CoReg_local.py 32 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
# -*- coding: utf-8 -*-
__author__='Daniel Scheffler'

import warnings
import os

# custom
try:
    import gdal
except ImportError:
    from osgeo import gdal
12
13
14
15
try:
    import pyfftw
except ImportError:
    pyfftw = None
16
17
18
19
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable

20
from .Tie_Point_Grid import Tie_Point_Grid
21
22
from .CoReg import COREG
from .DeShifter import DESHIFTER
23
from py_tools_ds.geo.coord_trafo import transform_any_prj, reproject_shapelyGeometry
24
from geoarray import GeoArray
25
26
27
28



class COREG_LOCAL(object):
29
30
    """See help(COREG_LOCAL) for documentation!"""

31
    def __init__(self, im_ref, im_tgt, grid_res, max_points=None, window_size=(256,256), path_out=None, fmt_out='ENVI',
32
                 out_crea_options=None, projectDir=None, r_b4match=1, s_b4match=1, max_iter=5, max_shift=5,
33
34
35
36
37
38
                 tieP_filter_level=3, min_reliability=60, rs_max_outlier=10, rs_tolerance=2.5, align_grids=True,
                 match_gsd=False, out_gsd=None, target_xyGrid=None, resamp_alg_deshift='cubic', resamp_alg_calc='cubic',
                 footprint_poly_ref=None, footprint_poly_tgt=None, data_corners_ref=None, data_corners_tgt=None,
                 outFillVal=-9999, nodata=(None, None), calc_corners=True, binary_ws=True, force_quadratic_win=True,
                 mask_baddata_ref=None, mask_baddata_tgt=None, CPUs=None, progress=True, v=False, q=False,
                 ignore_errors=True):
39
40
41

        """Applies the algorithm to detect spatial shifts to the whole overlap area of the input images. Spatial shifts
        are calculated for each point in grid of which the parameters can be adjusted using keyword arguments. Shift
42
43
        correction performs a polynomial transformation using the calculated shifts of each point in the grid as GCPs.
        Thus this class can be used to correct for locally varying geometric distortions of the target image.
44
45
46

