baseclasses.py 79.7 KB
Newer Older
1 2 3 4
# -*- coding: utf-8 -*-

import os
import warnings
5
from pkgutil import find_loader
6
from collections import OrderedDict
Daniel Scheffler's avatar
Daniel Scheffler committed
7
from copy import deepcopy
8
from typing import Union  # noqa F401
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

import numpy as np
from matplotlib import pyplot as plt
from osgeo import gdal_array
# custom
from shapely.geometry import Polygon
from shapely.wkt import loads as shply_loads
from six import PY3

# mpl_toolkits.basemap -> imported when GeoArray.show_map() is used
# dill -> imported when dumping GeoArray

try:
    from osgeo import gdal
    from osgeo import gdalnumeric
except ImportError:
    import gdal
    import gdalnumeric
27 28 29 30
from py_tools_ds.convenience.object_oriented import alias_property
from py_tools_ds.geo.coord_calc import get_corner_coordinates
from py_tools_ds.geo.coord_grid import snap_bounds_to_pixGrid
from py_tools_ds.geo.coord_trafo import mapXY2imXY, imXY2mapXY, transform_any_prj, reproject_shapelyGeometry
31
from py_tools_ds.geo.projection import prj_equal, WKT2EPSG, EPSG2WKT, isLocal
32 33
from py_tools_ds.geo.raster.conversion import raster2polygon
from py_tools_ds.geo.vector.topology \
34
    import get_footprint_polygon, polyVertices_outside_poly, fill_holes_within_poly
35 36
from py_tools_ds.geo.vector.geometry import boxObj
from py_tools_ds.io.raster.gdal import get_GDAL_ds_inmem
37
from py_tools_ds.compatibility.gdal import get_gdal_func
38
from py_tools_ds.numeric.numbers import is_number
39
from py_tools_ds.numeric.array import get_array_tilebounds
40 41 42

#  internal imports
from .subsetting import get_array_at_mapPos
43
from .metadata import GDAL_Metadata
44

45
if PY3:
46
    # noinspection PyCompatibility
47 48 49
    from builtins import TimeoutError, FileNotFoundError
else:
    from py_tools_ds.compatibility.python.exceptions import TimeoutError, FileNotFoundError
50

51
__author__ = 'Daniel Scheffler'
52 53 54 55 56


class GeoArray(object):
    def __init__(self, path_or_array, geotransform=None, projection=None, bandnames=None, nodata=None, progress=True,
                 q=False):
57
        # type: (Union[str, np.ndarray], tuple, str, list, float, bool, bool) -> None
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
        """This class creates a fast Python interface for geodata - either on disk or in memory. It can be instanced with
        a file path or with a numpy array and the corresponding geoinformation. Instances can always be indexed like
        normal numpy arrays, no matter if GeoArray has been instanced from file or from an in-memory array. GeoArray
        provides a wide range of geo-related attributes belonging to the dataset as well as some functions for quickly
        visualizing the data as a map, a simple image or an interactive image.

        :param path_or_array:   a numpy.ndarray or a valid file path
        :param geotransform:    GDAL geotransform of the given array or file on disk
        :param projection:      projection of the given array or file on disk as WKT string
                                (only needed if GeoArray is instanced with an array)
        :param bandnames:       names of the bands within the input array, e.g. ['mask_1bit', 'mask_clouds'],
                                (default: ['B1', 'B2', 'B3', ...])
        :param nodata:          nodata value
        :param progress:        show progress bars (default: True)
        :param q:               quiet mode (default: False)
        """

        # TODO implement compatibility to GDAL VRTs
        if not (isinstance(path_or_array, (str, np.ndarray, GeoArray)) or
77
           issubclass(getattr(path_or_array, '__class__'), GeoArray)):
78
            raise ValueError("%s parameter 'arg' takes only string, np.ndarray or GeoArray(and subclass) instances. "
79
                             "Got %s." % (self.__class__.__name__, type(path_or_array)))
80 81

        if path_or_array is None:
82
            raise ValueError("The %s parameter 'path_or_array' must not be None!" % self.__class__.__name__)
83 84 85 86 87

        if isinstance(path_or_array, str):
            assert ' ' not in path_or_array, "The given path contains whitespaces. This is not supported by GDAL."

            if not os.path.exists(path_or_array):
88
                raise FileNotFoundError(path_or_array)
89

90 91
        if isinstance(path_or_array, GeoArray) or issubclass(getattr(path_or_array, '__class__'), GeoArray):
            self.__dict__ = path_or_array.__dict__.copy()
92
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
93 94
            self.geotransform = geotransform or self.geotransform
            self.projection = projection or self.projection
95
            self.bandnames = bandnames or list(self.bandnames.keys())
96 97 98
            self._nodata = nodata if nodata is not None else self._nodata
            self.progress = False if progress is False else self.progress
            self.q = q if q is not None else self.q
99 100

        else:
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
            self._initParams = dict([x for x in locals().items() if x[0] != "self"])
            self.arg = path_or_array
            self._arr = path_or_array if isinstance(path_or_array, np.ndarray) else None
            self.filePath = path_or_array if isinstance(path_or_array, str) and path_or_array else None
            self.basename = os.path.splitext(os.path.basename(self.filePath))[0] if not self.is_inmem else 'IN_MEM'
            self.progress = progress
            self.q = q
            self._arr_cache = None  # dict containing key 'pos' and 'arr_cached'
            self._geotransform = None
            self._projection = None
            self._shape = None
            self._dtype = None
            self._nodata = nodata
            self._mask_nodata = None
            self._mask_baddata = None
116 117
            self._footprint_poly = None
            self._gdalDataset_meta_already_set = False
118 119
            self._metadata = None
            self._bandnames = None
120 121

            if bandnames:
122
                self.bandnames = bandnames  # use property in order to validate given value
123
            if geotransform:
124
                self.geotransform = geotransform  # use property in order to validate given value
125
            if projection:
126
                self.projection = projection  # use property in order to validate given value
127 128 129 130 131 132 133 134 135 136

            if self.filePath:
                self.set_gdalDataset_meta()

