baseclasses.py 68.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# -*- coding: utf-8 -*-

import os
import warnings
from collections import OrderedDict

import numpy as np
from matplotlib import pyplot as plt
from osgeo import gdal_array
# custom
from shapely.geometry import Polygon
from shapely.wkt import loads as shply_loads
from six import PY3

# mpl_toolkits.basemap -> imported when GeoArray.show_map() is used
# dill -> imported when dumping GeoArray

try:
    from osgeo import gdal
    from osgeo import gdalnumeric
except ImportError:
    import gdal
    import gdalnumeric
from geopandas import GeoDataFrame, GeoSeries
from pandas import DataFrame
26 27 28 29 30 31 32
from py_tools_ds.convenience.object_oriented import alias_property
from py_tools_ds.geo.coord_calc import get_corner_coordinates
from py_tools_ds.geo.coord_grid import snap_bounds_to_pixGrid
from py_tools_ds.geo.coord_trafo import mapXY2imXY, imXY2mapXY, transform_any_prj, reproject_shapelyGeometry
from py_tools_ds.geo.projection import prj_equal, WKT2EPSG, EPSG2WKT
from py_tools_ds.geo.raster.conversion import raster2polygon
from py_tools_ds.geo.vector.topology \
33
    import get_footprint_polygon, polyVertices_outside_poly, fill_holes_within_poly
34 35
from py_tools_ds.geo.vector.geometry import boxObj
from py_tools_ds.io.raster.gdal import get_GDAL_ds_inmem
36 37 38 39 40
from py_tools_ds.compatibility.gdal import get_gdal_func

#  internal imports
from .subsetting import get_array_at_mapPos

41
if PY3:
42
    # noinspection PyCompatibility
43 44 45
    from builtins import TimeoutError, FileNotFoundError
else:
    from py_tools_ds.compatibility.python.exceptions import TimeoutError, FileNotFoundError
46

47
__author__ = 'Daniel Scheffler'
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72


class GeoArray(object):
    def __init__(self, path_or_array, geotransform=None, projection=None, bandnames=None, nodata=None, progress=True,
                 q=False):
        # type: (any, tuple, str, list, float, bool, bool) -> None
        """This class creates a fast Python interface for geodata - either on disk or in memory. It can be instanced with
        a file path or with a numpy array and the corresponding geoinformation. Instances can always be indexed like
        normal numpy arrays, no matter if GeoArray has been instanced from file or from an in-memory array. GeoArray
        provides a wide range of geo-related attributes belonging to the dataset as well as some functions for quickly
        visualizing the data as a map, a simple image or an interactive image.

        :param path_or_array:   a numpy.ndarray or a valid file path
        :param geotransform:    GDAL geotransform of the given array or file on disk
        :param projection:      projection of the given array or file on disk as WKT string
                                (only needed if GeoArray is instanced with an array)
        :param bandnames:       names of the bands within the input array, e.g. ['mask_1bit', 'mask_clouds'],
                                (default: ['B1', 'B2', 'B3', ...])
        :param nodata:          nodata value
        :param progress:        show progress bars (default: True)
        :param q:               quiet mode (default: False)
        """

        # TODO implement compatibility to GDAL VRTs
        if not (isinstance(path_or_array, (str, np.ndarray, GeoArray)) or
73
           issubclass(getattr(path_or_array, '__class__'), GeoArray)):
74
            raise ValueError("%s parameter 'arg' takes only string, np.ndarray or GeoArray(and subclass) instances. "
75
                             "Got %s." % (self.__class__.__name__, type(path_or_array)))
76 77

        if path_or_array is None:
78
            raise ValueError("The %s parameter 'path_or_array' must not be None!" % self.__class__.__name__)
79 80 81 82 83

        if isinstance(path_or_array, str):
            assert ' ' not in path_or_array, "The given path contains whitespaces. This is not supported by GDAL."

            if not os.path.exists(path_or_array):
84
                raise FileNotFoundError(path_or_array)
85

86 87
        if isinstance(path_or_array, GeoArray) or issubclass(getattr(path_or_array, '__class__'), GeoArray):
            self.__dict__ = path_or_array.__dict__.copy()
88
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
89 90 91 92 93 94
            self.geotransform = geotransform or self.geotransform
            self.projection = projection or self.projection
            self.bandnames = bandnames or list(self.bandnames.values())
            self._nodata = nodata if nodata is not None else self._nodata
            self.progress = False if progress is False else self.progress
            self.q = q if q is not None else self.q
95 96

        else:
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
            self.arg = path_or_array
            self._arr = path_or_array if isinstance(path_or_array, np.ndarray) else None
            self.filePath = path_or_array if isinstance(path_or_array, str) and path_or_array else None
            self.basename = os.path.splitext(os.path.basename(self.filePath))[0] if not self.is_inmem else 'IN_MEM'
            self.progress = progress
            self.q = q
            self._arr_cache = None  # dict containing key 'pos' and 'arr_cached'
            self._geotransform = None
            self._projection = None
            self._shape = None
            self._dtype = None
            self._nodata = nodata
            self._mask_nodata = None
            self._mask_baddata = None
112 113
            self._footprint_poly = None
            self._gdalDataset_meta_already_set = False
114 115
            self._metadata = None
            self._bandnames = None
116 117

            if bandnames:
118
                self.bandnames = bandnames  # use property in order to validate given value
119
            if geotransform:
120
                self.geotransform = geotransform  # use property in order to validate given value
121
            if projection:
122
                self.projection = projection  # use property in order to validate given value
123 124 125 126 127 128 129 130 131 132

            if self.filePath:
                self.set_gdalDataset_meta()

    @property
    def arr(self):
        return self._arr

    @arr.setter
    def arr(self, ndarray):
133 134
        assert isinstance(ndarray, np.ndarray), "'arr' can only be set to a numpy array! Got %s." % type(ndarray)
        # assert ndarray.shape == self.shape, "'arr' can only be set to a numpy array with shape %s. Received %s. " \
135 136 137 138 139
        #                                    "If you need to change the dimensions, create a new instance of %s." \
        #                                    %(self.shape, ndarray.shape, self.__class__.__name__)
        #  THIS would avoid warping like this: geoArr.arr, geoArr.gt, geoArr.prj = warp(...)

