499
            "%s.metadata can only be set with an instance of geopandas.GeoDataFrame of which the column number " \
500
            "corresponds to the band number of %s." % (self.__class__.__name__, self.__class__.__name__)
501 502 503 504 505
        self._metadata = GDF

    meta = alias_property('metadata')

    def __getitem__(self, given):
506
        if isinstance(given, (int, float, slice)) and self.ndim == 3:
507 508 509 510 511 512 513 514 515 516 517 518 519
            # handle 'given' as index for 3rd (bands) dimension
            if self.is_inmem:
                return self.arr[:, :, given]
            else:
                return self.from_path(self.arg, [given])

        elif isinstance(given, str):
            # behave like a dictionary and return the corresponding band
            if self.bandnames:
                if given not in self.bandnames:
                    raise ValueError("'%s' is not a known band. Known bands are: %s"
                                     % (given, ', '.join(list(self.bandnames.keys()))))
                if self.is_inmem:
520
                    return self.arr if self.ndim == 2 else self.arr[:, :, self.bandnames[given]]
521 522 523 524
                else:
                    return self.from_path(self.arg, [self.bandnames[given]])
            else:
                raise ValueError('String indices are only supported if %s has been instanced with bandnames given.'
525
                                 % self.__class__.__name__)
526 527 528 529 530 531 532

        elif isinstance(given, (tuple, list)):
            # handle requests like geoArr[[1,2],[3,4]  -> not implemented in from_path if array is not in mem
            types = [type(i) for i in given]
            if list in types or tuple in types:
                self.to_mem()

533
            if len(given) == 3:
534 535

                # handle strings in the 3rd dim of 'given' -> convert them to a band index
536
                if isinstance(given[2], str):
537 538 539 540 541 542 543 544
                    if self.bandnames:
                        if given[2] not in self.bandnames:
                            raise ValueError("'%s' is not a known band. Known bands are: %s"
                                             % (given[2], ', '.join(list(self.bandnames.keys()))))

                        band_idx = self.bandnames[given[2]]
                        # NOTE: the string in the 3rd is ignored if ndim==2 and band_idx==0
                        if self.is_inmem:
545
                            return self.arr if (self.ndim == 2 and band_idx == 0) else self.arr[:, :, band_idx]
546
                        else:
547 548
                            getitem_params = \
                                given[:2] if (self.ndim == 2 and band_idx == 0) else given[:2] + (band_idx,)
549 550 551 552 553 554 555
                            return self.from_path(self.arg, getitem_params)
                    else:
                        raise ValueError(
                            'String indices are only supported if %s has been instanced with bandnames given.'
                            % self.__class__.__name__)

                # in case a third dim is requested from 2D-array -> ignore 3rd dim if 3rd dim is 0
556
                elif self.ndim == 2 and given[2] == 0:
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
                    if self.is_inmem:
                        return self.arr[given[:2]]
                    else:
                        return self.from_path(self.arg, given[:2])

        # if nothing has been returned until here -> behave like a numpy array
        if self.is_inmem:
            return self.arr[given]
        else:
            getitem_params = [given] if isinstance(given, slice) else given
            return self.from_path(self.arg, getitem_params)

    def __setitem__(self, idx, array2set):
        """Overwrites the pixel values of GeoArray.arr with the given array.

        :param idx:         <int, list, slice> the index position to overwrite
        :param array2set:   <np.ndarray> array to be set. Must be compatible to the given index position.
        :return:
        """

        if self.is_inmem:
            self.arr[idx] = array2set
        else:
            raise NotImplementedError('Item assignment for %s instances that are not in memory is not yet supported.'
581
                                      % self.__class__.__name__)
582 583 584

    def __getattr__(self, attr):
        # check if the requested attribute can not be present because GeoArray has been instanced with an array
585 586
        if attr not in self.__dir__() and not self.is_inmem and attr in ['shape', 'dtype', 'geotransform',
                                                                         'projection']:
587 588
            self.set_gdalDataset_meta()

589 590 591
        if attr in self.__dir__():  # __dir__() includes also methods and properties
            return self.__getattribute__(attr)  # __getattribute__ avoids infinite loop
        elif hasattr(np.array([]), attr):
592 593
            return self[:].__getattribute__(attr)
        else:
594
            raise AttributeError("%s object has no attribute '%s'." % (self.__class__.__name__, attr))
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621

    def __getstate__(self):
        """Defines how the attributes of GMS object are pickled."""