    @property
    def arr(self):
        return self._arr

    @arr.setter
    def arr(self, ndarray):
137 138
        assert isinstance(ndarray, np.ndarray), "'arr' can only be set to a numpy array! Got %s." % type(ndarray)
        # assert ndarray.shape == self.shape, "'arr' can only be set to a numpy array with shape %s. Received %s. " \
139 140 141 142 143
        #                                    "If you need to change the dimensions, create a new instance of %s." \
        #                                    %(self.shape, ndarray.shape, self.__class__.__name__)
        #  THIS would avoid warping like this: geoArr.arr, geoArr.gt, geoArr.prj = warp(...)

        if ndarray.shape != self.shape:
144
            self.flush_cache()  # the cached array is not useful anymore
145 146 147 148 149

        self._arr = ndarray

    @property
    def bandnames(self):
150
        if self._bandnames and len(self._bandnames) == self.bands:
151 152
            return self._bandnames
        else:
153
            del self.bandnames  # runs deleter which sets it to default values
154 155 156 157 158 159 160
            return self._bandnames

    @bandnames.setter
    def bandnames(self, list_bandnames):
        # type: (list) -> None

        if list_bandnames:
161 162 163 164 165 166 167 168
            if not isinstance(list_bandnames, list):
                raise TypeError("A list must be given when setting the 'bandnames' attribute. "
                                "Received %s." % type(list_bandnames))
            if len(list_bandnames) != self.bands:
                raise ValueError('Number of given bandnames does not match number of bands in array.')
            if len(list(set([type(b) for b in list_bandnames]))) != 1 or not isinstance(list_bandnames[0], str):
                raise ValueError("'bandnames must be a set of strings. Got other datatypes in there.'")

169
            bN_dict = OrderedDict((band, i) for i, band in enumerate(list_bandnames))
170 171 172

            if len(bN_dict) != self.bands:
                raise ValueError('Bands must different names. Received band list: %s' % list_bandnames)
173 174 175

            self._bandnames = bN_dict

176
            try:
177
                self.metadata.band_meta['band_names'] = list_bandnames
178 179 180
            except AttributeError:
                # in case self._metadata is None
                pass
181 182 183 184 185 186 187
        else:
            del self.bandnames

    @bandnames.deleter
    def bandnames(self):
        self._bandnames = OrderedDict(('B%s' % band, i) for i, band in enumerate(range(1, self.bands + 1)))
        if self._metadata is not None:
188
            self.metadata.band_meta['band_names'] = list(self._bandnames.keys())
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    @property
    def is_inmem(self):
        """Check if associated image array is completely loaded into memory."""
        return isinstance(self.arr, np.ndarray)

    @property
    def shape(self):
        """Get the array shape of the associated image array."""
        if self.is_inmem:
            return self.arr.shape
        else:
            if self._shape:
                return self._shape
            else:
                self.set_gdalDataset_meta()
                return self._shape

    @property
    def ndim(self):
        """Get the number dimensions of the associated image array."""
        return len(self.shape)

    @property
    def rows(self):
        """Get the number of rows of the associated image array."""

        return self.shape[0]

    @property
    def columns(self):
        """Get the number of columns of the associated image array."""

        return self.shape[1]

    cols = alias_property('columns')

    @property
    def bands(self):
        """Get the number of bands of the associated image array."""

230
        return self.shape[2] if len(self.shape) > 2 else 1
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

    @property
    def dtype(self):
        """Get the numpy data type of the associated image array."""

        if self._dtype:
            return self._dtype
        elif self.is_inmem:
            return self.arr.dtype
        else:
            self.set_gdalDataset_meta()
            return self._dtype

    @property
    def geotransform(self):
246
        """Get the GDAL GeoTransform of the associated image, e.g., (283500.0, 5.0, 0.0, 4464500.0, 0.0, -5.0)"""
247 248 249 250 251 252 253

        if self._geotransform:
            return self._geotransform
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
            return self._geotransform
        else:
254
            return [0, 1, 0, 0, 0, -1]
255 256 257

    @geotransform.setter
    def geotransform(self, gt):
258
        # type: (Union[list, tuple]) -> None
259 260
        assert isinstance(gt, (list, tuple)) and len(gt) == 6,\
            'geotransform must be a list with 6 numbers. Got %s.' % str(gt)
261

262
        for i in gt:
263
            assert is_number(i), "geotransform must contain only numbers. Got '%s' (type: %s)." % (i, type(i))
264

265
        self._geotransform = gt
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

    gt = alias_property('geotransform')

    @property
    def xgsd(self):
        """Get the X resolution in units of the given or detected projection."""

        return self.geotransform[1]

    @property
    def ygsd(self):
        """Get the Y resolution in units of the given or detected projection."""

        return abs(self.geotransform[5])

    @property
    def xygrid_specs(self):
        """
        Get the specifications for the X/Y coordinate grid, e.g. [[15,30], [0,30]] for a coordinate with its origin
        at X/Y[15,0] and a GSD of X/Y[15,30].
        """

288
        def get_grid(gt, xgsd, ygsd): return [[gt[0], gt[0] + xgsd], [gt[3], gt[3] - ygsd]]
289 290 291 292 293 294 295 296 297 298 299 300 301
        return get_grid(self.geotransform, self.xgsd, self.ygsd)

    @property
    def projection(self):
        """
        Get the projection of the associated image. Setting the projection is only allowed if GeoArray has been
        instanced from memory or the associated file on disk has no projection.
        """

        if self._projection:
            return self._projection
        elif not self.is_inmem:
            self.set_gdalDataset_meta()
302
            return self._projection  # or "LOCAL_CS[\"MAP\"]"
303
        else:
304
            return ''  # '"LOCAL_CS[\"MAP\"]"
305 306 307