        if ndarray.shape != self.shape:
140
            self.flush_cache()  # the cached array is not useful anymore
141 142 143 144 145

        self._arr = ndarray

    @property
    def bandnames(self):
146
        if self._bandnames and len(self._bandnames) == self.bands:
147 148 149 150 151 152 153 154 155 156 157
            return self._bandnames
        else:
            self._bandnames = OrderedDict(('B%s' % band, i) for i, band in enumerate(range(1, self.bands + 1)))
            return self._bandnames

    @bandnames.setter
    def bandnames(self, list_bandnames):
        # type: (list) -> None

        if list_bandnames:
            assert isinstance(list_bandnames, list), "A list must be given when setting the 'bandnames' attribute. " \
158
                                                     "Received %s." % type(list_bandnames)
159 160 161 162 163
            assert len(list_bandnames) == self.bands, \
                'Number of given bandnames does not match number of bands in array.'
            assert len(list(set([type(b) for b in list_bandnames]))) == 1 and type(list_bandnames[0] == 'str'), \
                "'bandnames must be a set of strings. Got other datetypes in there.'"
            bN_dict = OrderedDict((band, i) for i, band in enumerate(list_bandnames))
164 165
            assert len(
                bN_dict) == self.bands, 'Bands must not have the same name. Received band list: %s' % list_bandnames
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

            self._bandnames = bN_dict

    @property
    def is_inmem(self):
        """Check if associated image array is completely loaded into memory."""

        return isinstance(self.arr, np.ndarray)

    @property
    def shape(self):
        """Get the array shape of the associated image array."""

        if self.is_inmem:
            return self.arr.shape
        else:
            if self._shape:
                return self._shape
            else:
                self.set_gdalDataset_meta()
                return self._shape

    @property
    def ndim(self):
        """Get the number dimensions of the associated image array."""
        return len(self.shape)

    @property
    def rows(self):
        """Get the number of rows of the associated image array."""

        return self.shape[0]

    @property
    def columns(self):
        """Get the number of columns of the associated image array."""

        return self.shape[1]

    cols = alias_property('columns')

    @property
    def bands(self):
        """Get the number of bands of the associated image array."""

211
        return self.shape[2] if len(self.shape) > 2 else 1
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

    @property
    def dtype(self):
        """Get the numpy data type of the associated image array."""

        if self._dtype:
            return self._dtype
        elif self.is_inmem:
            return self.arr.dtype
        else:
            self.set_gdalDataset_meta()
            return self._dtype

    @property
    def geotransform(self):
227
        """Get the GDAL GeoTransform of the associated image, e.g., (283500.0, 5.0, 0.0, 4464500.0, 0.0, -5.0)"""
228 229 230 231 232 233 234

        if self._geotransform:
            return self._geotransform
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
            return self._geotransform
        else:
235
            return [0, 1, 0, 0, 0, -1]
236 237 238

    @geotransform.setter
    def geotransform(self, gt):
239 240
        assert isinstance(gt, (list, tuple)) and len(gt) == 6,\
            'geotransform must be a list with 6 numbers. Got %s.' % str(gt)
241

242 243
        for i in gt:
            assert isinstance(i, (int, float)), "geotransform must contain only numbers. Got '%s'." % i
244

245
        self._geotransform = gt
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

    gt = alias_property('geotransform')

    @property
    def xgsd(self):
        """Get the X resolution in units of the given or detected projection."""

        return self.geotransform[1]

    @property
    def ygsd(self):
        """Get the Y resolution in units of the given or detected projection."""

        return abs(self.geotransform[5])

    @property
    def xygrid_specs(self):
        """
        Get the specifications for the X/Y coordinate grid, e.g. [[15,30], [0,30]] for a coordinate with its origin
        at X/Y[15,0] and a GSD of X/Y[15,30].
        """

268
        def get_grid(gt, xgsd, ygsd): return [[gt[0], gt[0] + xgsd], [gt[3], gt[3] - ygsd]]
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
        return get_grid(self.geotransform, self.xgsd, self.ygsd)

    @property
    def projection(self):
        """
        Get the projection of the associated image. Setting the projection is only allowed if GeoArray has been
        instanced from memory or the associated file on disk has no projection.
        """

        if self._projection:
            return self._projection
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
            return self._projection
        else:
            return ''

    @projection.setter
    def projection(self, prj):
        if self.filePath:
289
            assert self.projection is None or prj_equal(self.projection, prj), \
290
                "Cannot set %s.projection to the given value because it does not match the projection from the file " \
291
                "on disk." % self.__class__.__name__
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        else:
            self._projection = prj

    prj = alias_property('projection')

    @property
    def epsg(self):
        """Get the EPSG code of the projection of the GeoArray."""

        return WKT2EPSG(self.projection)

    @epsg.setter
    def epsg(self, epsg_code):
        self.projection = EPSG2WKT(epsg_code)

    @property
    def box(self):
        mapPoly = get_footprint_polygon(get_corner_coordinates(gt=self.geotransform, cols=self.columns, rows=self.rows))
        return boxObj(gt=self.geotransform, prj=self.projection, mapPoly=mapPoly)

    @property
    def nodata(self):
        """
        Get the nodata value of the GeoArray. If GeoArray has been instanced with a file path the file is checked
        for an existing nodata value. Otherwise (if no value is exlicitly given during object instanciation) the nodata
        value is tried to be automatically detected.
        """

        if self._nodata is not None:
            return self._nodata
        else:
            # try to get nodata value from file
            if not self.is_inmem:
                self.set_gdalDataset_meta()
            if self._nodata is None:
Daniel Scheffler's avatar
Bugfix  
Daniel Scheffler committed
327
                self._nodata = self.find_noDataVal()
328 329 330 331 332 333
                if self._nodata == 'ambiguous':
                    warnings.warn('Nodata value could not be clearly identified. It has been set to None.')
                    self._nodata = None
                else:
                    if self._nodata is not None and not self.q:
                        print("Automatically detected nodata value for %s '%s': %s"
334
                              % (self.__class__.__name__, self.basename, self._nodata))
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
            return self._nodata