        # clean array cache in order to avoid cache pickling
        self.flush_cache()

        return self.__dict__

    def __setstate__(self, state):
        """Defines how the attributes of GMS object are unpickled.
        NOTE: This method has been implemented because otherwise pickled and unpickled instances show recursion errors
        within __getattr__ when requesting any attribute.
        """

        self.__dict__ = state

    def calc_mask_nodata(self, fromBand=None, overwrite=False):
        """Calculates a no data mask with (values: 0=nodata; 1=data)

        :param fromBand:  <int> index of the band to be used (if None, all bands are used)
        :param overwrite: <bool> whether to overwrite existing nodata mask that has already been calculated
        :return:
        """

        if self._mask_nodata is None or overwrite:
            assert self.ndim in [2, 3], "Only 2D or 3D arrays are supported. Got a %sD array." % self.ndim
622
            arr = self[:, :, fromBand] if self.ndim == 3 and fromBand is not None else self[:]
623 624 625 626 627

            if self.nodata is None:
                self.mask_nodata = np.ones((self.rows, self.cols), np.bool)
            else:
                self.mask_nodata = np.where(arr == self.nodata, 0, 1).astype(np.bool) if arr.ndim == 2 else \
628
                    np.all(np.where(arr == self.nodata, 0, 1), axis=2).astype(np.bool)
629

630 631 632 633 634
    def find_noDataVal(self, bandIdx=0, sz=3):
        """Tries to derive no data value from homogenious corner pixels within 3x3 windows (by default).
        :param bandIdx:
        :param sz: window size in which corner pixels are analysed
        """
635
        def get_mean_std(corner_subset): return {'mean': np.mean(corner_subset), 'std': np.std(corner_subset)}
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

        wins = [self[0:sz, 0:sz, bandIdx], self[0:sz, -sz:, bandIdx],
                self[-sz:, -sz:, bandIdx], self[-sz:, 0:sz, bandIdx]]  # UL, UR, LR, LL
        means_stds = [get_mean_std(win) for win in wins]

        possVals = [i['mean'] for i in means_stds if i['std'] == 0]
        # possVals==[]: all corners are filled with data; np.std(possVals)==0: noDataVal clearly identified

        if possVals:
            if np.std(possVals) != 0:
                # different possible nodata values have been found in the image corner
                return 'ambiguous'
            else:
                if len(possVals) <= 2:
                    # each window in each corner
                    warnings.warn("\nAutomatic nodata value detection returned the value %s for GeoArray '%s' but this "
                                  "seems to be unreliable (occurs in only %s). To avoid automatic detection, just pass "
653 654 655
                                  "the correct nodata value."
                                  % (possVals[0], self.basename, ('2 image corners' if len(possVals) == 2 else
                                                                  '1 image corner')))
656 657 658 659
                return possVals[0]
        else:
            return None

660 661 662 663 664 665 666 667 668 669
    def set_gdalDataset_meta(self):
        """Retrieves GDAL metadata from file. This function is only executed once to avoid overwriting of user defined
         attributes, that are defined after object instanciation.

        :return:
        """

        if not self._gdalDataset_meta_already_set:
            assert self.filePath
            ds = gdal.Open(self.filePath)
670 671 672
            if not ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

673
            # set private class variables (in order to avoid recursion error)
674 675
            self._shape = tuple([ds.RasterYSize, ds.RasterXSize] + ([ds.RasterCount] if ds.RasterCount > 1 else []))
            self._dtype = gdal_array.GDALTypeCodeToNumericTypeCode(ds.GetRasterBand(1).DataType)
676
            self._geotransform = ds.GetGeoTransform()
677 678 679
            # temp conversion to EPSG needed because GDAL seems to modify WKT string when writing file to disk
            # (e.g. using gdal_merge) -> conversion to EPSG and back undos that
            self._projection = EPSG2WKT(WKT2EPSG(ds.GetProjection()))
680