        :param im_ref(str, GeoArray):   source path of reference image (any GDAL compatible image format is supported)
        :param im_tgt(str, GeoArray):   source path of image to be shifted (any GDAL compatible image format is supported)
47
        :param grid_res:                quality grid resolution in pixels of the target image (x-direction)
48
        :param max_points(int):         maximum number of points used to find coregistration tie points
49
50
51
                                        NOTE: Points are selected randomly from the given point grid (specified by
                                        'grid_res'). If the point does not provide enough points, all available points
                                        are chosen.
52
        :param window_size(tuple):      custom matching window size [pixels] (default: (256,256))
53
        :param path_out(str):           target path of the coregistered image
54
                                            - if None (default), no output is written to disk
55
                                            - if 'auto': /dir/of/im1/<im1>__shifted_to__<im0>.bsq
56
        :param fmt_out(str):            raster file format for output file. ignored if path_out is None. Can be any GDAL
57
58
                                        compatible raster file format (e.g. 'ENVI', 'GeoTIFF'; default: ENVI). Refer to
                                        http://www.gdal.org/formats_list.html to get a full list of supported formats.
59
60
61
62
        :param out_crea_options(list):  GDAL creation options for the output image,
                                        e.g. ["QUALITY=80", "REVERSIBLE=YES", "WRITE_METADATA=YES"]
        :param projectDir(str):         name of a project directory where to store all the output results. If given,
                                        name is inserted into all automatically generated output paths.
63
64
65
66
        :param r_b4match(int):          band of reference image to be used for matching (starts with 1; default: 1)
        :param s_b4match(int):          band of shift image to be used for matching (starts with 1; default: 1)
        :param max_iter(int):           maximum number of iterations for matching (default: 5)
        :param max_shift(int):          maximum shift distance in reference image pixel units (default: 5 px)
Daniel Scheffler's avatar
Daniel Scheffler committed
67
        :param tieP_filter_level(int):  filter tie points used for shift correction in different levels (default: 3).
68
                                        NOTE: lower levels are also included if a higher level is chosen
69
                                            - Level 0: no tie point filtering
70
71
72
                                            - Level 1: Reliablity filtering - filter all tie points out that have a low
                                                reliability according to internal tests
                                            - Level 2: SSIM filtering - filters all tie points out where shift
73
74
                                                correction does not increase image similarity within matching window
                                                (measured by mean structural similarity index)
75
                                            - Level 3: RANSAC outlier detection
76
77
78
79
80
81
82
        :param min_reliability(float):  Tie point filtering: minimum reliability threshold, below which tie points are
                                        marked as false-positives (default: 60%)
                                        - accepts values between 0% (no reliability) and 100 % (perfect reliability)
                                        HINT: decrease this value in case of poor signal-to-noise ratio of your input data
        :param rs_max_outlier(float):   RANSAC tie point filtering: proportion of expected outliers (default: 10%)
        :param rs_tolerance(float):     RANSAC tie point filtering: percentage tolerance for max_outlier_percentage
                                                (default: 2.5%)
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        :param out_gsd (float):         output pixel size in units of the reference coordinate system (default = pixel
                                        size of the input array), given values are overridden by match_gsd=True
        :param align_grids (bool):      True: align the input coordinate grid to the reference (does not affect the
                                        output pixel size as long as input and output pixel sizes are compatible
                                        (5:30 or 10:30 but not 4:30), default = True
        :param match_gsd (bool):        True: match the input pixel size to the reference pixel size,
                                        default = False
        :param target_xyGrid(list):     a list with a target x-grid and a target y-grid like [[15,45], [15,45]]
                                        This overrides 'out_gsd', 'align_grids' and 'match_gsd'.
        :param resamp_alg_deshift(str)  the resampling algorithm to be used for shift correction (if neccessary)
                                        valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average, mode,
                                                          max, min, med, q1, q3
                                        default: cubic
        :param resamp_alg_calc(str)     the resampling algorithm to be used for all warping processes during calculation
                                        of spatial shifts
                                        (valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average, mode,
                                                       max, min, med, q1, q3)
                                        default: cubic (highly recommended)
101
102
103
104
105
        :param footprint_poly_ref(str): footprint polygon of the reference image (WKT string or shapely.geometry.Polygon),
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
                                                        299999 6000000))'
        :param footprint_poly_tgt(str): footprint polygon of the image to be shifted (WKT string or shapely.geometry.Polygon)
                                        e.g. 'POLYGON ((299999 6000000, 299999 5890200, 409799 5890200, 409799 6000000,
106
107
108
109
110
                                                        299999 6000000))'
        :param data_corners_ref(list):  map coordinates of data corners within reference image.
                                        ignored if footprint_poly_ref is given.
        :param data_corners_tgt(list):  map coordinates of data corners within image to be shifted.
                                        ignored if footprint_poly_tgt is given.
111
112
113
114
115
        :param outFillVal(int):         if given the generated geometric quality grid is filled with this value in case
                                        no match could be found during co-registration (default: -9999)
        :param nodata(tuple):           no data values for reference image and image to be shifted
        :param calc_corners(bool):      calculate true positions of the dataset corners in order to get a useful
                                        matching window position within the actual image overlap
116
                                        (default: True; deactivated if 'data_corners_im0' and 'data_corners_im1' are given
117
        :param binary_ws(bool):         use binary X/Y dimensions for the matching window (default: True)
Daniel Scheffler's avatar
Daniel Scheffler committed
118
        :param force_quadratic_win(bool):   force a quadratic matching window (default: 1)
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        :param mask_baddata_ref(str, BadDataMask):
                                        path to a 2D boolean mask file (or an instance of BadDataMask) for the
                                        reference image where all bad data pixels (e.g. clouds) are marked with
                                        True and the remaining pixels with False. Must have the same geographic
                                        extent and projection like 'im_ref'. The mask is used to check if the
                                        chosen matching window position is valid in the sense of useful data.
                                        Otherwise this window position is rejected.
        :param mask_baddata_tgt(str, BadDataMask):
                                        path to a 2D boolean mask file (or an instance of BadDataMask) for the
                                        image to be shifted where all bad data pixels (e.g. clouds) are marked
                                        with True and the remaining pixels with False. Must have the same
                                        geographic extent and projection like 'im_ref'. The mask is used to
                                        check if the chosen matching window position is valid in the sense of
                                        useful data. Otherwise this window position is rejected.
133
134
        :param CPUs(int):               number of CPUs to use during calculation of geometric quality grid
                                        (default: None, which means 'all CPUs available')
135
136
137
        :param progress(bool):          show progress bars (default: True)
        :param v(bool):                 verbose mode (default: False)
        :param q(bool):                 quiet mode (default: False)
138
        :param ignore_errors(bool):     Useful for batch processing. (default: False)
139
        """
140