    @nodata.setter
    def nodata(self, value):
        self._nodata = value

    @property
    def mask_nodata(self):
        """
        Get the nodata mask of the associated image array. It is calculated using all image bands.
        """

        if self._mask_nodata is not None:
            return self._mask_nodata
        else:
350
            self.calc_mask_nodata()  # sets self._mask_nodata
351 352 353 354 355 356 357 358 359 360 361
            return self._mask_nodata

    @mask_nodata.setter
    def mask_nodata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import NoDataMask
362 363
            geoArr_mask = NoDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
364
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
365
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
366 367 368 369

            assert geoArr_mask.bands == 1, \
                'Expected one single band as nodata mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided nodata mask must have the same number of ' \
370
                                                            'rows and columns as the %s itself.' % imName
371 372
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given nodata mask for %s must match the geotransform of the %s itself. ' \
373
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
374 375
            assert not geoArr_mask.prj or prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given nodata mask for the %s must match the projection of the %s itself.' \
376
                % (imName, self.__class__.__name__)
377 378

            self._mask_nodata = geoArr_mask
379 380 381 382 383 384
        else:
            del self.mask_nodata

    @mask_nodata.deleter
    def mask_nodata(self):
        self._mask_nodata = None
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403

    @property
    def mask_baddata(self):
        """
        Returns the bad data mask for the associated image array if it has been explicitly previously. It can be set
         by passing a file path, a numpy array or an instance of GeoArray to the setter of this property.
        """

        return self._mask_baddata

    @mask_baddata.setter
    def mask_baddata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import BadDataMask
404 405
            geoArr_mask = BadDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
406
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
407
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
408 409 410 411

            assert geoArr_mask.bands == 1, \
                'Expected one single band as bad data mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided bad data mask must have the same number of ' \
412
                                                            'rows and columns as the %s itself.' % imName
413 414
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given bad data mask for %s must match the geotransform of the %s itself. ' \
415
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
416 417
            assert prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given bad data mask for the %s must match the projection of the %s itself.' \
418
                % (imName, self.__class__.__name__)
419 420

            self._mask_baddata = geoArr_mask
421 422 423 424 425 426
        else:
            del self.mask_baddata

    @mask_baddata.deleter
    def mask_baddata(self):
        self._mask_baddata = None
427 428 429 430 431 432 433 434 435 436

    @property
    def footprint_poly(self):
        # FIXME should return polygon in image coordinates if no projection is available
        """
        Get the footprint polygon of the associated image array (returns an instance of shapely.geometry.Polygon.
        """

        if self._footprint_poly is None:
            assert self.mask_nodata is not None, 'A nodata mask is needed for calculating the footprint polygon. '
437
            if np.std(self.mask_nodata[:]) == 0:
438 439 440 441
                # do not run raster2polygon if whole image is filled with data
                self._footprint_poly = self.box.mapPoly
            else:
                try:
442 443
                    multipolygon = raster2polygon(self.mask_nodata.astype(np.uint8), self.gt, self.prj, exact=False,
                                                  progress=self.progress, q=self.q, maxfeatCount=10, timeout=3)
444
                    self._footprint_poly = fill_holes_within_poly(multipolygon)
445
                except (RuntimeError, TimeoutError):
446 447 448 449
                    if not self.q:
                        warnings.warn("\nCalculation of footprint polygon failed for %s '%s'. Using outer bounds. One "
                                      "reason could be that the nodata value appears within the actual image (not only "
                                      "as fill value). To avoid this use another nodata value. Current nodata value is "
450
                                      "%s." % (self.__class__.__name__, self.basename, self.nodata))
451 452 453
                    self._footprint_poly = self.box.mapPoly

            # validation
454 455 456 457
            assert not polyVertices_outside_poly(self._footprint_poly, self.box.mapPoly), \
                "Computing footprint polygon for %s '%s' failed. The resulting polygon is partly or completely " \
                "outside of the image bounds." % (self.__class__.__name__, self.basename)
            # assert self._footprint_poly
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
            # for XY in self.corner_coord:
            #    assert self.GeoArray.box.mapPoly.contains(Point(XY)) or self.GeoArray.box.mapPoly.touches(Point(XY)), \
            #        "The corner position '%s' is outside of the %s." % (XY, self.imName)

        return self._footprint_poly

    @footprint_poly.setter
    def footprint_poly(self, poly):
        if isinstance(poly, Polygon):
            self._footprint_poly = poly
        elif isinstance(poly, str):
            self._footprint_poly = shply_loads(poly)
        else:
            raise ValueError("'footprint_poly' can only be set from a shapely polygon or a WKT string.")

    @property
    def metadata(self):
        """
        Returns a GeoDataFrame containing all available metadata (read from file if available).
        Use 'metadata[band_index].to_dict()' to get a metadata dictionary for a specific band.
        Use 'metadata.loc[row_name].to_dict()' to get all metadata values of the same key for all bands as dictionary.
        Use 'metadata.loc[row_name, band_index] = value' to set a new value.

        :return:  geopandas.GeoDataFrame
        """

        if self._metadata is not None:
            return self._metadata
        else:
            default = GeoDataFrame(columns=range(self.bands))
488
            # for bn,idx in self.bandnames.items():
489 490 491 492 493 494 495 496 497 498
            #    default.loc['band_index',bn] = idx
            self._metadata = default
            if not self.is_inmem:
                self.set_gdalDataset_meta()
                return self._metadata
            else:
                return self._metadata

    @metadata.setter
    def metadata(self, GDF):
499
        assert isinstance(GDF, (GeoDataFrame, DataFrame)) and len(GDF.columns) == self.bands, \
500
            "%s.metadata can only be set with an instance of geopandas.GeoDataFrame of which the column number " \
501
            "corresponds to the band number of %s." % (self.__class__.__name__, self.__class__.__name__)
502 503 504 505 506
        self._metadata = GDF

    meta = alias_property('metadata')

    def __getitem__(self, given):
507
        if isinstance(given, (int, float, slice)) and self.ndim == 3:
508 509 510 511 512 513 514 515 516 517 518 519 520
            # handle 'given' as index for 3rd (bands) dimension
            if self.is_inmem:
                return self.arr[:, :, given]
            else:
                return self.from_path(self.arg, [given])

        elif isinstance(given, str):
            # behave like a dictionary and return the corresponding band
            if self.bandnames:
                if given not in self.bandnames:
                    raise ValueError("'%s' is not a known band. Known bands are: %s"
                                     % (given, ', '.join(list(self.bandnames.keys()))))
                if self.is_inmem:
521
                    return self.arr if self.ndim == 2 else self.arr[:, :, self.bandnames[given]]
522 523 524 525
                else:
                    return self.from_path(self.arg, [self.bandnames[given]])
            else:
                raise ValueError('String indices are only supported if %s has been instanced with bandnames given.'
526
                                 % self.__class__.__name__)
527 528 529 530 531 532 533

        elif isinstance(given, (tuple, list)):
            # handle requests like geoArr[[1,2],[3,4]  -> not implemented in from_path if array is not in mem
            types = [type(i) for i in given]
            if list in types or tuple in types:
                self.to_mem()