681 682 683 684
            if 'nodata' not in self._initParams or self._initParams['nodata'] is None:
                band = ds.GetRasterBand(1)
                # FIXME this does not support different nodata values within the same file
                self._nodata = band.GetNoDataValue()
685

686
            # read global domain metadata
687 688
            # TODO check to specifically use the 'ENVI' metadata domain ds.GetMetadata('ENVI')
            global_meta = ds.GetMetadata()
689

690 691
            # read band domain metadata
            for b in range(self.bands):
692 693
                band = ds.GetRasterBand(b + 1)
                meta_gs = GeoSeries(band.GetMetadata())
694

695 696 697 698 699 700 701
                # add band names if available
                if 'Band_%s' % str(b + 1) in global_meta.keys():
                    meta_gs['band_name'] = global_meta['Band_%s' % str(b + 1)]

                # TODO add the remaining global metadata

                self.metadata[b] = meta_gs
702

703
            del ds, band
704 705 706 707 708 709 710 711 712 713 714 715 716 717

        self._gdalDataset_meta_already_set = True

    def from_path(self, path, getitem_params=None):
        # type: (str, list) -> np.ndarray
        """Read a GDAL compatible raster image from disk, with respect to the given image position.
        NOTE: If the requested array position is already in cache, it is returned from there.

        :param path:            <str> the file path of the image to read
        :param getitem_params:  <list> a list of slices in the form [row_slice, col_slice, band_slice]
        :return out_arr:        <np.ndarray> the output array
        """

        ds = gdal.Open(path)
718 719 720
        if not ds:
            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

721
        R, C, B = ds.RasterYSize, ds.RasterXSize, ds.RasterCount
722
        del ds
723

724
        # convert getitem_params to subset area to be read ##
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
        rS, rE, cS, cE, bS, bE, bL = [None] * 7

        # populate rS, rE, cS, cE, bS, bE, bL
        if getitem_params:
            if len(getitem_params) >= 2:
                givenR, givenC = getitem_params[:2]
                if isinstance(givenR, slice):
                    rS = givenR.start
                    rE = givenR.stop - 1 if givenR.stop is not None else None
                elif isinstance(givenR, int):
                    rS = givenR
                    rE = givenR
                if isinstance(givenC, slice):
                    cS = givenC.start
                    cE = givenC.stop - 1 if givenC.stop is not None else None
                elif isinstance(givenC, int):
                    cS = givenC
                    cE = givenC
            if len(getitem_params) in [1, 3]:
                givenB = getitem_params[2] if len(getitem_params) == 3 else getitem_params[0]
                if isinstance(givenB, slice):
                    bS = givenB.start
                    bE = givenB.stop - 1 if givenB.stop is not None else None
                elif isinstance(givenB, int):
                    bS = givenB
                    bE = givenB
751
                elif isinstance(givenB, (tuple, list)):
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
                    typesInGivenB = [type(i) for i in givenB]
                    assert len(list(set(typesInGivenB))) == 1, \
                        'Mixed data types within the list of bands are not supported.'
                    if isinstance(givenB[0], int):
                        bL = list(givenB)
                    elif isinstance(givenB[0], str):
                        bL = [self.bandnames[i] for i in givenB]
                elif type(givenB) in [str]:
                    bL = [self.bandnames[givenB]]

        # set defaults for not given values
        rS = rS if rS is not None else 0
        rE = rE if rE is not None else R - 1
        cS = cS if cS is not None else 0
        cE = cE if cE is not None else C - 1
        bS = bS if bS is not None else 0
        bE = bE if bE is not None else B - 1
        bL = list(range(bS, bE + 1)) if not bL else bL

