README.rst 5.74 KB
Newer Older
1
.. figure:: http://danschef.gitext.gfz-potsdam.de/arosics/images/arosics_logo.png
Daniel Scheffler's avatar
Daniel Scheffler committed
2
        :target: https://gitext.gfz-potsdam.de/danschef/arosics
3

Daniel Scheffler's avatar
Daniel Scheffler committed
4
**An Automated and Robust Open-Source Image Co-Registration Software for Multi-Sensor Satellite Data**
5
6


Daniel Scheffler's avatar
Daniel Scheffler committed
7
* Free software: GNU General Public License v3
Daniel Scheffler's avatar
Daniel Scheffler committed
8
9
* **Documentation:** http://danschef.gitext.gfz-potsdam.de/arosics/doc/
* The (open-access) **paper** corresponding to this software repository can be found here:
Daniel Scheffler's avatar
Daniel Scheffler committed
10
11
12
  `Scheffler et al. 2017 <http://www.mdpi.com/2072-4292/9/7/676>`__
  (cite as: Scheffler D, Hollstein A, Diedrich H, Segl K, Hostert P. AROSICS: An Automated and Robust Open-Source
  Image Co-Registration Software for Multi-Sensor Satellite Data. Remote Sensing. 2017; 9(7):676).
13
14
* Submit feedback by filing an issue `here <https://gitext.gfz-potsdam.de/danschef/arosics/issues>`__
  or join out chat here: |Gitter|
15

16
17
18
.. |Gitter| image:: https://badges.gitter.im/Join%20Chat.svg
    :target: https://gitter.im/arosics/Lobby?utm_source=share-link&utm_medium=link&utm_campaign=share-link
    :alt: https://gitter.im/arosics/Lobby?utm_source=share-link&utm_medium=link&utm_campaign=share-link
19

20
21
22
23
Status
------

.. .. image:: https://img.shields.io/travis/danschef/arosics.svg
24
25
        :target: https://travis-ci.org/danschef/arosics

26
.. .. image:: https://readthedocs.org/projects/arosics/badge/?version=latest
27
28
29
        :target: https://arosics.readthedocs.io/en/latest/?badge=latest
        :alt: Documentation Status

30
.. .. image:: https://pyup.io/repos/github/danschef/arosics/shield.svg
31
32
33
34
     :target: https://pyup.io/repos/github/danschef/arosics/
     :alt: Updates


35
.. image:: https://gitext.gfz-potsdam.de/danschef/arosics/badges/master/build.svg
Daniel Scheffler's avatar
Daniel Scheffler committed
36
        :target: https://gitext.gfz-potsdam.de/danschef/arosics/commits/master
37
.. image:: https://gitext.gfz-potsdam.de/danschef/arosics/badges/master/coverage.svg
Daniel Scheffler's avatar
Daniel Scheffler committed
38
        :target: http://danschef.gitext.gfz-potsdam.de/arosics/coverage/
Daniel Scheffler's avatar
Daniel Scheffler committed
39
40
.. image:: https://img.shields.io/pypi/v/arosics.svg
        :target: https://pypi.python.org/pypi/arosics
41
42
43
.. image:: https://img.shields.io/pypi/l/arosics.svg
        :target: https://gitext.gfz-potsdam.de/danschef/arosics/blob/master/LICENSE
.. image:: https://img.shields.io/pypi/pyversions/arosics.svg
Daniel Scheffler's avatar
Daniel Scheffler committed
44
        :target: https://img.shields.io/pypi/pyversions/arosics.svg
45

46
See also the latest coverage_ report and the nosetests_ HTML report.
47

48
49
Feature overview
----------------
50

Daniel Scheffler's avatar
Daniel Scheffler committed
51
AROSICS is a python package to perform **automatic subpixel co-registration** of two satellite image datasets
Daniel Scheffler's avatar
Daniel Scheffler committed
52
53
54
based on an image matching approach working in the frequency domain, combined with a multistage workflow for
effective detection of false-positives.

Daniel Scheffler's avatar
Daniel Scheffler committed
55
It detects and corrects **local as well as global misregistrations** between two input images in the subpixel scale,
Daniel Scheffler's avatar
Daniel Scheffler committed
56
that are often present in satellite imagery. The algorithm is robust against the typical difficulties of
Daniel Scheffler's avatar
Daniel Scheffler committed
57
58
59
multi-sensoral/multi-temporal images. Clouds are automatically handled by the implemented outlier detection algorithms.
The user may provide user-defined masks to exclude certain image areas from tie point creation. The image overlap area
is automatically detected. AROSICS supports a wide range of input data formats and can be used from the command
Daniel Scheffler's avatar
Daniel Scheffler committed
60
61
62
line (without any Python experience) or as a normal Python package.


Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
63
64
Global co-registration - fast but only for static X/Y-shifts
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Daniel Scheffler's avatar
Daniel Scheffler committed
65
66
67
68
69
70
71
72
73

Only a global X/Y translation is computed within a small subset of the input images (window position is adjustable).
This allows very fast co-registration but only corrects for translational (global) X/Y shifts.
The calculated subpixel-shifts are (by default) applied to the geocoding information of the output image.
No spatial resampling is done automatically as long as both input images have the same projection. However, AROSICS
also allows to align the output image to the reference image coordinate grid if needed.

Here is an example of a Landsat-8 / Sentinel-2 image pair before and after co-registration using AROSICS:

Daniel Scheffler's avatar
Daniel Scheffler committed
74
.. image:: docs/images/animation_testcase1_zoom_L8_S2_global_coreg_before_after_900x456.gif
Daniel Scheffler's avatar
Daniel Scheffler committed
75

76

Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
77
78
Local co-registration - for spatially variable shifts but a bit slower
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
79

Daniel Scheffler's avatar
Daniel Scheffler committed
80
81
82
83
A dense grid of tie points is automatically computed, whereas tie points are subsequently validated using a
multistage workflow. Only those tie points not marked as false-positives are used to compute the parameters of an
affine transformation. Warping of the target image is done using an appropriate resampling technique
(cubic by default).
84

Daniel Scheffler's avatar
Daniel Scheffler committed
85
86
Here is an example of the computed shift vectors after filtering false-positives
(mainly due to clouds in the target image):
87

Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
88
.. image:: docs/images/shift_vectors_testcase1__900x824.gif
89

90

Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
91
For further details check out the `documentation <http://danschef.gitext.gfz-potsdam.de/arosics/doc/>`__!
92

93
94
95
Credits
-------

Daniel Scheffler's avatar
Daniel Scheffler committed
96
AROSICS was developed by Daniel Scheffler (German Research Centre of Geosciences) within the context of the
Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
97
`GeoMultiSens <http://www.geomultisens.de/>`__ project funded by the German Federal Ministry of Education and Research
Daniel Scheffler's avatar
Daniel Scheffler committed
98
(project grant code: 01 IS 14 010 A-C).
99

100
This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.
Daniel Scheffler's avatar
Daniel Scheffler committed
101
102
The test data represent modified Copernicus Sentinel-2 data (ESA 2016). The input data for the figures in the
documentation have been provided by NASA (Landsat-8) and ESA (Sentinel-2).
103
104
105

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
106
.. _coverage: http://danschef.gitext.gfz-potsdam.de/arosics/coverage/
107
108
.. _nosetests: http://danschef.gitext.gfz-potsdam.de/arosics/nosetests_reports/nosetests.html
.. _conda: https://conda.io/docs/
109