    @projection.setter
    def projection(self, prj):
308
        # type: (str) -> None
309
        if self.filePath and self.projection:
310
            assert self.projection is None or prj_equal(self.projection, prj), \
311
                "Cannot set %s.projection to the given value because it does not match the projection from the file " \
312
                "on disk." % self.__class__.__name__
313 314 315 316 317 318 319 320 321 322 323 324 325
        else:
            self._projection = prj

    prj = alias_property('projection')

    @property
    def epsg(self):
        """Get the EPSG code of the projection of the GeoArray."""

        return WKT2EPSG(self.projection)

    @epsg.setter
    def epsg(self, epsg_code):
326
        # type: (int) -> None
327 328 329 330 331 332 333
        self.projection = EPSG2WKT(epsg_code)

    @property
    def box(self):
        mapPoly = get_footprint_polygon(get_corner_coordinates(gt=self.geotransform, cols=self.columns, rows=self.rows))
        return boxObj(gt=self.geotransform, prj=self.projection, mapPoly=mapPoly)

334 335 336 337 338 339 340 341
    @property
    def is_map_geo(self):
        # type: () -> bool
        """
        Returns 'True' if the GeoArray instance has a valid geoinformation with map instead of image coordinates.
        """
        return self.gt and list(self.gt) != [0, 1, 0, 0, 0, -1] and self.prj

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
    @property
    def nodata(self):
        """
        Get the nodata value of the GeoArray. If GeoArray has been instanced with a file path the file is checked
        for an existing nodata value. Otherwise (if no value is exlicitly given during object instanciation) the nodata
        value is tried to be automatically detected.
        """

        if self._nodata is not None:
            return self._nodata
        else:
            # try to get nodata value from file
            if not self.is_inmem:
                self.set_gdalDataset_meta()
            if self._nodata is None:
357
                self.find_noDataVal()
358 359 360 361 362 363
                if self._nodata == 'ambiguous':
                    warnings.warn('Nodata value could not be clearly identified. It has been set to None.')
                    self._nodata = None
                else:
                    if self._nodata is not None and not self.q:
                        print("Automatically detected nodata value for %s '%s': %s"
364
                              % (self.__class__.__name__, self.basename, self._nodata))
365 366 367 368
            return self._nodata

    @nodata.setter
    def nodata(self, value):
369
        # type: (Union[int, None]) -> None
370 371
        self._nodata = value

372 373 374
        if self._metadata and value is not None:
            self.metadata.global_meta.update({'data ignore value': str(value)})

375 376 377 378 379 380 381 382 383
    @property
    def mask_nodata(self):
        """
        Get the nodata mask of the associated image array. It is calculated using all image bands.
        """

        if self._mask_nodata is not None:
            return self._mask_nodata
        else:
384
            self.calc_mask_nodata()  # sets self._mask_nodata
385 386 387 388 389 390 391 392 393 394 395
            return self._mask_nodata

    @mask_nodata.setter
    def mask_nodata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import NoDataMask
396 397
            geoArr_mask = NoDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
398
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
399
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
400 401 402 403

            assert geoArr_mask.bands == 1, \
                'Expected one single band as nodata mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided nodata mask must have the same number of ' \
404
                                                            'rows and columns as the %s itself.' % imName
405 406
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given nodata mask for %s must match the geotransform of the %s itself. ' \
407
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
408 409
            assert not geoArr_mask.prj or prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given nodata mask for the %s must match the projection of the %s itself.' \
410
                % (imName, self.__class__.__name__)
411 412

            self._mask_nodata = geoArr_mask
413 414 415 416 417 418
        else:
            del self.mask_nodata

    @mask_nodata.deleter
    def mask_nodata(self):
        self._mask_nodata = None
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

    @property
    def mask_baddata(self):
        """
        Returns the bad data mask for the associated image array if it has been explicitly previously. It can be set
         by passing a file path, a numpy array or an instance of GeoArray to the setter of this property.
        """

        return self._mask_baddata

    @mask_baddata.setter
    def mask_baddata(self, mask):
        """Set bad data mask.

        :param mask:    Can be a file path, a numpy array or an instance o GeoArray.
        """

        if mask is not None:
            from .masks import BadDataMask
438 439
            geoArr_mask = BadDataMask(mask, progress=self.progress, q=self.q)
            geoArr_mask.gt = geoArr_mask.gt if geoArr_mask.gt not in [None, [0, 1, 0, 0, 0, -1]] else self.gt
440
            geoArr_mask.prj = geoArr_mask.prj if geoArr_mask.prj else self.prj
441
            imName = "the %s '%s'" % (self.__class__.__name__, self.basename)
442 443 444 445

            assert geoArr_mask.bands == 1, \
                'Expected one single band as bad data mask for %s. Got %s bands.' % (self.basename, geoArr_mask.bands)
            assert geoArr_mask.shape[:2] == self.shape[:2], 'The provided bad data mask must have the same number of ' \
446
                                                            'rows and columns as the %s itself.' % imName
447 448
            assert geoArr_mask.gt == self.gt, \
                'The geotransform of the given bad data mask for %s must match the geotransform of the %s itself. ' \
449
                'Got %s.' % (imName, self.__class__.__name__, geoArr_mask.gt)
450 451
            assert prj_equal(geoArr_mask.prj, self.prj), \
                'The projection of the given bad data mask for the %s must match the projection of the %s itself.' \
452
                % (imName, self.__class__.__name__)
453 454

            self._mask_baddata = geoArr_mask
455 456 457 458 459 460
        else:
            del self.mask_baddata

    @mask_baddata.deleter
    def mask_baddata(self):
        self._mask_baddata = None
461 462 463 464 465 466 467 468 469 470