534
            if len(given) == 3:
535 536

                # handle strings in the 3rd dim of 'given' -> convert them to a band index
537
                if isinstance(given[2], str):
538 539 540 541 542 543 544 545
                    if self.bandnames:
                        if given[2] not in self.bandnames:
                            raise ValueError("'%s' is not a known band. Known bands are: %s"
                                             % (given[2], ', '.join(list(self.bandnames.keys()))))

                        band_idx = self.bandnames[given[2]]
                        # NOTE: the string in the 3rd is ignored if ndim==2 and band_idx==0
                        if self.is_inmem:
546
                            return self.arr if (self.ndim == 2 and band_idx == 0) else self.arr[:, :, band_idx]
547
                        else:
548 549
                            getitem_params = \
                                given[:2] if (self.ndim == 2 and band_idx == 0) else given[:2] + (band_idx,)
550 551 552 553 554 555 556
                            return self.from_path(self.arg, getitem_params)
                    else:
                        raise ValueError(
                            'String indices are only supported if %s has been instanced with bandnames given.'
                            % self.__class__.__name__)

                # in case a third dim is requested from 2D-array -> ignore 3rd dim if 3rd dim is 0
557
                elif self.ndim == 2 and given[2] == 0:
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
                    if self.is_inmem:
                        return self.arr[given[:2]]
                    else:
                        return self.from_path(self.arg, given[:2])

        # if nothing has been returned until here -> behave like a numpy array
        if self.is_inmem:
            return self.arr[given]
        else:
            getitem_params = [given] if isinstance(given, slice) else given
            return self.from_path(self.arg, getitem_params)

    def __setitem__(self, idx, array2set):
        """Overwrites the pixel values of GeoArray.arr with the given array.

        :param idx:         <int, list, slice> the index position to overwrite
        :param array2set:   <np.ndarray> array to be set. Must be compatible to the given index position.
        :return:
        """

        if self.is_inmem:
            self.arr[idx] = array2set
        else:
            raise NotImplementedError('Item assignment for %s instances that are not in memory is not yet supported.'
582
                                      % self.__class__.__name__)
583 584 585

    def __getattr__(self, attr):
        # check if the requested attribute can not be present because GeoArray has been instanced with an array
586 587
        if attr not in self.__dir__() and not self.is_inmem and attr in ['shape', 'dtype', 'geotransform',
                                                                         'projection']:
588 589
            self.set_gdalDataset_meta()

590 591 592
        if attr in self.__dir__():  # __dir__() includes also methods and properties
            return self.__getattribute__(attr)  # __getattribute__ avoids infinite loop
        elif hasattr(np.array([]), attr):
593 594
            return self[:].__getattribute__(attr)
        else:
595
            raise AttributeError("%s object has no attribute '%s'." % (self.__class__.__name__, attr))
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622

    def __getstate__(self):
        """Defines how the attributes of GMS object are pickled."""

        # clean array cache in order to avoid cache pickling
        self.flush_cache()

        return self.__dict__

    def __setstate__(self, state):
        """Defines how the attributes of GMS object are unpickled.
        NOTE: This method has been implemented because otherwise pickled and unpickled instances show recursion errors
        within __getattr__ when requesting any attribute.
        """

        self.__dict__ = state

    def calc_mask_nodata(self, fromBand=None, overwrite=False):
        """Calculates a no data mask with (values: 0=nodata; 1=data)

        :param fromBand:  <int> index of the band to be used (if None, all bands are used)
        :param overwrite: <bool> whether to overwrite existing nodata mask that has already been calculated
        :return:
        """

        if self._mask_nodata is None or overwrite:
            assert self.ndim in [2, 3], "Only 2D or 3D arrays are supported. Got a %sD array." % self.ndim
623
            arr = self[:, :, fromBand] if self.ndim == 3 and fromBand is not None else self[:]
624 625 626 627 628

            if self.nodata is None:
                self.mask_nodata = np.ones((self.rows, self.cols), np.bool)
            else:
                self.mask_nodata = np.where(arr == self.nodata, 0, 1).astype(np.bool) if arr.ndim == 2 else \
629
                    np.all(np.where(arr == self.nodata, 0, 1), axis=2).astype(np.bool)
630

631 632 633 634 635
    def find_noDataVal(self, bandIdx=0, sz=3):
        """Tries to derive no data value from homogenious corner pixels within 3x3 windows (by default).
        :param bandIdx:
        :param sz: window size in which corner pixels are analysed
        """
636
        def get_mean_std(corner_subset): return {'mean': np.mean(corner_subset), 'std': np.std(corner_subset)}
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653

        wins = [self[0:sz, 0:sz, bandIdx], self[0:sz, -sz:, bandIdx],
                self[-sz:, -sz:, bandIdx], self[-sz:, 0:sz, bandIdx]]  # UL, UR, LR, LL
        means_stds = [get_mean_std(win) for win in wins]

        possVals = [i['mean'] for i in means_stds if i['std'] == 0]
        # possVals==[]: all corners are filled with data; np.std(possVals)==0: noDataVal clearly identified

        if possVals:
            if np.std(possVals) != 0:
                # different possible nodata values have been found in the image corner
                return 'ambiguous'
            else:
                if len(possVals) <= 2:
                    # each window in each corner
                    warnings.warn("\nAutomatic nodata value detection returned the value %s for GeoArray '%s' but this "
                                  "seems to be unreliable (occurs in only %s). To avoid automatic detection, just pass "
654 655 656
                                  "the correct nodata value."
                                  % (possVals[0], self.basename, ('2 image corners' if len(possVals) == 2 else
                                                                  '1 image corner')))
657 658 659 660
                return possVals[0]
        else:
            return None

661 662 663 664 665 666 667 668 669 670
    def set_gdalDataset_meta(self):
        """Retrieves GDAL metadata from file. This function is only executed once to avoid overwriting of user defined
         attributes, that are defined after object instanciation.