141
        # assertions
142
        assert gdal.GetDriverByName(fmt_out), "'%s' is not a supported GDAL driver." % fmt_out
143
144
        if match_gsd and out_gsd: warnings.warn("'-out_gsd' is ignored because '-match_gsd' is set.\n")
        if out_gsd:  assert isinstance(out_gsd, list) and len(out_gsd) == 2, 'out_gsd must be a list with two values.'
145

146
        self.params            = dict([x for x in locals().items() if x[0] != "self" and not x[0].startswith('__')])
147

148
149
        self.imref             = GeoArray(im_ref, nodata=nodata[0], progress=progress, q=q)
        self.im2shift          = GeoArray(im_tgt, nodata=nodata[1], progress=progress, q=q)
150
151
152
153
154
        self.path_out          = path_out  # updated by self.set_outpathes
        self.fmt_out           = fmt_out
        self.out_creaOpt       = out_crea_options
        self._projectDir       = projectDir
        self.grid_res          = grid_res
155
        self.max_points        = max_points
156
157
158
        self.window_size       = window_size
        self.max_shift         = max_shift
        self.max_iter          = max_iter
159
        self.tieP_filter_level = tieP_filter_level
160
161
162
        self.min_reliability   = min_reliability
        self.rs_max_outlier    = rs_max_outlier
        self.rs_tolerance      = rs_tolerance
163
164
165
166
        self.align_grids       = align_grids
        self.match_gsd         = match_gsd
        self.out_gsd           = out_gsd
        self.target_xyGrid     = target_xyGrid
Daniel Scheffler's avatar
Daniel Scheffler committed
167
        self.rspAlg_DS         = resamp_alg_deshift # TODO convert integers to strings
168
        self.rspAlg_calc       = resamp_alg_calc
169
170
171
172
        self.calc_corners      = calc_corners
        self.nodata            = nodata
        self.outFillVal        = outFillVal
        self.bin_ws            = binary_ws
Daniel Scheffler's avatar
Daniel Scheffler committed
173
        self.force_quadratic_win = force_quadratic_win
174
175
176
177
178
        self.CPUs              = CPUs
        self.path_verbose_out  = '' # TODO
        self.v                 = v
        self.q                 = q if not v else False        # overridden by v
        self.progress          = progress if not q else False # overridden by v
179
        self.ignErr            = ignore_errors # FIXME this is not yet implemented for COREG_LOCAL
180

181
        assert self.tieP_filter_level in range(4), 'Invalid tie point filter level.'
182
183
        assert isinstance(self.imref, GeoArray) and isinstance(self.im2shift, GeoArray), \
            'Something went wrong with the creation of GeoArray instances for reference or target image. The created ' \
184
            'instances do not seem to belong to the GeoArray class. If you are working in Jupyter Notebook, reset the '\
185
186
            'kernel and try again.'