        # convert negative to positive ones
        rS = rS if rS >= 0 else self.rows + rS
        rE = rE if rE >= 0 else self.rows + rE
        cS = cS if cS >= 0 else self.columns + cS
        cE = cE if cE >= 0 else self.columns + cE
        bS = bS if bS >= 0 else self.bands + bS
        bE = bE if bE >= 0 else self.bands + bE
778
        bL = [b if b >= 0 else (self.bands + b) for b in bL]
779 780

        # validate subset area bounds to be read
781 782 783 784 785 786 787
        def msg(v, idx, sz):
            # FIXME numpy raises that error ONLY for the 2nd axis
            return '%s is out of bounds for axis %s with size %s' % (v, idx, sz)

        for val, axIdx, axSize in zip([rS, rE, cS, cE, bS, bE], [0, 0, 1, 1, 2, 2], [R, R, C, C, B, B]):
            if not 0 <= val <= axSize - 1:
                raise ValueError(msg(val, axIdx, axSize))
788 789

        # summarize requested array position in arr_pos
790
        # NOTE: # bandlist must be string because truth value of an array with more than one element is ambiguous
791 792 793
        arr_pos = dict(rS=rS, rE=rE, cS=cS, cE=cE, bS=bS, bE=bE, bL=bL)

        # check if the requested array position is already in cache -> if yes, return it from there
794
        if self._arr_cache is not None and self._arr_cache['pos'] == arr_pos:
795
            out_arr = self._arr_cache['arr_cached']
796 797 798 799 800 801 802

        else:
            # TODO insert a multiprocessing.Lock here in order to prevent IO bottlenecks?
            # read subset area from disk
            if bL == list(range(0, B)):
                tempArr = gdalnumeric.LoadFile(path, cS, rS, cE - cS + 1, rE - rS + 1)
                out_arr = np.swapaxes(np.swapaxes(tempArr, 0, 2), 0, 1) if B > 1 else tempArr
803 804
                if out_arr is None:
                    raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
805 806 807 808
            else:
                ds = gdal.Open(path)
                if len(bL) == 1:
                    band = ds.GetRasterBand(bL[0] + 1)
809
                    out_arr = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
810 811
                    if out_arr is None:
                        raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
812
                    del band
813 814 815 816 817
                else:
                    out_arr = np.empty((rE - rS + 1, cE - cS + 1, len(bL)))
                    for i, bIdx in enumerate(bL):
                        band = ds.GetRasterBand(bIdx + 1)
                        out_arr[:, :, i] = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
818 819
                        if out_arr is None:
                            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
820
                        del band
821

822
                del ds
823 824

            # only set self.arr if the whole cube has been read (in order to avoid sudden shape changes)
825
            if out_arr.shape == self.shape:
826 827 828 829 830
                self.arr = out_arr

            # write _arr_cache
            self._arr_cache = dict(pos=arr_pos, arr_cached=out_arr)

831 832
        return out_arr  # TODO implement check of returned datatype (e.g. NoDataMask should always return np.bool
        # TODO -> would be np.int8 if an int8 file is read from disk
833 834 835 836 837 838 839 840

    def save(self, out_path, fmt='ENVI', creationOptions=None):
        # type: (str, str, list) -> None
        """Write the raster data to disk.

        :param out_path:        <str> output path
        :param fmt:             <str> the output format / GDAL driver code to be used for output creation, e.g. 'ENVI'
                                Refer to http://www.gdal.org/formats_list.html to get a full list of supported formats.
841 842
        :param creationOptions: <list> GDAL creation options,
                                e.g., ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
843 844 845
        """

        if not self.q:
846 847
            print('Writing GeoArray of size %s to %s.' % (self.shape, out_path))
        assert self.ndim in [2, 3], 'Only 2D- or 3D arrays are supported.'
848 849 850 851 852 853 854 855 856 857

        driver = gdal.GetDriverByName(fmt)
        if driver is None:
            raise Exception("'%s' is not a supported GDAL driver. Refer to www.gdal.org/formats_list.html for full "
                            "list of GDAL driver codes." % fmt)

        if not os.path.isdir(os.path.dirname(out_path)):
            os.makedirs(os.path.dirname(out_path))

        if self.is_inmem:
858 859
            ds = get_GDAL_ds_inmem(self.arr, self.geotransform, self.projection,
                                   self.nodata)  # expects rows,columns,bands
860 861 862