    @property
    def footprint_poly(self):
        # FIXME should return polygon in image coordinates if no projection is available
        """
        Get the footprint polygon of the associated image array (returns an instance of shapely.geometry.Polygon.
        """

        if self._footprint_poly is None:
            assert self.mask_nodata is not None, 'A nodata mask is needed for calculating the footprint polygon. '
471
            if False not in self.mask_nodata[:]:
472 473 474 475
                # do not run raster2polygon if whole image is filled with data
                self._footprint_poly = self.box.mapPoly
            else:
                try:
476 477
                    multipolygon = raster2polygon(self.mask_nodata.astype(np.uint8), self.gt, self.prj, exact=False,
                                                  progress=self.progress, q=self.q, maxfeatCount=10, timeout=3)
478
                    self._footprint_poly = fill_holes_within_poly(multipolygon)
479
                except (RuntimeError, TimeoutError):
480 481 482 483
                    if not self.q:
                        warnings.warn("\nCalculation of footprint polygon failed for %s '%s'. Using outer bounds. One "
                                      "reason could be that the nodata value appears within the actual image (not only "
                                      "as fill value). To avoid this use another nodata value. Current nodata value is "
484
                                      "%s." % (self.__class__.__name__, self.basename, self.nodata))
485 486 487
                    self._footprint_poly = self.box.mapPoly

            # validation
488 489 490 491
            assert not polyVertices_outside_poly(self._footprint_poly, self.box.mapPoly), \
                "Computing footprint polygon for %s '%s' failed. The resulting polygon is partly or completely " \
                "outside of the image bounds." % (self.__class__.__name__, self.basename)
            # assert self._footprint_poly
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
            # for XY in self.corner_coord:
            #    assert self.GeoArray.box.mapPoly.contains(Point(XY)) or self.GeoArray.box.mapPoly.touches(Point(XY)), \
            #        "The corner position '%s' is outside of the %s." % (XY, self.imName)

        return self._footprint_poly

    @footprint_poly.setter
    def footprint_poly(self, poly):
        if isinstance(poly, Polygon):
            self._footprint_poly = poly
        elif isinstance(poly, str):
            self._footprint_poly = shply_loads(poly)
        else:
            raise ValueError("'footprint_poly' can only be set from a shapely polygon or a WKT string.")

    @property
    def metadata(self):
        """
        Returns a GeoDataFrame containing all available metadata (read from file if available).
        Use 'metadata[band_index].to_dict()' to get a metadata dictionary for a specific band.
        Use 'metadata.loc[row_name].to_dict()' to get all metadata values of the same key for all bands as dictionary.
        Use 'metadata.loc[row_name, band_index] = value' to set a new value.

        :return:  geopandas.GeoDataFrame
        """

        if self._metadata is not None:
            return self._metadata
        else:
521
            default = GDAL_Metadata(nbands=self.bands, nodata_allbands=self._nodata)
522

523 524 525 526 527 528 529 530
            self._metadata = default
            if not self.is_inmem:
                self.set_gdalDataset_meta()
                return self._metadata
            else:
                return self._metadata

    @metadata.setter
531 532 533 534 535 536
    def metadata(self, meta):
        if not isinstance(meta, GDAL_Metadata) or meta.bands != self.bands:
            raise ValueError("%s.metadata can only be set with an instance of geoarray.metadata.GDAL_Metadata of "
                             "which the band number corresponds to the band number of %s."
                             % (self.__class__.__name__, self.__class__.__name__))
        self._metadata = meta
537 538 539 540

    meta = alias_property('metadata')

    def __getitem__(self, given):
541
        if isinstance(given, (int, float, slice, np.integer, np.floating)) and self.ndim == 3:
542 543 544 545 546 547 548 549 550 551 552 553 554
            # handle 'given' as index for 3rd (bands) dimension
            if self.is_inmem:
                return self.arr[:, :, given]
            else:
                return self.from_path(self.arg, [given])

        elif isinstance(given, str):
            # behave like a dictionary and return the corresponding band
            if self.bandnames:
                if given not in self.bandnames:
                    raise ValueError("'%s' is not a known band. Known bands are: %s"
                                     % (given, ', '.join(list(self.bandnames.keys()))))
                if self.is_inmem:
555
                    return self.arr if self.ndim == 2 else self.arr[:, :, self.bandnames[given]]
556 557 558 559
                else:
                    return self.from_path(self.arg, [self.bandnames[given]])
            else:
                raise ValueError('String indices are only supported if %s has been instanced with bandnames given.'
560
                                 % self.__class__.__name__)
561 562 563 564 565 566 567

        elif isinstance(given, (tuple, list)):
            # handle requests like geoArr[[1,2],[3,4]  -> not implemented in from_path if array is not in mem
            types = [type(i) for i in given]
            if list in types or tuple in types:
                self.to_mem()

568
            if len(given) == 3:
569 570

                # handle strings in the 3rd dim of 'given' -> convert them to a band index
571
                if isinstance(given[2], str):
572 573 574 575 576 577 578 579
                    if self.bandnames:
                        if given[2] not in self.bandnames:
                            raise ValueError("'%s' is not a known band. Known bands are: %s"
                                             % (given[2], ', '.join(list(self.bandnames.keys()))))

                        band_idx = self.bandnames[given[2]]
                        # NOTE: the string in the 3rd is ignored if ndim==2 and band_idx==0
                        if self.is_inmem:
580
                            return self.arr if (self.ndim == 2 and band_idx == 0) else self.arr[:, :, band_idx]
581
                        else:
582 583
                            getitem_params = \
                                given[:2] if (self.ndim == 2 and band_idx == 0) else given[:2] + (band_idx,)
584 585 586 587 588 589 590
                            return self.from_path(self.arg, getitem_params)
                    else:
                        raise ValueError(
                            'String indices are only supported if %s has been instanced with bandnames given.'
                            % self.__class__.__name__)

                # in case a third dim is requested from 2D-array -> ignore 3rd dim if 3rd dim is 0
591
                elif self.ndim == 2 and given[2] == 0:
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
                    if self.is_inmem:
                        return self.arr[given[:2]]
                    else:
                        return self.from_path(self.arg, given[:2])

        # if nothing has been returned until here -> behave like a numpy array
        if self.is_inmem:
            return self.arr[given]
        else:
            getitem_params = [given] if isinstance(given, slice) else given
            return self.from_path(self.arg, getitem_params)

    def __setitem__(self, idx, array2set):
        """Overwrites the pixel values of GeoArray.arr with the given array.