187
188
189
190
191
192
        COREG.__dict__['_set_outpathes'](self, self.imref, self.im2shift)
        # make sure that the output directory of coregistered image is the project directory if a project directory is given
        if path_out and projectDir and os.path.basename(self.path_out):
            self.path_out = os.path.join(self.projectDir, os.path.basename(self.path_out))

        gdal.AllRegister()
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

        try:
            self.COREG_obj = COREG(self.imref, self.im2shift,
                                   ws                 = window_size,
                                   footprint_poly_ref = footprint_poly_ref,
                                   footprint_poly_tgt = footprint_poly_tgt,
                                   data_corners_ref   = data_corners_ref,
                                   data_corners_tgt   = data_corners_tgt,
                                   resamp_alg_calc    = self.rspAlg_calc,
                                   calc_corners       = calc_corners,
                                   r_b4match          = r_b4match,
                                   s_b4match          = s_b4match,
                                   max_iter           = max_iter,
                                   max_shift          = max_shift,
                                   nodata             = nodata,
Daniel Scheffler's avatar
Daniel Scheffler committed
208
209
                                   mask_baddata_ref   = None, # see below
                                   mask_baddata_tgt   = None,
210
                                   CPUs               = self.CPUs,
Daniel Scheffler's avatar
Daniel Scheffler committed
211
                                   force_quadratic_win = self.force_quadratic_win,
212
213
214
215
                                   binary_ws          = self.bin_ws,
                                   progress           = self.progress,
                                   v                  = v,
                                   q                  = q,
216
                                   ignore_errors      = False) # must be False because COREG init fails, coregistration for the whole scene fails
217
218
        except Exception as err:
            raise RuntimeError('First attempt to check if functionality of co-registration failed. Check your '
219
                               'input data and parameters. The following error occurred: \n%s' %repr(err))
220

221
222
        if pyfftw:
            self.check_if_fftw_works()
223

224

225
226
        # add bad data mask
        # (mask is not added during initialization of COREG object in order to avoid bad data area errors there)
227
228
        if mask_baddata_ref is not None: self.COREG_obj.ref  .mask_baddata = mask_baddata_ref
        if mask_baddata_tgt is not None: self.COREG_obj.shift.mask_baddata = mask_baddata_tgt
229

Daniel Scheffler's avatar
Daniel Scheffler committed
230
        self._tiepoint_grid      = None # set by self.quality_grid
231
        self._CoRegPoints_table = None # set by self.CoRegPoints_table
232
        self._coreg_info        = None # set by self.coreg_info
233
        self.deshift_results    = None # set by self.correct_shifts()
234
        self._success           = None # set by self.success property
235
236


237
238
239
240
    def check_if_fftw_works(self):
        """Assigns the attribute 'fftw_works' to self.COREG_obj by executing shift calculation once with muted output.
        """
        # calculate global shift once in order to check is fftw works
241
242
243
244
        try:
            self.COREG_obj.q = True
            self.COREG_obj.v = False
            self.COREG_obj.calculate_spatial_shifts()
245
        except RuntimeError as err:
246
247
248
            if self.COREG_obj.fftw_works is not None:
                pass
            else:
249
250
                raise RuntimeError('First attempt to check if functionality of co-registration failed. Check your '
                                   'input data and parameters. The following error occurred: ', repr(err))
251

Daniel Scheffler's avatar
Daniel Scheffler committed
252
253
254
        self.COREG_obj.q = self.q
        self.COREG_obj.v = self.v

255

256
257
258
259
260
261
262
263
264
    @property
    def projectDir(self):
        if self._projectDir:
            if len(os.path.split(self._projectDir))==1:
                return os.path.abspath(os.path.join(os.path.curdir, self._projectDir))
            else:
                return os.path.abspath(self._projectDir)
        else:
            # return a project name that not already has a corresponding folder on disk
265
266
267
268
269
270
271
            root_dir  = os.path.dirname(self.im2shift.filePath) if self.im2shift.filePath else os.path.curdir
            fold_name = 'UntitledProject_1'

            while os.path.isdir(os.path.join(root_dir, fold_name)):
                fold_name = '%s_%s' % (fold_name.split('_')[0], int(fold_name.split('_')[-1]) + 1)

            self._projectDir = os.path.join(root_dir, fold_name)
272
273
274
275
            return self._projectDir