            # set metadata
            if not self.metadata.empty:
863 864 865
                global_meta = {}

                # set band domain metadata
866
                for bidx in range(self.bands):
867
                    band = ds.GetRasterBand(bidx + 1)
868
                    meta2write = self.metadata[bidx].to_dict()
869
                    meta2write = dict((k, v) for k, v in meta2write.items() if v is not np.nan)
870 871

                    if 'band_name' in meta2write:
872
                        global_meta['Band_%s' % str(bidx + 1)] = meta2write['band_name']
873 874
                        del meta2write['band_name']

875
                    band.SetMetadata(meta2write)
876
                    del band
877

878 879 880
                # set global domain metadata
                ds.SetMetadata(global_meta)

881 882 883 884 885
                # get ENVI metadata domain
                # ds_orig = gdal.Open(self.filePath)
                # envi_meta_domain = ds_orig.GetMetadata('ENVI')
                # ds.SetMetadata(envi_meta_domain, 'ENVI')
                # ds_orig = None
886

887 888
            driver.CreateCopy(out_path, ds, options=creationOptions if creationOptions else [])

889 890 891 892
            # rows, columns, bands => bands, rows, columns
            # out_arr = self.arr if self.ndim == 2 else np.swapaxes(np.swapaxes(self.arr, 0, 2), 1, 2)
            # gdalnumeric.SaveArray(out_arr, out_path, format=fmt, prototype=ds) # expects bands,rows,columns
            del ds
893 894 895

        else:
            src_ds = gdal.Open(self.filePath)
896 897 898
            if not src_ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

899 900
            gdal_Translate = get_gdal_func('Translate')
            gdal_Translate(out_path, src_ds, format=fmt, creationOptions=creationOptions)
901
            del src_ds
902 903 904 905 906 907 908 909 910

        if not os.path.exists(out_path):
            raise Exception(gdal.GetLastErrorMsg())

    def dump(self, out_path):
        # type: (str) -> None
        """Serialize the whole object instance to disk using dill."""

        import dill
911 912
        with open(out_path, 'wb') as outF:
            dill.dump(self, outF)
913 914 915 916 917 918 919 920 921

    def _get_plottable_image(self, xlim=None, ylim=None, band=None, boundsMap=None, boundsMapPrj=None, res_factor=None,
                             nodataVal=None, out_prj=None):
        # handle limits
        if boundsMap:
            boundsMapPrj = boundsMapPrj if boundsMapPrj else self.prj
            image2plot, gt, prj = self.get_mapPos(boundsMap, boundsMapPrj, band2get=band,
                                                  fillVal=nodataVal if nodataVal is not None else self.nodata)
        else:
922 923
            cS, cE = xlim if isinstance(xlim, (tuple, list)) else (0, self.columns)
            rS, rE = ylim if isinstance(ylim, (tuple, list)) else (0, self.rows)
924 925

            image2plot = self[rS:rE, cS:cE, band] if band is not None else self[rS:rE, cS:cE]
926
            gt, prj = self.geotransform, self.projection
927

928
        transOpt = ['SRC_METHOD=NO_GEOTRANSFORM'] if tuple(gt) == (0, 1, 0, 0, 0, -1) else None
929
        xdim, ydim = None, None
930
        nodataVal = nodataVal if nodataVal is not None else self.nodata
931 932

        if res_factor != 1. and image2plot.shape[0] * image2plot.shape[1] > 1e6:  # shape > 1000*1000
933 934 935 936
            # sample image down / normalize
            xdim, ydim = \
                (self.columns * res_factor, self.rows * res_factor) if res_factor else \
                tuple((np.array([self.columns, self.rows]) / (np.array([self.columns, self.rows]).max() / 1000)))
937 938 939
            xdim, ydim = int(xdim), int(ydim)