        :param idx:         <int, list, slice> the index position to overwrite
        :param array2set:   <np.ndarray> array to be set. Must be compatible to the given index position.
        :return:
        """

        if self.is_inmem:
            self.arr[idx] = array2set
        else:
            raise NotImplementedError('Item assignment for %s instances that are not in memory is not yet supported.'
616
                                      % self.__class__.__name__)
617 618 619

    def __getattr__(self, attr):
        # check if the requested attribute can not be present because GeoArray has been instanced with an array
620 621
        attrsNot2Link2np = ['__deepcopy__']   # attributes we don't want to inherit from numpy.ndarray

622 623
        if attr not in self.__dir__() and not self.is_inmem and attr in ['shape', 'dtype', 'geotransform',
                                                                         'projection']:
624 625
            self.set_gdalDataset_meta()

626 627
        if attr in self.__dir__():  # __dir__() includes also methods and properties
            return self.__getattribute__(attr)  # __getattribute__ avoids infinite loop
628
        elif attr not in attrsNot2Link2np and hasattr(np.array([]), attr):
629 630
            return self[:].__getattribute__(attr)
        else:
631
            raise AttributeError("%s object has no attribute '%s'." % (self.__class__.__name__, attr))
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651

    def __getstate__(self):
        """Defines how the attributes of GMS object are pickled."""

        # clean array cache in order to avoid cache pickling
        self.flush_cache()

        return self.__dict__

    def __setstate__(self, state):
        """Defines how the attributes of GMS object are unpickled.
        NOTE: This method has been implemented because otherwise pickled and unpickled instances show recursion errors
        within __getattr__ when requesting any attribute.
        """

        self.__dict__ = state

    def calc_mask_nodata(self, fromBand=None, overwrite=False):
        """Calculates a no data mask with (values: 0=nodata; 1=data)

652 653 654
        NOTE:   Only pixel containing the nodata values in ALL bands are recognized as nodata pixel. If they contain a
                pixel value different from the nodata value in any band they are good data pixels.

655 656 657 658 659 660 661
        :param fromBand:  <int> index of the band to be used (if None, all bands are used)
        :param overwrite: <bool> whether to overwrite existing nodata mask that has already been calculated
        :return:
        """

        if self._mask_nodata is None or overwrite:
            assert self.ndim in [2, 3], "Only 2D or 3D arrays are supported. Got a %sD array." % self.ndim
662
            arr = self[:, :, fromBand] if self.ndim == 3 and fromBand is not None else self[:]
663

664 665 666
            min_v, max_v = np.min(arr), np.max(arr)
            if (min_v == max_v == self.nodata) or (np.isnan(min_v) and np.isnan(max_v) and np.isnan(self.nodata)):
                self.mask_nodata = np.full(arr.shape[:2], False)
667
            else:
668 669 670 671 672
                if self.nodata is None:
                    self.mask_nodata = np.ones((self.rows, self.cols), np.bool)
                elif np.isnan(self.nodata):
                    self.mask_nodata = \
                        np.invert(np.isnan(arr)) if arr.ndim == 2 else \
673
                        np.any(np.invert(np.isnan(arr)), axis=2)
674 675 676
                else:
                    self.mask_nodata = \
                        np.ma.masked_not_equal(arr, self.nodata).mask if arr.ndim == 2 else \
677
                        np.any(np.ma.masked_not_equal(arr, self.nodata).mask, axis=2)
678

679 680 681 682 683 684 685 686
    def find_noDataVal(self, bandIdx=0, sz=3):
        """Tries to derive no data value from homogenious corner pixels within 3x3 windows (by default).
        :param bandIdx:
        :param sz: window size in which corner pixels are analysed
        """
        wins = [self[0:sz, 0:sz, bandIdx], self[0:sz, -sz:, bandIdx],
                self[-sz:, -sz:, bandIdx], self[-sz:, 0:sz, bandIdx]]  # UL, UR, LR, LL

687 688
        means, stds = [np.mean(win) for win in wins], [np.std(win) for win in wins]
        possVals = [mean for mean, std in zip(means, stds) if std == 0 or np.isnan(std)]
689 690 691 692
        # possVals==[]: all corners are filled with data; np.std(possVals)==0: noDataVal clearly identified

        if possVals:
            if np.std(possVals) != 0:
693 694 695 696 697 698
                if np.isnan(np.std(possVals)):
                    # at least one of the possible values is np.nan
                    nodata = np.nan
                else:
                    # different possible nodata values have been found in the image corner
                    nodata = 'ambiguous'
699 700 701 702 703
            else:
                if len(possVals) <= 2:
                    # each window in each corner
                    warnings.warn("\nAutomatic nodata value detection returned the value %s for GeoArray '%s' but this "
                                  "seems to be unreliable (occurs in only %s). To avoid automatic detection, just pass "
704 705 706
                                  "the correct nodata value."
                                  % (possVals[0], self.basename, ('2 image corners' if len(possVals) == 2 else
                                                                  '1 image corner')))
707
                nodata = possVals[0]
708
        else:
709 710
            nodata = None

711
        self.nodata = nodata
712
        return nodata
713

714 715 716 717 718 719 720 721 722 723
    def set_gdalDataset_meta(self):
        """Retrieves GDAL metadata from file. This function is only executed once to avoid overwriting of user defined
         attributes, that are defined after object instanciation.