        :return:
        """

        if not self._gdalDataset_meta_already_set:
            assert self.filePath
            ds = gdal.Open(self.filePath)
671 672 673
            if not ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

674
            # set private class variables (in order to avoid recursion error)
675 676
            self._shape = tuple([ds.RasterYSize, ds.RasterXSize] + ([ds.RasterCount] if ds.RasterCount > 1 else []))
            self._dtype = gdal_array.GDALTypeCodeToNumericTypeCode(ds.GetRasterBand(1).DataType)
677
            self._geotransform = ds.GetGeoTransform()
678 679 680
            # temp conversion to EPSG needed because GDAL seems to modify WKT string when writing file to disk
            # (e.g. using gdal_merge) -> conversion to EPSG and back undos that
            self._projection = EPSG2WKT(WKT2EPSG(ds.GetProjection()))
681

682 683 684 685
            if 'nodata' not in self._initParams or self._initParams['nodata'] is None:
                band = ds.GetRasterBand(1)
                # FIXME this does not support different nodata values within the same file
                self._nodata = band.GetNoDataValue()
686

687
            # read global domain metadata
688 689
            # TODO check to specifically use the 'ENVI' metadata domain ds.GetMetadata('ENVI')
            global_meta = ds.GetMetadata()
690

691 692
            # read band domain metadata
            for b in range(self.bands):
693 694
                band = ds.GetRasterBand(b + 1)
                meta_gs = GeoSeries(band.GetMetadata())
695

696 697 698 699 700 701 702
                # add band names if available
                if 'Band_%s' % str(b + 1) in global_meta.keys():
                    meta_gs['band_name'] = global_meta['Band_%s' % str(b + 1)]

                # TODO add the remaining global metadata

                self.metadata[b] = meta_gs
703

704
            del ds, band
705 706 707 708 709 710 711 712 713 714 715 716 717 718

        self._gdalDataset_meta_already_set = True

    def from_path(self, path, getitem_params=None):
        # type: (str, list) -> np.ndarray
        """Read a GDAL compatible raster image from disk, with respect to the given image position.
        NOTE: If the requested array position is already in cache, it is returned from there.

        :param path:            <str> the file path of the image to read
        :param getitem_params:  <list> a list of slices in the form [row_slice, col_slice, band_slice]
        :return out_arr:        <np.ndarray> the output array
        """

        ds = gdal.Open(path)
719 720 721
        if not ds:
            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

722
        R, C, B = ds.RasterYSize, ds.RasterXSize, ds.RasterCount
723
        del ds
724

725
        # convert getitem_params to subset area to be read ##
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
        rS, rE, cS, cE, bS, bE, bL = [None] * 7

        # populate rS, rE, cS, cE, bS, bE, bL
        if getitem_params:
            if len(getitem_params) >= 2:
                givenR, givenC = getitem_params[:2]
                if isinstance(givenR, slice):
                    rS = givenR.start
                    rE = givenR.stop - 1 if givenR.stop is not None else None
                elif isinstance(givenR, int):
                    rS = givenR
                    rE = givenR
                if isinstance(givenC, slice):
                    cS = givenC.start
                    cE = givenC.stop - 1 if givenC.stop is not None else None
                elif isinstance(givenC, int):
                    cS = givenC
                    cE = givenC
            if len(getitem_params) in [1, 3]:
                givenB = getitem_params[2] if len(getitem_params) == 3 else getitem_params[0]
                if isinstance(givenB, slice):
                    bS = givenB.start
                    bE = givenB.stop - 1 if givenB.stop is not None else None
                elif isinstance(givenB, int):
                    bS = givenB
                    bE = givenB
752
                elif isinstance(givenB, (tuple, list)):
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
                    typesInGivenB = [type(i) for i in givenB]
                    assert len(list(set(typesInGivenB))) == 1, \
                        'Mixed data types within the list of bands are not supported.'
                    if isinstance(givenB[0], int):
                        bL = list(givenB)
                    elif isinstance(givenB[0], str):
                        bL = [self.bandnames[i] for i in givenB]
                elif type(givenB) in [str]:
                    bL = [self.bandnames[givenB]]

        # set defaults for not given values
        rS = rS if rS is not None else 0
        rE = rE if rE is not None else R - 1
        cS = cS if cS is not None else 0
        cE = cE if cE is not None else C - 1
        bS = bS if bS is not None else 0
        bE = bE if bE is not None else B - 1
        bL = list(range(bS, bE + 1)) if not bL else bL

        # convert negative to positive ones
        rS = rS if rS >= 0 else self.rows + rS
        rE = rE if rE >= 0 else self.rows + rE
        cS = cS if cS >= 0 else self.columns + cS
        cE = cE if cE >= 0 else self.columns + cE
        bS = bS if bS >= 0 else self.bands + bS
        bE = bE if bE >= 0 else self.bands + bE
779
        bL = [b if b >= 0 else (self.bands + b) for b in bL]
780 781

        # validate subset area bounds to be read
782 783 784 785 786 787 788
        def msg(v, idx, sz):
            # FIXME numpy raises that error ONLY for the 2nd axis
            return '%s is out of bounds for axis %s with size %s' % (v, idx, sz)

        for val, axIdx, axSize in zip([rS, rE, cS, cE, bS, bE], [0, 0, 1, 1, 2, 2], [R, R, C, C, B, B]):
            if not 0 <= val <= axSize - 1:
                raise ValueError(msg(val, axIdx, axSize))
789 790

        # summarize requested array position in arr_pos
791
        # NOTE: # bandlist must be string because truth value of an array with more than one element is ambiguous
792 793 794
        arr_pos = dict(rS=rS, rE=rE, cS=cS, cE=cE, bS=bS, bE=bE, bL=bL)