        if xdim or ydim or out_prj:
940
            from py_tools_ds.geo.raster.reproject import warp_ndarray
941 942 943 944 945
            image2plot, gt, prj = warp_ndarray(image2plot, self.geotransform, self.projection,
                                               out_XYdims=(xdim, ydim), in_nodata=nodataVal, out_nodata=nodataVal,
                                               transformerOptions=transOpt, out_prj=out_prj, q=True)
            if transOpt and 'NO_GEOTRANSFORM' in ','.join(transOpt):
                image2plot = np.flipud(image2plot)
946 947
                gt = list(gt)
                gt[3] = 0
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969

            if xdim or ydim:
                print('Note: array has been downsampled to %s x %s for faster visualization.' % (xdim, ydim))

        return image2plot, gt, prj

    def show(self, xlim=None, ylim=None, band=None, boundsMap=None, boundsMapPrj=None, figsize=None,
             interpolation='none', vmin=None, vmax=None, cmap=None, nodataVal=None, res_factor=None, interactive=False):
        """Plots the desired array position into a figure.

        :param xlim:            [start_column, end_column]
        :param ylim:            [start_row, end_row]
        :param band:            the band index of the band to be plotted (if None and interactive==True all bands are
                                shown, otherwise the first band is chosen)
        :param boundsMap:       xmin, ymin, xmax, ymax
        :param boundsMapPrj:
        :param figsize:
        :param interpolation:
        :param vmin:
        :param vmax:
        :param cmap:
        :param nodataVal:
Daniel Scheffler's avatar
Daniel Scheffler committed
970 971
        :param res_factor:      <float> resolution factor for downsampling of the image to be plotted in order to save
                                plotting time and memory (default=None -> downsampling is performed to 1000x1000)
972 973 974 975 976 977 978 979
        :param interactive:     <bool> activates interactive plotting based on 'holoviews' library.
                                NOTE: this deactivates the magic '% matplotlib inline' in Jupyter Notebook
        :return:
        """

        band = (band if band is not None else 0) if not interactive else band

        # get image to plot
980
        nodataVal = nodataVal if nodataVal is not None else self.nodata
Daniel Scheffler's avatar
Daniel Scheffler committed
981 982 983
        image2plot, gt, prj = \
            self._get_plottable_image(xlim, ylim, band, boundsMap=boundsMap, boundsMapPrj=boundsMapPrj,
                                      res_factor=res_factor, nodataVal=nodataVal)
984 985

        # set color palette
986 987
        palette = cmap if cmap else plt.cm.gray
        if nodataVal is not None and np.std(image2plot) != 0:  # do not show nodata
988
            image2plot = np.ma.masked_equal(image2plot, nodataVal)
989
            vmin_auto, vmax_auto = np.percentile(image2plot.compressed(), 2), np.percentile(image2plot.compressed(), 98)
990 991 992 993 994 995 996
            palette.set_bad('aqua', 0)
        else:
            vmin_auto, vmax_auto = np.percentile(image2plot, 2), np.percentile(image2plot, 98)

        vmin = vmin if vmin is not None else vmin_auto
        vmax = vmax if vmax is not None else vmax_auto

997
        palette.set_over('1')
998 999
        palette.set_under('0')

1000
        if interactive and image2plot.ndim == 3:
1001 1002 1003 1004 1005 1006 1007
            import holoviews as hv
            from skimage.exposure import rescale_intensity
            hv.notebook_extension('matplotlib')

            cS, cE = xlim if isinstance(xlim, (tuple, list)) else (0, self.columns - 1)
            rS, rE = ylim if isinstance(ylim, (tuple, list)) else (0, self.rows - 1)

1008
            image2plot = np.array(rescale_intensity(image2plot, in_range=(vmin, vmax)))
1009

1010 1011 1012 1013 1014 1015 1016
            def get_hv_image(b):
                # FIXME ylabels have the wrong order
                return hv.Image(image2plot[:, :, b] if b is not None else image2plot,
                                bounds=(cS, rS, cE, rE))(
                    style={'cmap': 'gray'}, plot={'fig_inches': 4 if figsize is None else figsize, 'show_grid': True})

