README.rst 5.8 KB
Newer Older
1
2
3
4
5
=======
AROSICS
=======
.. contents:: :disable_title: true

6
.. figure:: http://danschef.gitext.gfz-potsdam.de/arosics/images/arosics_logo.png
Daniel Scheffler's avatar
Daniel Scheffler committed
7
        :target: https://gitext.gfz-potsdam.de/danschef/arosics
8

Daniel Scheffler's avatar
Daniel Scheffler committed
9
**An Automated and Robust Open-Source Image Co-Registration Software for Multi-Sensor Satellite Data**
10
11


Daniel Scheffler's avatar
Daniel Scheffler committed
12
* Free software: GNU General Public License v3
Daniel Scheffler's avatar
Daniel Scheffler committed
13
14
* **Documentation:** http://danschef.gitext.gfz-potsdam.de/arosics/doc/
* The (open-access) **paper** corresponding to this software repository can be found here:
Daniel Scheffler's avatar
Daniel Scheffler committed
15
16
17
  `Scheffler et al. 2017 <http://www.mdpi.com/2072-4292/9/7/676>`__
  (cite as: Scheffler D, Hollstein A, Diedrich H, Segl K, Hostert P. AROSICS: An Automated and Robust Open-Source
  Image Co-Registration Software for Multi-Sensor Satellite Data. Remote Sensing. 2017; 9(7):676).
18
* Submit feedback by filing an issue `here <https://gitext.gfz-potsdam.de/danschef/arosics/issues>`__
Daniel Scheffler's avatar
Daniel Scheffler committed
19
  or join our chat here: |Gitter|
20

21
22
23
.. |Gitter| image:: https://badges.gitter.im/Join%20Chat.svg
    :target: https://gitter.im/arosics/Lobby?utm_source=share-link&utm_medium=link&utm_campaign=share-link
    :alt: https://gitter.im/arosics/Lobby?utm_source=share-link&utm_medium=link&utm_campaign=share-link
24

25
26
27
28
Status
------

.. .. image:: https://img.shields.io/travis/danschef/arosics.svg
29
30
        :target: https://travis-ci.org/danschef/arosics

31
.. .. image:: https://readthedocs.org/projects/arosics/badge/?version=latest
32
33
34
        :target: https://arosics.readthedocs.io/en/latest/?badge=latest
        :alt: Documentation Status

35
.. .. image:: https://pyup.io/repos/github/danschef/arosics/shield.svg
36
37
38
39
     :target: https://pyup.io/repos/github/danschef/arosics/
     :alt: Updates


40
.. image:: https://gitext.gfz-potsdam.de/danschef/arosics/badges/master/build.svg
Daniel Scheffler's avatar
Daniel Scheffler committed
41
        :target: https://gitext.gfz-potsdam.de/danschef/arosics/commits/master
42
.. image:: https://gitext.gfz-potsdam.de/danschef/arosics/badges/master/coverage.svg
Daniel Scheffler's avatar
Daniel Scheffler committed
43
        :target: http://danschef.gitext.gfz-potsdam.de/arosics/coverage/
Daniel Scheffler's avatar
Daniel Scheffler committed
44
45
.. image:: https://img.shields.io/pypi/v/arosics.svg
        :target: https://pypi.python.org/pypi/arosics
46
47
48
.. image:: https://img.shields.io/pypi/l/arosics.svg
        :target: https://gitext.gfz-potsdam.de/danschef/arosics/blob/master/LICENSE
.. image:: https://img.shields.io/pypi/pyversions/arosics.svg
Daniel Scheffler's avatar
Daniel Scheffler committed
49
        :target: https://img.shields.io/pypi/pyversions/arosics.svg
50

51
See also the latest coverage_ report and the nosetests_ HTML report.
52

53
54
Feature overview
----------------
55

Daniel Scheffler's avatar
Daniel Scheffler committed
56
AROSICS is a python package to perform **automatic subpixel co-registration** of two satellite image datasets
Daniel Scheffler's avatar
Daniel Scheffler committed
57
58
59
based on an image matching approach working in the frequency domain, combined with a multistage workflow for
effective detection of false-positives.