        :return:
        """

        if not self._gdalDataset_meta_already_set:
            assert self.filePath
            ds = gdal.Open(self.filePath)
724 725 726
            if not ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

727
            # set private class variables (in order to avoid recursion error)
728 729
            self._shape = tuple([ds.RasterYSize, ds.RasterXSize] + ([ds.RasterCount] if ds.RasterCount > 1 else []))
            self._dtype = gdal_array.GDALTypeCodeToNumericTypeCode(ds.GetRasterBand(1).DataType)
730
            self._geotransform = list(ds.GetGeoTransform())
731 732

            # for some reason GDAL reads arbitrary geotransforms as (0, 1, 0, 0, 0, 1) instead of (0, 1, 0, 0, 0, -1)
733
            self._geotransform[5] = -abs(self._geotransform[5])  # => force ygsd to be negative
734

735 736
            # temp conversion to EPSG needed because GDAL seems to modify WKT string when writing file to disk
            # (e.g. using gdal_merge) -> conversion to EPSG and back undos that
737 738
            wkt = ds.GetProjection()
            self._projection = EPSG2WKT(WKT2EPSG(wkt)) if not isLocal(wkt) else ''
739

740 741 742
            if 'nodata' not in self._initParams or self._initParams['nodata'] is None:
                band = ds.GetRasterBand(1)
                # FIXME this does not support different nodata values within the same file
743
                self.nodata = band.GetNoDataValue()
744

745 746 747
            # set metadata attribute
            if self.is_inmem or not self.filePath:
                # metadata cannot be read from disk -> set it to the default
748
                self._metadata = GDAL_Metadata(nbands=self.bands, nodata_allbands=self._nodata)
749

750 751
            else:
                self._metadata = GDAL_Metadata(filePath=self.filePath)
752

753
            del ds
754 755 756 757 758 759 760 761 762 763 764 765 766 767

        self._gdalDataset_meta_already_set = True

    def from_path(self, path, getitem_params=None):
        # type: (str, list) -> np.ndarray
        """Read a GDAL compatible raster image from disk, with respect to the given image position.
        NOTE: If the requested array position is already in cache, it is returned from there.

        :param path:            <str> the file path of the image to read
        :param getitem_params:  <list> a list of slices in the form [row_slice, col_slice, band_slice]
        :return out_arr:        <np.ndarray> the output array
        """

        ds = gdal.Open(path)
768 769 770
        if not ds:
            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

771
        R, C, B = ds.RasterYSize, ds.RasterXSize, ds.RasterCount
772
        del ds
773

774
        # convert getitem_params to subset area to be read #
775 776 777 778
        rS, rE, cS, cE, bS, bE, bL = [None] * 7

        # populate rS, rE, cS, cE, bS, bE, bL
        if getitem_params:
779
            # populate rS, rE, cS, cE
780 781 782 783 784
            if len(getitem_params) >= 2:
                givenR, givenC = getitem_params[:2]
                if isinstance(givenR, slice):
                    rS = givenR.start
                    rE = givenR.stop - 1 if givenR.stop is not None else None
785
                elif isinstance(givenR, (int, np.integer)):
786 787 788 789 790
                    rS = givenR
                    rE = givenR
                if isinstance(givenC, slice):
                    cS = givenC.start
                    cE = givenC.stop - 1 if givenC.stop is not None else None
791
                elif isinstance(givenC, (int, np.integer)):
792 793
                    cS = givenC
                    cE = givenC
794 795

            # populate bS, bE, bL
796 797 798 799 800
            if len(getitem_params) in [1, 3]:
                givenB = getitem_params[2] if len(getitem_params) == 3 else getitem_params[0]
                if isinstance(givenB, slice):
                    bS = givenB.start
                    bE = givenB.stop - 1 if givenB.stop is not None else None
801
                elif isinstance(givenB, (int, np.integer)):
802 803
                    bS = givenB
                    bE = givenB
804
                elif isinstance(givenB, (tuple, list)):
805 806 807
                    typesInGivenB = [type(i) for i in givenB]
                    assert len(list(set(typesInGivenB))) == 1, \
                        'Mixed data types within the list of bands are not supported.'
808
                    if isinstance(givenB[0], (int, np.integer)):
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
                        bL = list(givenB)
                    elif isinstance(givenB[0], str):
                        bL = [self.bandnames[i] for i in givenB]
                elif type(givenB) in [str]:
                    bL = [self.bandnames[givenB]]

        # set defaults for not given values
        rS = rS if rS is not None else 0
        rE = rE if rE is not None else R - 1
        cS = cS if cS is not None else 0
        cE = cE if cE is not None else C - 1
        bS = bS if bS is not None else 0
        bE = bE if bE is not None else B - 1
        bL = list(range(bS, bE + 1)) if not bL else bL

        # convert negative to positive ones
        rS = rS if rS >= 0 else self.rows + rS
        rE = rE if rE >= 0 else self.rows + rE
        cS = cS if cS >= 0 else self.columns + cS
        cE = cE if cE >= 0 else self.columns + cE
        bS = bS if bS >= 0 else self.bands + bS
        bE = bE if bE >= 0 else self.bands + bE
831
        bL = [b if b >= 0 else (self.bands + b) for b in bL]
832 833

        # validate subset area bounds to be read
834 835 836 837 838 839 840
        def msg(v, idx, sz):
            # FIXME numpy raises that error ONLY for the 2nd axis
            return '%s is out of bounds for axis %s with size %s' % (v, idx, sz)

        for val, axIdx, axSize in zip([rS, rE, cS, cE, bS, bE], [0, 0, 1, 1, 2, 2], [R, R, C, C, B, B]):
            if not 0 <= val <= axSize - 1:
                raise ValueError(msg(val, axIdx, axSize))
841 842

        # summarize requested array position in arr_pos
843
        # NOTE: # bandlist must be string because truth value of an array with more than one element is ambiguous
844 845
        arr_pos = dict(rS=rS, rE=rE, cS=cS, cE=cE, bS=bS, bE=bE, bL=bL)

846 847
        def _ensure_np_shape_consistency_3D_2D(arr):
            """Ensure numpy output shape consistency according to the given indexing parameters.
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864

            This may require 3D to 2D conversion in case out_arr can be represented by a 2D array AND index has been
            provided as integer (avoids shapes like (1,2,2). It also may require 2D to 3D conversion in case only one
            band has been requested and the 3rd dimension has been provided as a slice.

