README.rst 5.34 KB
Newer Older
1
.. figure:: http://danschef.gitext.gfz-potsdam.de/arosics/images/arosics_logo.png
Daniel Scheffler's avatar
Daniel Scheffler committed
2
        :target: https://gitext.gfz-potsdam.de/danschef/arosics
3

Daniel Scheffler's avatar
Daniel Scheffler committed
4
**An Automated and Robust Open-Source Image Co-Registration Software for Multi-Sensor Satellite Data**
5
6


Daniel Scheffler's avatar
Daniel Scheffler committed
7
* Free software: GNU General Public License v3
Daniel Scheffler's avatar
Daniel Scheffler committed
8
9
* **Documentation:** http://danschef.gitext.gfz-potsdam.de/arosics/doc/
* The (open-access) **paper** corresponding to this software repository can be found here:
Daniel Scheffler's avatar
Daniel Scheffler committed
10
11
12
  `Scheffler et al. 2017 <http://www.mdpi.com/2072-4292/9/7/676>`__
  (cite as: Scheffler D, Hollstein A, Diedrich H, Segl K, Hostert P. AROSICS: An Automated and Robust Open-Source
  Image Co-Registration Software for Multi-Sensor Satellite Data. Remote Sensing. 2017; 9(7):676).
13

14

15
16
17
18
Status
------

.. .. image:: https://img.shields.io/travis/danschef/arosics.svg
19
20
        :target: https://travis-ci.org/danschef/arosics

21
.. .. image:: https://readthedocs.org/projects/arosics/badge/?version=latest
22
23
24
        :target: https://arosics.readthedocs.io/en/latest/?badge=latest
        :alt: Documentation Status

25
.. .. image:: https://pyup.io/repos/github/danschef/arosics/shield.svg
26
27
28
29
     :target: https://pyup.io/repos/github/danschef/arosics/
     :alt: Updates


30
.. image:: https://gitext.gfz-potsdam.de/danschef/arosics/badges/master/build.svg
Daniel Scheffler's avatar
Daniel Scheffler committed
31
        :target: https://gitext.gfz-potsdam.de/danschef/arosics/commits/master
32
.. image:: https://gitext.gfz-potsdam.de/danschef/arosics/badges/master/coverage.svg
Daniel Scheffler's avatar
Daniel Scheffler committed
33
        :target: http://danschef.gitext.gfz-potsdam.de/arosics/coverage/
Daniel Scheffler's avatar
Daniel Scheffler committed
34
35
.. image:: https://img.shields.io/pypi/v/arosics.svg
        :target: https://pypi.python.org/pypi/arosics
36
37
38
.. image:: https://img.shields.io/pypi/l/arosics.svg
        :target: https://gitext.gfz-potsdam.de/danschef/arosics/blob/master/LICENSE
.. image:: https://img.shields.io/pypi/pyversions/arosics.svg
Daniel Scheffler's avatar
Daniel Scheffler committed
39
        :target: https://img.shields.io/pypi/pyversions/arosics.svg
40

41
See also the latest coverage_ report and the nosetests_ HTML report.
42

43
44
Feature overview
----------------
45

Daniel Scheffler's avatar
Daniel Scheffler committed
46
AROSICS is a python package to perform **automatic subpixel co-registration** of two satellite image datasets
Daniel Scheffler's avatar
Daniel Scheffler committed
47
48
49
based on an image matching approach working in the frequency domain, combined with a multistage workflow for
effective detection of false-positives.

Daniel Scheffler's avatar
Daniel Scheffler committed
50
It detects and corrects **local as well as global misregistrations** between two input images in the subpixel scale,
Daniel Scheffler's avatar
Daniel Scheffler committed
51
that are often present in satellite imagery. The algorithm is robust against the typical difficulties of
Daniel Scheffler's avatar
Daniel Scheffler committed
52
53
54
multi-sensoral/multi-temporal images. Clouds are automatically handled by the implemented outlier detection algorithms.
The user may provide user-defined masks to exclude certain image areas from tie point creation. The image overlap area
is automatically detected. AROSICS supports a wide range of input data formats and can be used from the command
Daniel Scheffler's avatar
Daniel Scheffler committed
55
56
57
line (without any Python experience) or as a normal Python package.


Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
58
59
Global co-registration - fast but only for static X/Y-shifts
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Daniel Scheffler's avatar
Daniel Scheffler committed
60
61
62
63
64
65
66
67
68

Only a global X/Y translation is computed within a small subset of the input images (window position is adjustable).
This allows very fast co-registration but only corrects for translational (global) X/Y shifts.
The calculated subpixel-shifts are (by default) applied to the geocoding information of the output image.
No spatial resampling is done automatically as long as both input images have the same projection. However, AROSICS
also allows to align the output image to the reference image coordinate grid if needed.

Here is an example of a Landsat-8 / Sentinel-2 image pair before and after co-registration using AROSICS:

Daniel Scheffler's avatar
Daniel Scheffler committed
69
.. image:: docs/images/animation_testcase1_zoom_L8_S2_global_coreg_before_after_900x456.gif
Daniel Scheffler's avatar
Daniel Scheffler committed
70

71

Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
72
73
Local co-registration - for spatially variable shifts but a bit slower
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
74

Daniel Scheffler's avatar
Daniel Scheffler committed
75
76
77
78
A dense grid of tie points is automatically computed, whereas tie points are subsequently validated using a
multistage workflow. Only those tie points not marked as false-positives are used to compute the parameters of an
affine transformation. Warping of the target image is done using an appropriate resampling technique
(cubic by default).
79

Daniel Scheffler's avatar
Daniel Scheffler committed
80
81
Here is an example of the computed shift vectors after filtering false-positives
(mainly due to clouds in the target image):
82

Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
83
.. image:: docs/images/shift_vectors_testcase1__900x824.gif
84

85

Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
86
For further details check out the `documentation <http://danschef.gitext.gfz-potsdam.de/arosics/doc/>`__!
87

88
89
90
Credits
-------

Daniel Scheffler's avatar
Daniel Scheffler committed
91
AROSICS was developed by Daniel Scheffler (German Research Centre of Geosciences) within the context of the
Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
92
`GeoMultiSens <http://www.geomultisens.de/>`__ project funded by the German Federal Ministry of Education and Research
Daniel Scheffler's avatar
Daniel Scheffler committed
93
(project grant code: 01 IS 14 010 A-C).
94

95
This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.
Daniel Scheffler's avatar
Daniel Scheffler committed
96
97
The test data represent modified Copernicus Sentinel-2 data (ESA 2016). The input data for the figures in the
documentation have been provided by NASA (Landsat-8) and ESA (Sentinel-2).
98
99
100

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
101
.. _coverage: http://danschef.gitext.gfz-potsdam.de/arosics/coverage/
102
103
.. _nosetests: http://danschef.gitext.gfz-potsdam.de/arosics/nosetests_reports/nosetests.html
.. _conda: https://conda.io/docs/
104