        # check if the requested array position is already in cache -> if yes, return it from there
795
        if self._arr_cache is not None and self._arr_cache['pos'] == arr_pos:
796
            out_arr = self._arr_cache['arr_cached']
797 798 799 800 801 802 803

        else:
            # TODO insert a multiprocessing.Lock here in order to prevent IO bottlenecks?
            # read subset area from disk
            if bL == list(range(0, B)):
                tempArr = gdalnumeric.LoadFile(path, cS, rS, cE - cS + 1, rE - rS + 1)
                out_arr = np.swapaxes(np.swapaxes(tempArr, 0, 2), 0, 1) if B > 1 else tempArr
804 805
                if out_arr is None:
                    raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
806 807 808 809
            else:
                ds = gdal.Open(path)
                if len(bL) == 1:
                    band = ds.GetRasterBand(bL[0] + 1)
810
                    out_arr = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
811 812
                    if out_arr is None:
                        raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
813
                    del band
814 815 816 817 818
                else:
                    out_arr = np.empty((rE - rS + 1, cE - cS + 1, len(bL)))
                    for i, bIdx in enumerate(bL):
                        band = ds.GetRasterBand(bIdx + 1)
                        out_arr[:, :, i] = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
819 820
                        if out_arr is None:
                            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
821
                        del band
822

823
                del ds
824 825

            # only set self.arr if the whole cube has been read (in order to avoid sudden shape changes)
826
            if out_arr.shape == self.shape:
827 828 829 830 831
                self.arr = out_arr

            # write _arr_cache
            self._arr_cache = dict(pos=arr_pos, arr_cached=out_arr)

832 833
        return out_arr  # TODO implement check of returned datatype (e.g. NoDataMask should always return np.bool
        # TODO -> would be np.int8 if an int8 file is read from disk
834 835 836 837 838 839 840 841

    def save(self, out_path, fmt='ENVI', creationOptions=None):
        # type: (str, str, list) -> None
        """Write the raster data to disk.

        :param out_path:        <str> output path
        :param fmt:             <str> the output format / GDAL driver code to be used for output creation, e.g. 'ENVI'
                                Refer to http://www.gdal.org/formats_list.html to get a full list of supported formats.
842 843
        :param creationOptions: <list> GDAL creation options,
                                e.g., ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
844 845 846
        """

        if not self.q:
847 848
            print('Writing GeoArray of size %s to %s.' % (self.shape, out_path))
        assert self.ndim in [2, 3], 'Only 2D- or 3D arrays are supported.'
849 850 851 852 853 854 855 856 857 858

        driver = gdal.GetDriverByName(fmt)
        if driver is None:
            raise Exception("'%s' is not a supported GDAL driver. Refer to www.gdal.org/formats_list.html for full "
                            "list of GDAL driver codes." % fmt)

        if not os.path.isdir(os.path.dirname(out_path)):
            os.makedirs(os.path.dirname(out_path))

        if self.is_inmem:
859 860
            ds = get_GDAL_ds_inmem(self.arr, self.geotransform, self.projection,
                                   self.nodata)  # expects rows,columns,bands
861 862 863

            # set metadata
            if not self.metadata.empty:
864 865 866
                global_meta = {}

                # set band domain metadata
867
                for bidx in range(self.bands):
868
                    band = ds.GetRasterBand(bidx + 1)
869
                    meta2write = self.metadata[bidx].to_dict()
870
                    meta2write = dict((k, v) for k, v in meta2write.items() if v is not np.nan)
871 872

                    if 'band_name' in meta2write:
873
                        global_meta['Band_%s' % str(bidx + 1)] = meta2write['band_name']
874 875
                        del meta2write['band_name']

876
                    band.SetMetadata(meta2write)
877
                    del band
878

879 880 881
                # set global domain metadata
                ds.SetMetadata(global_meta)

882 883 884 885 886
                # get ENVI metadata domain
                # ds_orig = gdal.Open(self.filePath)
                # envi_meta_domain = ds_orig.GetMetadata('ENVI')
                # ds.SetMetadata(envi_meta_domain, 'ENVI')
                # ds_orig = None
887

888 889
            driver.CreateCopy(out_path, ds, options=creationOptions if creationOptions else [])

890 891 892 893
            # rows, columns, bands => bands, rows, columns
            # out_arr = self.arr if self.ndim == 2 else np.swapaxes(np.swapaxes(self.arr, 0, 2), 1, 2)
            # gdalnumeric.SaveArray(out_arr, out_path, format=fmt, prototype=ds) # expects bands,rows,columns
            del ds
894 895 896

        else:
            src_ds = gdal.Open(self.filePath)
897 898 899
            if not src_ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

900 901
            gdal_Translate = get_gdal_func('Translate')
            gdal_Translate(out_path, src_ds, format=fmt, creationOptions=creationOptions)
902
            del src_ds
903 904 905 906 907 908 909 910 911

        if not os.path.exists(out_path):
            raise Exception(gdal.GetLastErrorMsg())

    def dump(self, out_path):
        # type: (str) -> None
        """Serialize the whole object instance to disk using dill."""

        import dill
912 913
        with open(out_path, 'wb') as outF:
            dill.dump(self, outF)
914 915 916 917 918 919 920 921 922

    def _get_plottable_image(self, xlim=None, ylim=None, band=None, boundsMap=None, boundsMapPrj=None, res_factor=None,
                             nodataVal=None, out_prj=None):
        # handle limits
        if boundsMap:
            boundsMapPrj = boundsMapPrj if boundsMapPrj else self.prj
            image2plot, gt, prj = self.get_mapPos(boundsMap, boundsMapPrj, band2get=band,
                                                  fillVal=nodataVal if nodataVal is not None else self.nodata)
        else:
923 924
            cS, cE = xlim if isinstance(xlim, (tuple, list)) else (0, self.columns)
            rS, rE = ylim if isinstance(ylim, (tuple, list)) else (0, self.rows)
925 926

            image2plot = self[rS:rE, cS:cE, band] if band is not None else self[rS:rE, cS:cE]
927
            gt, prj = self.geotransform, self.projection
928