    @property
Daniel Scheffler's avatar
Daniel Scheffler committed
276
277
278
    def tiepoint_grid(self):
        if self._tiepoint_grid:
            return self._tiepoint_grid
279
        else:
Daniel Scheffler's avatar
Daniel Scheffler committed
280
281
282
283
284
            self._tiepoint_grid = Tie_Point_Grid(self.COREG_obj, self.grid_res,
                                                 max_points        = self.max_points,
                                                 outFillVal        = self.outFillVal,
                                                 resamp_alg_calc   = self.rspAlg_calc,
                                                 tieP_filter_level = self.tieP_filter_level,
285
286
287
288
                                                 outlDetect_settings = dict(
                                                     min_reliability = self.min_reliability,
                                                     rs_max_outlier  = self.rs_max_outlier,
                                                     rs_tolerance    = self.rs_tolerance),
Daniel Scheffler's avatar
Daniel Scheffler committed
289
290
291
292
293
                                                 dir_out           = self.projectDir,
                                                 CPUs              = self.CPUs,
                                                 progress          = self.progress,
                                                 v                 = self.v,
                                                 q                 = self.q)
294
            if self.v:
Daniel Scheffler's avatar
Daniel Scheffler committed
295
                print('Visualizing CoReg points grid...')
296
                self.view_CoRegPoints(figsize=(10,10))
Daniel Scheffler's avatar
Daniel Scheffler committed
297
            return self._tiepoint_grid
298
299
300
301


    @property
    def CoRegPoints_table(self):
302
303
304
305
        """Returns a GeoDataFrame with the columns 'geometry','POINT_ID','X_IM','Y_IM','X_UTM','Y_UTM','X_WIN_SIZE',
        'Y_WIN_SIZE','X_SHIFT_PX','Y_SHIFT_PX', 'X_SHIFT_M', 'Y_SHIFT_M', 'ABS_SHIFT' and 'ANGLE' containing all
        information containing all the results frm coregistration for all points in the geometric quality grid.
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
306
        return self.tiepoint_grid.CoRegPoints_table
307
308


309
310
    @property
    def success(self):
Daniel Scheffler's avatar
Daniel Scheffler committed
311
        self._success = self.tiepoint_grid.GCPList != []
312
313
314
315
316
        if not self._success and not self.q:
            warnings.warn('No valid GCPs could by identified.')
        return self._success


317
318
319
320
321
322
    def show_image_footprints(self):
        """This method is intended to be called from Jupyter Notebook and shows a web map containing the calculated
        footprints of the input images as well as the corresponding overlap area."""
        return self.COREG_obj.show_image_footprints()


323
    def view_CoRegPoints(self, attribute2plot='ABS_SHIFT', cmap=None, exclude_fillVals=True, backgroundIm='tgt',
324
                         hide_filtered=True, figsize=None, savefigPath='', savefigDPI=96, showFig=True,
325
                         vmin=None, vmax=None, return_map=False, zoomable=False):
326
327
328
329
330
331
332
333
        """Shows a map of the calculated quality grid with the target image as background.

        :param attribute2plot:      <str> the attribute of the quality grid to be shown (default: 'ABS_SHIFT')
        :param cmap:                <plt.cm.<colormap>> a custom color map to be applied to the plotted grid points
                                                        (default: 'RdYlGn_r')
        :param exclude_fillVals:    <bool> whether to exclude those points of the grid where spatial shift detection failed
        :param backgroundIm:        <str> whether to use the target or the reference image as map background. Possible
                                          options are 'ref' and 'tgt' (default: 'tgt')
334
        :param hide_filtered:       <bool> hide all points that have been filtered out according to tie point filter level
335
336
337
        :param figsize:             <tuple> size of the figure to be viewed, e.g. (10,10)
        :param savefigPath:
        :param savefigDPI:
338
        :param showFig:             <bool> whether to show or to hide the figure
339
340
        :param vmin:
        :param vmax:
341
        :param return_map           <bool>
342
        :param zoomable:            <bool> enable or disable zooming via mpld3
343
344
345
346
347
348
        :return:
        """