            NOTE: -> numpy also returns a 2D array in that case
            NOTE: if array is indexed with a slice -> keep it a 3D array
            """
            # 2D -> 3D
            if arr.ndim == 2 and isinstance(getitem_params, (tuple, list)) and len(getitem_params) == 3 and \
                    isinstance(getitem_params[2], slice):
                arr = arr[:, :, np.newaxis]

            # 3D -> 2D
            if 1 in arr.shape:
                outshape = []
                for i, sh in enumerate(arr.shape):
865
                    if sh == 1 and isinstance(getitem_params[i], (int, np.integer, float, np.floating)):
866 867 868 869 870 871 872 873
                        pass
                    else:
                        outshape.append(sh)

                arr = arr.reshape(*outshape)

            return arr

874
        # check if the requested array position is already in cache -> if yes, return it from there
875
        if self._arr_cache is not None and self._arr_cache['pos'] == arr_pos:
876
            out_arr = self._arr_cache['arr_cached']
877
            out_arr = _ensure_np_shape_consistency_3D_2D(out_arr)
878 879 880 881 882 883 884

        else:
            # TODO insert a multiprocessing.Lock here in order to prevent IO bottlenecks?
            # read subset area from disk
            if bL == list(range(0, B)):
                tempArr = gdalnumeric.LoadFile(path, cS, rS, cE - cS + 1, rE - rS + 1)
                out_arr = np.swapaxes(np.swapaxes(tempArr, 0, 2), 0, 1) if B > 1 else tempArr
885 886
                if out_arr is None:
                    raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
887 888 889 890
            else:
                ds = gdal.Open(path)
                if len(bL) == 1:
                    band = ds.GetRasterBand(bL[0] + 1)
891
                    out_arr = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
892 893
                    if out_arr is None:
                        raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
894
                    del band
895 896 897 898 899
                else:
                    out_arr = np.empty((rE - rS + 1, cE - cS + 1, len(bL)))
                    for i, bIdx in enumerate(bL):
                        band = ds.GetRasterBand(bIdx + 1)
                        out_arr[:, :, i] = band.ReadAsArray(cS, rS, cE - cS + 1, rE - rS + 1)
900 901
                        if out_arr is None:
                            raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())
902
                        del band
903

904
                del ds
905

906
            out_arr = _ensure_np_shape_consistency_3D_2D(out_arr)
907

908
            # only set self.arr if the whole cube has been read (in order to avoid sudden shape changes)
909
            if out_arr.shape == self.shape:
910 911 912 913 914
                self.arr = out_arr

            # write _arr_cache
            self._arr_cache = dict(pos=arr_pos, arr_cached=out_arr)

915 916
        return out_arr  # TODO implement check of returned datatype (e.g. NoDataMask should always return np.bool
        # TODO -> would be np.int8 if an int8 file is read from disk
917 918 919 920 921 922 923 924

    def save(self, out_path, fmt='ENVI', creationOptions=None):
        # type: (str, str, list) -> None
        """Write the raster data to disk.

        :param out_path:        <str> output path
        :param fmt:             <str> the output format / GDAL driver code to be used for output creation, e.g. 'ENVI'
                                Refer to http://www.gdal.org/formats_list.html to get a full list of supported formats.
925 926
        :param creationOptions: <list> GDAL creation options,
                                e.g., ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
927 928 929
        """

        if not self.q:
930 931
            print('Writing GeoArray of size %s to %s.' % (self.shape, out_path))
        assert self.ndim in [2, 3], 'Only 2D- or 3D arrays are supported.'
932 933 934 935 936 937 938 939 940

        driver = gdal.GetDriverByName(fmt)
        if driver is None:
            raise Exception("'%s' is not a supported GDAL driver. Refer to www.gdal.org/formats_list.html for full "
                            "list of GDAL driver codes." % fmt)

        if not os.path.isdir(os.path.dirname(out_path)):
            os.makedirs(os.path.dirname(out_path))

941 942
        envi_metadict = self.metadata.to_ENVI_metadict()

943
        if self.is_inmem:
Daniel Scheffler's avatar
Daniel Scheffler committed
944 945 946 947 948
            ds_inmem = get_GDAL_ds_inmem(self.arr, self.geotransform, self.projection,
                                         self.nodata)  # expects rows,columns,bands

            # write dataset
            ds_out = driver.CreateCopy(out_path, ds_inmem, options=creationOptions if creationOptions else [])
949 950 951 952 953 954

            # # rows, columns, bands => bands, rows, columns
            # out_arr = self.arr if self.ndim == 2 else np.swapaxes(np.swapaxes(self.arr, 0, 2), 1, 2)
            # gdalnumeric.SaveArray(out_arr, out_path, format=fmt, prototype=ds_inmem)  # expects bands,rows,columns
            # ds_out = gdal.Open(out_path)

Daniel Scheffler's avatar
Daniel Scheffler committed
955
            del ds_inmem
956

957 958 959 960
            ################
            # set metadata #
            ################

Daniel Scheffler's avatar
Daniel Scheffler committed
961
            # NOTE:  The dataset has to be written BEFORE metadata are added. Otherwise, metadata are not written.
962 963 964

            # ENVI #
            ########
965 966
            if fmt == 'ENVI':
                ds_out.SetMetadata(envi_metadict, 'ENVI')
967

968
                if 'band_names' in envi_metadict:
969 970
                    for bidx in range(self.bands):
                        band = ds_out.GetRasterBand(bidx + 1)
971 972 973 974
                        bandname = self.metadata.band_meta['band_names'][bidx].strip()
                        band.SetDescription(bandname)

                        assert band.GetDescription() == bandname
975 976 977 978
                        del band

                if 'description' in envi_metadict:
                    ds_out.SetDescription(envi_metadict['description'])
979