929
        transOpt = ['SRC_METHOD=NO_GEOTRANSFORM'] if tuple(gt) == (0, 1, 0, 0, 0, -1) else None
930
        xdim, ydim = None, None
931
        nodataVal = nodataVal if nodataVal is not None else self.nodata
932 933

        if res_factor != 1. and image2plot.shape[0] * image2plot.shape[1] > 1e6:  # shape > 1000*1000
934 935 936 937
            # sample image down / normalize
            xdim, ydim = \
                (self.columns * res_factor, self.rows * res_factor) if res_factor else \
                tuple((np.array([self.columns, self.rows]) / (np.array([self.columns, self.rows]).max() / 1000)))
938 939 940
            xdim, ydim = int(xdim), int(ydim)

        if xdim or ydim or out_prj:
941
            from py_tools_ds.geo.raster.reproject import warp_ndarray
942 943 944 945 946
            image2plot, gt, prj = warp_ndarray(image2plot, self.geotransform, self.projection,
                                               out_XYdims=(xdim, ydim), in_nodata=nodataVal, out_nodata=nodataVal,
                                               transformerOptions=transOpt, out_prj=out_prj, q=True)
            if transOpt and 'NO_GEOTRANSFORM' in ','.join(transOpt):
                image2plot = np.flipud(image2plot)
947 948
                gt = list(gt)
                gt[3] = 0
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970

            if xdim or ydim:
                print('Note: array has been downsampled to %s x %s for faster visualization.' % (xdim, ydim))

        return image2plot, gt, prj

    def show(self, xlim=None, ylim=None, band=None, boundsMap=None, boundsMapPrj=None, figsize=None,
             interpolation='none', vmin=None, vmax=None, cmap=None, nodataVal=None, res_factor=None, interactive=False):
        """Plots the desired array position into a figure.

        :param xlim:            [start_column, end_column]
        :param ylim:            [start_row, end_row]
        :param band:            the band index of the band to be plotted (if None and interactive==True all bands are
                                shown, otherwise the first band is chosen)
        :param boundsMap:       xmin, ymin, xmax, ymax
        :param boundsMapPrj:
        :param figsize:
        :param interpolation:
        :param vmin:
        :param vmax:
        :param cmap:
        :param nodataVal:
Daniel Scheffler's avatar
Daniel Scheffler committed
971 972
        :param res_factor:      <float> resolution factor for downsampling of the image to be plotted in order to save
                                plotting time and memory (default=None -> downsampling is performed to 1000x1000)
973 974 975 976 977 978 979 980
        :param interactive:     <bool> activates interactive plotting based on 'holoviews' library.
                                NOTE: this deactivates the magic '% matplotlib inline' in Jupyter Notebook
        :return:
        """

        band = (band if band is not None else 0) if not interactive else band

        # get image to plot
981
        nodataVal = nodataVal if nodataVal is not None else self.nodata
Daniel Scheffler's avatar
Daniel Scheffler committed
982 983 984
        image2plot, gt, prj = \
            self._get_plottable_image(xlim, ylim, band, boundsMap=boundsMap, boundsMapPrj=boundsMapPrj,
                                      res_factor=res_factor, nodataVal=nodataVal)
985 986

        # set color palette
987 988
        palette = cmap if cmap else plt.cm.gray
        if nodataVal is not None and np.std(image2plot) != 0:  # do not show nodata
989
            image2plot = np.ma.masked_equal(image2plot, nodataVal)
990
            vmin_auto, vmax_auto = np.percentile(image2plot.compressed(), 2), np.percentile(image2plot.compressed(), 98)
991 992 993 994 995 996 997
            palette.set_bad('aqua', 0)
        else:
            vmin_auto, vmax_auto = np.percentile(image2plot, 2), np.percentile(image2plot, 98)

        vmin = vmin if vmin is not None else vmin_auto
        vmax = vmax if vmax is not None else vmax_auto

998
        palette.set_over('1')
999 1000
        palette.set_under('0')

1001
        if interactive and image2plot.ndim == 3:
1002 1003 1004 1005 1006 1007 1008
            import holoviews as hv
            from skimage.exposure import rescale_intensity
            hv.notebook_extension('matplotlib')

            cS, cE = xlim if isinstance(xlim, (tuple, list)) else (0, self.columns - 1)
            rS, rE = ylim if isinstance(ylim, (tuple, list)) else (0, self.rows - 1)

1009
            image2plot = np.array(rescale_intensity(image2plot, in_range=(vmin, vmax)))
1010

1011 1012 1013 1014 1015 1016 1017
            def get_hv_image(b):
                # FIXME ylabels have the wrong order
                return hv.Image(image2plot[:, :, b] if b is not None else image2plot,
                                bounds=(cS, rS, cE, rE))(
                    style={'cmap': 'gray'}, plot={'fig_inches': 4 if figsize is None else figsize, 'show_grid': True})

            # hvIm = hv.Image(image2plot)(style={'cmap': 'gray'}, figure_inches=figsize)
1018 1019 1020 1021 1022 1023 1024
            hmap = hv.HoloMap([(band, get_hv_image(band)) for band in range(image2plot.shape[2])], kdims=['band'])

            return hmap

        else:
            if interactive:
                warnings.warn('Currently there is no interactive mode for single-band arrays. '
1025
                              'Switching to standard matplotlib figure..')  # TODO implement zoomable fig
1026 1027 1028 1029 1030

            # show image
            plt.figure(figsize=figsize)
            rows, cols = image2plot.shape[:2]
            plt.imshow(image2plot, palette, interpolation=interpolation, extent=(0, cols, rows, 0),
1031
                       vmin=vmin, vmax=vmax, )  # compressed excludes nodata values
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
            plt.show()

    def show_map(self, xlim=None, ylim=None, band=0, boundsMap=None, boundsMapPrj=None, ax=None, figsize=None,
                 interpolation='none', vmin=None, vmax=None, cmap=None, nodataVal=None, res_factor=None,
                 return_map=False, zoomable=False):
        """

        :param xlim:
        :param ylim:
        :param band:            band index (starting with 0)
        :param boundsMap:       xmin, ymin, xmax, ymax
        :param boundsMapPrj:
        :param ax:              allows to pass a matplotlib axis object where figure is plotted into
        :param figsize:
        :param interpolation:
        :param vmin:
        :param vmax:
        :param cmap:
        :param nodataVal:
Daniel Scheffler's avatar
Daniel Scheffler committed
1051 1052
        :param res_factor:      <float> resolution factor for downsampling of the image to be plotted in order to save
                                plotting time and memory (default=None -> downsampling is performed to 1000x1000)
1053 1054 1055 1056 1057
        :param return_map:
        :param zoomable:        <bool> enable or disable zooming via mpld3
        :return:
        """