        # get a map showing target image
        if backgroundIm not in ['tgt','ref']: raise ValueError('backgroundIm')
        backgroundIm      = self.im2shift if backgroundIm=='tgt' else self.imref
349
        fig, ax, map2show = backgroundIm.show_map(figsize=figsize, nodataVal=self.nodata[1], return_map=True,
350
                                                  band=self.COREG_obj.shift.band4match, zoomable=zoomable)
351
352
353
354

        plt.tick_params(axis='both', which='major', labelsize=40)
        #ax.tick_params(axis='both', which='minor', labelsize=8)

355
356
357
358
        # fig, ax, map2show = backgroundIm.show_map_utm(figsize=(20,20), nodataVal=self.nodata[1], return_map=True)
        plt.title(attribute2plot)

        # transform all points of quality grid to LonLat
359
        outlierCols  = [c for c in self.CoRegPoints_table.columns if 'OUTLIER' in c]
360
        attr2include = ['geometry', attribute2plot] + outlierCols + ['X_SHIFT_M', 'Y_SHIFT_M']
361
        GDF = self.CoRegPoints_table.loc\
362
363
                [self.CoRegPoints_table.X_SHIFT_M != self.outFillVal, attr2include].copy() \
                if exclude_fillVals else self.CoRegPoints_table.loc[:, attr2include]
364
365
366
367
368
369
370
371
372

        # get LonLat coordinates for all points
        get_LonLat    = lambda X, Y: transform_any_prj(self.im2shift.projection, 4326, X, Y)
        GDF['LonLat'] = list(GDF['geometry'].map(lambda geom: get_LonLat(*tuple(np.array(geom.coords.xy)[:,0]))))

        # get colors for all points
        #vmin = min(GDF[GDF[attribute2plot] != self.outFillVal][attribute2plot])
        #vmax = max(GDF[GDF[attribute2plot] != self.outFillVal][attribute2plot])
        #norm = mpl_normalize(vmin=vmin, vmax=vmax)
373
374
375
376
377
378
379
380
381
382
383
384
385
        palette = cmap if cmap is not None else plt.cm.RdYlGn_r
        if cmap is None and attribute2plot == 'ANGLE':
            #import matplotlib.colors as mcolors
            #colors1 = plt.cm.RdYlGn_r(np.linspace(0., 1, 128))
            #colors2 = plt.cm.RdYlGn(np.linspace(0., 1, 128))

            ## combine them and build a new colormap
            #colors  = np.vstack((colors1, colors2))
            #palette = mcolors.LinearSegmentedColormap.from_list('my_colormap', colors)
            #palette = plt.cm.hsv

            import cmocean
            palette = cmocean.cm.delta
386
387
388
389
390
391
392
393
        #GDF['color'] = [*GDF[attribute2plot].map(lambda val: palette(norm(val)))]

        # add quality grid to map
        #plot_point = lambda row: ax.plot(*map2show(*row['LonLat']), marker='o', markersize=7.0, alpha=1.0, color=row['color'])
        #GDF.apply(plot_point, axis=1)
        GDF['plt_XY'] = list(GDF['LonLat'].map(lambda ll: map2show(*ll)))
        GDF['plt_X']  = list(GDF['plt_XY'].map(lambda XY: XY[0]))
        GDF['plt_Y']  = list(GDF['plt_XY'].map(lambda XY: XY[1]))
394