            # hvIm = hv.Image(image2plot)(style={'cmap': 'gray'}, figure_inches=figsize)
1017 1018 1019 1020 1021 1022 1023
            hmap = hv.HoloMap([(band, get_hv_image(band)) for band in range(image2plot.shape[2])], kdims=['band'])

            return hmap

        else:
            if interactive:
                warnings.warn('Currently there is no interactive mode for single-band arrays. '
1024
                              'Switching to standard matplotlib figure..')  # TODO implement zoomable fig
1025 1026 1027 1028 1029

            # show image
            plt.figure(figsize=figsize)
            rows, cols = image2plot.shape[:2]
            plt.imshow(image2plot, palette, interpolation=interpolation, extent=(0, cols, rows, 0),
1030
                       vmin=vmin, vmax=vmax, )  # compressed excludes nodata values
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
            plt.show()

    def show_map(self, xlim=None, ylim=None, band=0, boundsMap=None, boundsMapPrj=None, ax=None, figsize=None,
                 interpolation='none', vmin=None, vmax=None, cmap=None, nodataVal=None, res_factor=None,
                 return_map=False, zoomable=False):
        """

        :param xlim:
        :param ylim:
        :param band:            band index (starting with 0)
        :param boundsMap:       xmin, ymin, xmax, ymax
        :param boundsMapPrj:
        :param ax:              allows to pass a matplotlib axis object where figure is plotted into
        :param figsize:
        :param interpolation:
        :param vmin:
        :param vmax:
        :param cmap:
        :param nodataVal:
Daniel Scheffler's avatar
Daniel Scheffler committed
1050 1051
        :param res_factor:      <float> resolution factor for downsampling of the image to be plotted in order to save
                                plotting time and memory (default=None -> downsampling is performed to 1000x1000)
1052 1053 1054 1055 1056
        :param return_map:
        :param zoomable:        <bool> enable or disable zooming via mpld3
        :return:
        """

1057 1058 1059
        try:
            from mpl_toolkits.basemap import Basemap
        except ImportError:
1060 1061
            warnings.warn('This function requires Basemap. You need to install basemap manually (see www./'
                          'matplotlib.org/basemap) if you want to plot maps. It is not automatically installed.')
1062
            raise
1063 1064 1065 1066 1067 1068
        try:
            import mpld3
            if zoomable:
                mpld3.enable_notebook()
            else:
                mpld3.disable_notebook()
1069
        except Exception:
1070 1071 1072 1073
            if zoomable:
                zoomable = False
                warnings.warn('mpld3 is not available. Zooming disabled.')

1074 1075 1076
        assert self.geotransform and tuple(self.geotransform) != (0, 1, 0, 0, 0, -1), \
            'A valid geotransform is needed for a map visualization. Got %s.' % list(self.geotransform)
        assert self.projection, 'A projection is needed for a map visualization. Got %s.' % self.projection
1077 1078

        # get image to plot
1079
        nodataVal = nodataVal if nodataVal is not None else self.nodata
1080 1081 1082 1083 1084
        image2plot, gt, prj = self._get_plottable_image(xlim, ylim, band, boundsMap=boundsMap,
                                                        boundsMapPrj=boundsMapPrj, res_factor=res_factor,
                                                        nodataVal=nodataVal, out_prj='epsg:4326')

        # calculate corner coordinates of plot
1085
        # if boundsMap:
1086 1087 1088 1089 1090
        #    boundsMapPrj = boundsMapPrj if boundsMapPrj else self.prj
        #    if not prj_equal(boundsMapPrj, 4326):
        #        boundsMap = reproject_shapelyGeometry(box(*boundsMap), boundsMapPrj, 4626).bounds
        #    xmin, ymin, xmax, ymax = boundsMap
        #    UL_XY, UR_XY, LR_XY, LL_XY = (xmin,ymax), (xmax, ymax), (xmax,ymin), (xmin, ymin)
1091 1092 1093
        # else:
        UL_XY, UR_XY, LR_XY, LL_XY = [(YX[1], YX[0]) for YX in GeoArray(image2plot, gt, prj).box.boxMapYX]
        center_lon, center_lat = (UL_XY[0] + UR_XY[0]) / 2., (UL_XY[1] + LL_XY[1]) / 2.
1094 1095 1096 1097 1098 1099