1058 1059 1060
        try:
            from mpl_toolkits.basemap import Basemap
        except ImportError:
1061 1062
            warnings.warn('This function requires Basemap. You need to install basemap manually (see www./'
                          'matplotlib.org/basemap) if you want to plot maps. It is not automatically installed.')
1063
            raise
1064 1065 1066 1067 1068 1069
        try:
            import mpld3
            if zoomable:
                mpld3.enable_notebook()
            else:
                mpld3.disable_notebook()
1070
        except Exception:
1071 1072 1073 1074
            if zoomable:
                zoomable = False
                warnings.warn('mpld3 is not available. Zooming disabled.')

1075 1076 1077
        assert self.geotransform and tuple(self.geotransform) != (0, 1, 0, 0, 0, -1), \
            'A valid geotransform is needed for a map visualization. Got %s.' % list(self.geotransform)
        assert self.projection, 'A projection is needed for a map visualization. Got %s.' % self.projection
1078 1079

        # get image to plot
1080
        nodataVal = nodataVal if nodataVal is not None else self.nodata
1081 1082 1083 1084 1085
        image2plot, gt, prj = self._get_plottable_image(xlim, ylim, band, boundsMap=boundsMap,
                                                        boundsMapPrj=boundsMapPrj, res_factor=res_factor,
                                                        nodataVal=nodataVal, out_prj='epsg:4326')

        # calculate corner coordinates of plot
1086
        # if boundsMap:
1087 1088 1089 1090 1091
        #    boundsMapPrj = boundsMapPrj if boundsMapPrj else self.prj
        #    if not prj_equal(boundsMapPrj, 4326):
        #        boundsMap = reproject_shapelyGeometry(box(*boundsMap), boundsMapPrj, 4626).bounds
        #    xmin, ymin, xmax, ymax = boundsMap
        #    UL_XY, UR_XY, LR_XY, LL_XY = (xmin,ymax), (xmax, ymax), (xmax,ymin), (xmin, ymin)
1092 1093 1094
        # else:
        UL_XY, UR_XY, LR_XY, LL_XY = [(YX[1], YX[0]) for YX in GeoArray(image2plot, gt, prj).box.boxMapYX]
        center_lon, center_lat = (UL_XY[0] + UR_XY[0]) / 2., (UL_XY[1] + LL_XY[1]) / 2.
1095 1096 1097 1098 1099 1100

        # create map
        fig = plt.figure(figsize=figsize)
        plt.subplots_adjust(left=0.05, right=0.95, top=0.90, bottom=0.05, wspace=0.15, hspace=0.05)
        ax = ax if ax is not None else plt.subplot(111)

1101
        m = Basemap(projection='tmerc', resolution=None, lon_0=center_lon, lat_0=center_lat,
1102 1103 1104 1105
                    urcrnrlon=UR_XY[0], urcrnrlat=UR_XY[1], llcrnrlon=LL_XY[0], llcrnrlat=LL_XY[1])

        # set color palette
        palette = cmap if cmap else plt.cm.gray
1106
        if nodataVal is not None and np.std(image2plot) != 0:  # do not show nodata
1107 1108 1109 1110 1111 1112 1113
            image2plot = np.ma.masked_equal(image2plot, nodataVal)
            vmin_auto, vmax_auto = np.percentile(image2plot.compressed(), 2), np.percentile(image2plot.compressed(), 98)
            palette.set_bad('aqua', 0)
        else:
            vmin_auto, vmax_auto = np.percentile(image2plot, 2), np.percentile(image2plot, 98)
        vmin = vmin if vmin is not None else vmin_auto
        vmax = vmax if vmax is not None else vmax_auto
1114
        palette.set_over('1')
1115 1116 1117 1118 1119 1120 1121 1122 1123
        palette.set_under('0')

        # add image to map (y-axis must be inverted for basemap)
        if zoomable:
            m.imshow(image2plot, palette, interpolation=interpolation, vmin=vmin, vmax=vmax)
        else:
            m.imshow(np.flipud(image2plot), palette, interpolation=interpolation, vmin=vmin, vmax=vmax)

        # add coordinate grid lines
1124 1125
        parallels = np.arange(-90, 90., 0.25)  # TODO make this adjustable
        # parallels = np.arange(-90, 90., 0.1)
1126 1127 1128
        m.drawparallels(parallels, labels=[1, 0, 0, 0], fontsize=12, linewidth=0.4)

        meridians = np.arange(-180., 180., 0.25)
1129
        # meridians = np.arange(-180., 180., 0.1)
1130 1131 1132
        m.drawmeridians(meridians, labels=[0, 0, 0, 1], fontsize=12, linewidth=0.4)

        if return_map:
1133
            return fig, ax, m
1134 1135 1136 1137 1138 1139
        else:
            plt.show()

    def show_map_utm(self, xlim=None, ylim=None, band=0, figsize=None, interpolation='none', cmap=None,
                     nodataVal=None, vmin=None, vmax=None, res_factor=None, return_map=False):

1140 1141 1142
        try:
            from mpl_toolkits.basemap import Basemap
        except ImportError:
1143 1144
            warnings.warn('This function requires Basemap. You need to install basemap manually (see www./'
                          'matplotlib.org/basemap) if you want to plot maps. It is not automatically installed.')
1145
            raise
1146 1147 1148 1149
        warnings.warn(UserWarning('This function is still under construction and may not work as expected!'))
        # TODO debug this function

        # get image to plot
1150
        nodataVal = nodataVal if nodataVal is not None else self.nodata
1151 1152 1153 1154
        image2plot, gt, prj = self._get_plottable_image(xlim, ylim, band, res_factor, nodataVal)

        # calculate corner coordinates of plot
        box2plot = GeoArray(image2plot, gt, prj).box
1155
        # UL_XY, UR_XY, LR_XY, LL_XY = [(YX[1], YX[0]) for YX in GeoArray(image2plot, gt, prj).box.boxMapYX]