395
        if hide_filtered:
396
397
398
            if self.tieP_filter_level > 0:  GDF = GDF[GDF.L1_OUTLIER == False].copy()
            if self.tieP_filter_level > 1:  GDF = GDF[GDF.L2_OUTLIER == False].copy()
            if self.tieP_filter_level > 2:  GDF = GDF[GDF.L3_OUTLIER == False].copy()
399
400
401
402
403
        else:
            marker = 'o' if len(GDF) < 10000 else '.'
            if self.tieP_filter_level > 0:
                # flag level 1 outliers
                GDF_filt = GDF[GDF.L1_OUTLIER == True].copy()
404
                plt.scatter(GDF_filt['plt_X'], GDF_filt['plt_Y'], c='b', marker=marker, s=250, alpha=1.0, label='reliability')
405
406
407
            if self.tieP_filter_level > 1:
                # flag level 2 outliers
                GDF_filt = GDF[GDF.L2_OUTLIER == True].copy()
408
                plt.scatter(GDF_filt['plt_X'], GDF_filt['plt_Y'], c='r', marker=marker, s=150, alpha=1.0, label='MSSIM')
409
410
            if self.tieP_filter_level > 2:
                # flag level 3 outliers
411
                GDF_filt = GDF[GDF.L3_OUTLIER == True].copy()
412
413
414
415
                plt.scatter(GDF_filt['plt_X'], GDF_filt['plt_Y'], c='y', marker=marker, s=250, alpha=1.0, label='RANSAC')

            if self.tieP_filter_level > 0:
                plt.legend(loc=0, scatterpoints = 1)
416
417


418
        # plot all points on top
Daniel Scheffler's avatar
Daniel Scheffler committed
419
        if not GDF.empty:
420
421
422
423
424
            vmin_auto, vmax_auto = (np.percentile(GDF[attribute2plot], 0), np.percentile(GDF[attribute2plot], 95)) \
                                    if attribute2plot!='ANGLE' else (0, 360)
            vmin = vmin if vmin is not None else vmin_auto
            vmax = vmax if vmax is not None else vmax_auto

425
            points = plt.scatter(GDF['plt_X'],GDF['plt_Y'], c=GDF[attribute2plot], lw = 0,
Daniel Scheffler's avatar
Daniel Scheffler committed
426
427
428
                                 cmap=palette, marker='o' if len(GDF)<10000 else '.', s=50, alpha=1.0,
                                 vmin=vmin, vmax=vmax)

429
430
431
            # plot shift vectors
            #map2show.quiver(GDF['plt_X'], GDF['plt_Y'], GDF['X_SHIFT_M'], GDF['Y_SHIFT_M'])#, scale=700)

Daniel Scheffler's avatar
Daniel Scheffler committed
432
433
434
435
436
437
438
439
440
            # add colorbar
            divider = make_axes_locatable(plt.gca())
            cax = divider.append_axes("right", size="2%",
                                      pad=0.1)  # create axis on the right; size =2% of ax; padding = 0.1 inch
            plt.colorbar(points, cax=cax)
        else:
            if not self.q:
                warnings.warn('Cannot plot any tie point because none is left after tie point validation.')

441
442
443
444

        if savefigPath:
            fig.savefig(savefigPath, dpi=savefigDPI)

445
446
447
        if return_map:
            return fig, ax, map2show

448
449
450
451
452
        if showFig and not self.q:
            plt.show(block=True)
        else:
            plt.close(fig)

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471

    def view_CoRegPoints_folium(self, attribute2plot='ABS_SHIFT', cmap=None, exclude_fillVals=True):
        warnings.warn(UserWarning('This function is still under construction and may not work as expected!'))
        assert self.CoRegPoints_table is not None, 'Calculate quality grid first!'

        try:
            import folium, geojson
            from folium import plugins
        except ImportError:
            folium, geojson, plugins = [None]*3
        if not folium or not geojson:
            raise ImportError("This method requires the libraries 'folium' and 'geojson'. They can be installed with "
                              "the shell command 'pip install folium geojson'.")

        lon_min, lat_min, lon_max, lat_max = \
            reproject_shapelyGeometry(self.im2shift.box.mapPoly, self.im2shift.projection, 4326).bounds
        center_lon, center_lat = (lon_min+lon_max)/2, (lat_min+lat_max)/2