        # create map
        fig = plt.figure(figsize=figsize)
        plt.subplots_adjust(left=0.05, right=0.95, top=0.90, bottom=0.05, wspace=0.15, hspace=0.05)
        ax = ax if ax is not None else plt.subplot(111)

1100
        m = Basemap(projection='tmerc', resolution=None, lon_0=center_lon, lat_0=center_lat,
1101 1102 1103 1104
                    urcrnrlon=UR_XY[0], urcrnrlat=UR_XY[1], llcrnrlon=LL_XY[0], llcrnrlat=LL_XY[1])

        # set color palette
        palette = cmap if cmap else plt.cm.gray
1105
        if nodataVal is not None and np.std(image2plot) != 0:  # do not show nodata
1106 1107 1108 1109 1110 1111 1112
            image2plot = np.ma.masked_equal(image2plot, nodataVal)
            vmin_auto, vmax_auto = np.percentile(image2plot.compressed(), 2), np.percentile(image2plot.compressed(), 98)
            palette.set_bad('aqua', 0)
        else:
            vmin_auto, vmax_auto = np.percentile(image2plot, 2), np.percentile(image2plot, 98)
        vmin = vmin if vmin is not None else vmin_auto
        vmax = vmax if vmax is not None else vmax_auto
1113
        palette.set_over('1')
1114 1115 1116 1117 1118 1119 1120 1121 1122
        palette.set_under('0')

        # add image to map (y-axis must be inverted for basemap)
        if zoomable:
            m.imshow(image2plot, palette, interpolation=interpolation, vmin=vmin, vmax=vmax)
        else:
            m.imshow(np.flipud(image2plot), palette, interpolation=interpolation, vmin=vmin, vmax=vmax)

        # add coordinate grid lines
1123 1124
        parallels = np.arange(-90, 90., 0.25)  # TODO make this adjustable
        # parallels = np.arange(-90, 90., 0.1)
1125 1126 1127
        m.drawparallels(parallels, labels=[1, 0, 0, 0], fontsize=12, linewidth=0.4)

        meridians = np.arange(-180., 180., 0.25)
1128
        # meridians = np.arange(-180., 180., 0.1)
1129 1130 1131
        m.drawmeridians(meridians, labels=[0, 0, 0, 1], fontsize=12, linewidth=0.4)

        if return_map:
1132
            return fig, ax, m
1133 1134 1135 1136 1137 1138
        else:
            plt.show()

    def show_map_utm(self, xlim=None, ylim=None, band=0, figsize=None, interpolation='none', cmap=None,
                     nodataVal=None, vmin=None, vmax=None, res_factor=None, return_map=False):

1139 1140 1141
        try:
            from mpl_toolkits.basemap import Basemap
        except ImportError:
1142 1143
            warnings.warn('This function requires Basemap. You need to install basemap manually (see www./'
                          'matplotlib.org/basemap) if you want to plot maps. It is not automatically installed.')
1144
            raise
1145 1146 1147 1148
        warnings.warn(UserWarning('This function is still under construction and may not work as expected!'))
        # TODO debug this function

        # get image to plot
1149
        nodataVal = nodataVal if nodataVal is not None else self.nodata
1150 1151 1152 1153
        image2plot, gt, prj = self._get_plottable_image(xlim, ylim, band, res_factor, nodataVal)

        # calculate corner coordinates of plot
        box2plot = GeoArray(image2plot, gt, prj).box
1154
        # UL_XY, UR_XY, LR_XY, LL_XY = [(YX[1], YX[0]) for YX in GeoArray(image2plot, gt, prj).box.boxMapYX]
1155
        # Xarr, Yarr = self.box.get_coordArray_MapXY(prj=EPSG2WKT(4326))
1156 1157
        UL_XY, UR_XY, LR_XY, LL_XY = [transform_any_prj(self.projection, 'epsg:4326'