Daniel Scheffler's avatar
Daniel Scheffler committed
60
It detects and corrects **local as well as global misregistrations** between two input images in the subpixel scale,
Daniel Scheffler's avatar
Daniel Scheffler committed
61
that are often present in satellite imagery. The algorithm is robust against the typical difficulties of
Daniel Scheffler's avatar
Daniel Scheffler committed
62
63
64
multi-sensoral/multi-temporal images. Clouds are automatically handled by the implemented outlier detection algorithms.
The user may provide user-defined masks to exclude certain image areas from tie point creation. The image overlap area
is automatically detected. AROSICS supports a wide range of input data formats and can be used from the command
Daniel Scheffler's avatar
Daniel Scheffler committed
65
66
67
line (without any Python experience) or as a normal Python package.


Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
68
Global co-registration - fast but only for static X/Y-shifts
69
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Daniel Scheffler's avatar
Daniel Scheffler committed
70
71
72
73
74
75
76
77
78

Only a global X/Y translation is computed within a small subset of the input images (window position is adjustable).
This allows very fast co-registration but only corrects for translational (global) X/Y shifts.
The calculated subpixel-shifts are (by default) applied to the geocoding information of the output image.
No spatial resampling is done automatically as long as both input images have the same projection. However, AROSICS
also allows to align the output image to the reference image coordinate grid if needed.

Here is an example of a Landsat-8 / Sentinel-2 image pair before and after co-registration using AROSICS:

Daniel Scheffler's avatar
Daniel Scheffler committed
79
.. image:: docs/images/animation_testcase1_zoom_L8_S2_global_coreg_before_after_900x456.gif
Daniel Scheffler's avatar
Daniel Scheffler committed
80

81

Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
82
Local co-registration - for spatially variable shifts but a bit slower
83
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
84

Daniel Scheffler's avatar
Daniel Scheffler committed
85
86
87
88
A dense grid of tie points is automatically computed, whereas tie points are subsequently validated using a
multistage workflow. Only those tie points not marked as false-positives are used to compute the parameters of an
affine transformation. Warping of the target image is done using an appropriate resampling technique
(cubic by default).
89

Daniel Scheffler's avatar
Daniel Scheffler committed
90
91
Here is an example of the computed shift vectors after filtering false-positives
(mainly due to clouds in the target image):
92

Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
93
.. image:: docs/images/shift_vectors_testcase1__900x824.gif
94

95

Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
96
For further details check out the `documentation <http://danschef.gitext.gfz-potsdam.de/arosics/doc/>`__!
97

98
99
100
Credits
-------

Daniel Scheffler's avatar
Daniel Scheffler committed
101
AROSICS was developed by Daniel Scheffler (German Research Centre of Geosciences) within the context of the
Daniel Scheffler's avatar
Fix.    
Daniel Scheffler committed
102
`GeoMultiSens <http://www.geomultisens.de/>`__ project funded by the German Federal Ministry of Education and Research
Daniel Scheffler's avatar
Daniel Scheffler committed
103
(project grant code: 01 IS 14 010 A-C).
104

105
This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.
Daniel Scheffler's avatar
Daniel Scheffler committed
106
107
The test data represent modified Copernicus Sentinel-2 data (ESA 2016). The input data for the figures in the
documentation have been provided by NASA (Landsat-8) and ESA (Sentinel-2).
108
109
110

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
111
.. _coverage: http://danschef.gitext.gfz-potsdam.de/arosics/coverage/
112
113
.. _nosetests: http://danschef.gitext.gfz-potsdam.de/arosics/nosetests_reports/nosetests.html
.. _conda: https://conda.io/docs/
114