        # get image to plot
472
        image2plot = self.im2shift[:,:,0] # FIXME hardcoded band
473

474
        from py_tools_ds.geo.raster.reproject import warp_ndarray
475
476
        image2plot, gt, prj = warp_ndarray(image2plot, self.im2shift.geotransform, self.im2shift.projection,
                                           in_nodata=self.nodata[1], out_nodata=self.nodata[1],
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
                                           out_XYdims=(1000, 1000), q=True, out_prj='epsg:3857') # image must be transformed into web mercator projection

        # create map
        map_osm = folium.Map(location=[center_lat, center_lon])#,zoom_start=3)
        import matplotlib
        plugins.ImageOverlay(
            colormap=lambda x: (1, 0, 0, x), # TODO a colormap must be given
            # colormap=matplotlib.cm.gray, # does not work
            image=image2plot, bounds=[[lat_min, lon_min], [lat_max, lon_max]],
            ).add_to(map_osm)

        folium.GeoJson(self.CoRegPoints_table.loc[:, ['geometry', attribute2plot]]).add_to(map_osm)

        # add overlap polygon
        overlapPoly = reproject_shapelyGeometry(self.COREG_obj.overlap_poly, self.im2shift.epsg, 4326)
        gjs         = geojson.Feature(geometry=overlapPoly, properties={})
        folium.GeoJson(gjs).add_to(map_osm)


        return map_osm


499
500
501
502
503
504
    @property
    def coreg_info(self):
        if self._coreg_info:
            return self._coreg_info
        else:
            self._coreg_info = {
Daniel Scheffler's avatar
Daniel Scheffler committed
505
                'GCPList'               : self.tiepoint_grid.GCPList,
506
                'reference projection'  : self.imref.prj,
Daniel Scheffler's avatar
Daniel Scheffler committed
507
                'reference geotransform': self.imref.gt,
508
509
510
                'reference grid'        : [ [self.imref.gt[0], self.imref.gt[0]+self.imref.gt[1]],
                                            [self.imref.gt[3], self.imref.gt[3]+self.imref.gt[5]] ],
                'reference extent'      : {'cols':self.imref.xgsd, 'rows':self.imref.ygsd}, # FIXME not needed anymore
511
                'success'               : self.success
512
513
514
            }
            return self.coreg_info

515

516
    def correct_shifts(self, max_GCP_count=None, cliptoextent=False):
517
518
519
520
        """Performs a local shift correction using all points from the previously calculated geometric quality grid
        that contain valid matches as GCP points.

        :param max_GCP_count: <int> maximum number of GCPs to use
521
        :param cliptoextent:  <bool> whether to clip the output image to its real extent
522
523
        :return:
        """
524
525

        coreg_info = self.coreg_info
526

Daniel Scheffler's avatar
Daniel Scheffler committed
527
        if self.tiepoint_grid.GCPList:
528
            if max_GCP_count:
529
                coreg_info['GCPList'] = coreg_info['GCPList'][:max_GCP_count]
530
531

            DS = DESHIFTER(self.im2shift, coreg_info,
532
533
534
                           path_out         = self.path_out,
                           fmt_out          = self.fmt_out,
                           out_crea_options = self.out_creaOpt,
535
536
537
538
539
                           align_grids      = self.align_grids,
                           match_gsd        = self.match_gsd,
                           out_gsd          = self.out_gsd,
                           target_xyGrid    = self.target_xyGrid,
                           resamp_alg       = self.rspAlg_DS,
540
541
542
543
544
                           cliptoextent     = cliptoextent,
                           #clipextent      = self.im2shift.box.boxMapYX,
                           progress         = self.progress,
                           v                = self.v,
                           q                = self.q)
545
546
547
548
549
550

            self.deshift_results = DS.correct_shifts()
            return self.deshift_results
        else:
            if not self.q:
                warnings.warn('Correction of geometric shifts failed because the input GCP list is empty!')