980 981
                ds_out.FlushCache()
                gdal.Unlink(out_path + '.aux.xml')
982

983
            elif self.metadata.all_meta:
984 985 986
                # set global domain metadata
                if self.metadata.global_meta:
                    ds_out.SetMetadata(dict((k, repr(v)) for k, v in self.metadata.global_meta.items()))
987

988 989
                if 'description' in envi_metadict:
                    ds_out.SetDescription(envi_metadict['description'])
990

991 992
                # set band domain metadata
                bandmeta_dict = self.metadata.to_DataFrame().astype(str).to_dict()
993

994 995 996 997 998
                for bidx in range(self.bands):
                    band = ds_out.GetRasterBand(bidx + 1)
                    bandmeta = bandmeta_dict[bidx]
                    # meta2write = dict((k, repr(v)) for k, v in self.metadata.band_meta.items() if v is not np.nan)
                    band.SetMetadata(bandmeta)
999

1000 1001
                    if 'band_names' in envi_metadict:
                        band.SetDescription(self.metadata.band_meta['band_names'][bidx].strip())
1002

1003 1004
                    band.FlushCache()
                    del band
1005

Daniel Scheffler's avatar
Daniel Scheffler committed
1006 1007
            ds_out.FlushCache()
            del ds_out
1008 1009 1010

        else:
            src_ds = gdal.Open(self.filePath)
1011 1012 1013
            if not src_ds:
                raise Exception('Error reading file:  ' + gdal.GetLastErrorMsg())

1014 1015
            gdal_Translate = get_gdal_func('Translate')
            gdal_Translate(out_path, src_ds, format=fmt, creationOptions=creationOptions)
1016
            del src_ds
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026
            # add band names
            if 'band_names' in envi_metadict:
                ds_out = gdal.Open(out_path)

                for bidx in range(self.bands):
                    band = ds_out.GetRasterBand(bidx + 1)
                    band.SetDescription(self.metadata.band_meta['band_names'][bidx])
                    del band

1027 1028 1029 1030 1031 1032 1033 1034
        if not os.path.exists(out_path):
            raise Exception(gdal.GetLastErrorMsg())

    def dump(self, out_path):
        # type: (str) -> None
        """Serialize the whole object instance to disk using dill."""

        import dill
1035 1036
        with open(out_path, 'wb') as outF:
            dill.dump(self, outF)
1037 1038 1039 1040 1041 1042 1043 1044 1045

    def _get_plottable_image(self, xlim=None, ylim=None, band=None, boundsMap=None, boundsMapPrj=None, res_factor=None,
                             nodataVal=None, out_prj=None):
        # handle limits
        if boundsMap:
            boundsMapPrj = boundsMapPrj if boundsMapPrj else self.prj
            image2plot, gt, prj = self.get_mapPos(boundsMap, boundsMapPrj, band2get=band,
                                                  fillVal=nodataVal if nodataVal is not None else self.nodata)
        else:
1046 1047
            cS, cE = xlim if isinstance(xlim, (tuple, list)) else (0, self.columns)
            rS, rE = ylim if isinstance(ylim, (tuple, list)) else (0, self.rows)
1048 1049

            image2plot = self[rS:rE, cS:cE, band] if band is not None else self[rS:rE, cS:cE]
1050
            gt, prj = self.geotransform, self.projection
1051

1052
        transOpt = ['SRC_METHOD=NO_GEOTRANSFORM'] if tuple(gt) == (0, 1, 0, 0, 0, -1) else None
1053
        xdim, ydim = None, None
1054
        nodataVal = nodataVal if nodataVal is not None else self.nodata
1055 1056

        if res_factor != 1. and image2plot.shape[0] * image2plot.shape[1] > 1e6:  # shape > 1000*1000
1057 1058 1059 1060
            # sample image down / normalize
            xdim, ydim = \
                (self.columns * res_factor, self.rows * res_factor) if res_factor else \
                tuple((np.array([self.columns, self.rows]) / (np.array([self.columns, self.rows]).max() / 1000)))
1061 1062 1063
            xdim, ydim = int(xdim), int(ydim)

        if xdim or ydim or out_prj:
1064
            from py_tools_ds.geo.raster.reproject import warp_ndarray
1065 1066 1067 1068 1069
            image2plot, gt, prj = warp_ndarray(image2plot, self.geotransform, self.projection,
                                               out_XYdims=(xdim, ydim), in_nodata=nodataVal, out_nodata=nodataVal,
                                               transformerOptions=transOpt, out_prj=out_prj, q=True)
            if transOpt and 'NO_GEOTRANSFORM' in ','.join(transOpt):
                image2plot = np.flipud(image2plot)
1070 1071
                gt = list(gt)
                gt[3] = 0
1072 1073 1074 1075 1076 1077 1078

            if xdim or ydim:
                print('Note: array has been downsampled to %s x %s for faster visualization.' % (xdim, ydim))

        return image2plot, gt, prj

    def show(self, xlim=None, ylim=None, band=None, boundsMap=None, boundsMapPrj=None, figsize=None,
1079
             interpolation='none', vmin=None, vmax=None, pmin=2, pmax=98, cmap=None, nodataVal=None,
1080
             res_factor=None, interactive=False, ax=None):
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        """Plots the desired array position into a figure.

        :param xlim:            [start_column, end_column]
        :param ylim:            [start_row, end_row]
        :param band:            the band index of the band to be plotted (if None and interactive==True all bands are
                                shown, otherwise the first band is chosen)
        :param boundsMap:       xmin, ymin, xmax, ymax
        :param boundsMapPrj:
        :param figsize:
        :param interpolation:
1091 1092 1093 1094
        :param vmin:            darkest pixel value to be included in stretching
        :param vmax:            brightest pixel value to be included in stretching
        :param pmin:            percentage to be used for excluding the darkest pixels from stretching (default: 2)
        :param pmax:            percentage to be used for excluding the brightest pixels from stretching (default: 98)
1095 1096