Tie_Point_Grid.py 49 KB
Newer Older
1
2
3
4
5
6
# -*- coding: utf-8 -*-

import collections
import multiprocessing
import os
import warnings
7
import time
8
9

# custom
10
11
12
13
try:
    import gdal
except ImportError:
    from osgeo import gdal
14
import numpy as np
15
from matplotlib import pyplot as plt
16
17
18
from geopandas import GeoDataFrame, GeoSeries
from shapely.geometry import Point
from skimage.measure import points_in_poly, ransac
19
from skimage.transform import AffineTransform, PolynomialTransform
20
21

# internal modules
22
23
from .CoReg import COREG
from . import io as IO
24
from py_tools_ds.geo.projection import isProjectedOrGeographic, isLocal, get_UTMzone, dict_to_proj4, proj4_to_WKT
25
from py_tools_ds.io.pathgen import get_generic_outpath
26
from py_tools_ds.processing.progress_mon import ProgressBar
27
from py_tools_ds.geo.vector.conversion import points_to_raster
28
from geoarray import GeoArray
29

30
from .CoReg import GeoArray_CoReg  # noqa F401  # flake8 issue
31

32
__author__ = 'Daniel Scheffler'
33

34
global_shared_imref = None
35
36
37
global_shared_im2shift = None


38
39
40
41
42
43
44
45
46
47
48
def mp_initializer(imref, imtgt):
    """Declare global variables needed for self._get_spatial_shifts()

    :param imref:   reference image
    :param imtgt:   target image
    """
    global global_shared_imref, global_shared_im2shift
    global_shared_imref = imref
    global_shared_im2shift = imtgt


49
50
class Tie_Point_Grid(object):
    """See help(Tie_Point_Grid) for documentation!"""
51

52
    def __init__(self, COREG_obj, grid_res, max_points=None, outFillVal=-9999, resamp_alg_calc='cubic',
53
54
                 tieP_filter_level=3, outlDetect_settings=None, dir_out=None, CPUs=None, progress=True, v=False,
                 q=False):
55

56
57
58
        """Applies the algorithm to detect spatial shifts to the whole overlap area of the input images. Spatial shifts
        are calculated for each point in grid of which the parameters can be adjusted using keyword arguments. Shift
        correction performs a polynomial transformation using te calculated shifts of each point in the grid as GCPs.
59
        Thus 'Tie_Point_Grid' can be used to correct for locally varying geometric distortions of the target image.
60

61
        :param COREG_obj(object):       an instance of COREG class
62
        :param grid_res:                grid resolution in pixels of the target image (x-direction)
63
        :param max_points(int):         maximum number of points used to find coregistration tie points
64
65
66
                                        NOTE: Points are selected randomly from the given point grid (specified by
                                        'grid_res'). If the point does not provide enough points, all available points
                                        are chosen.
Daniel Scheffler's avatar
Daniel Scheffler committed
67
        :param outFillVal(int):         if given the generated tie points grid is filled with this value in case
68
                                        no match could be found during co-registration (default: -9999)
69
70
        :param resamp_alg_calc(str)     the resampling algorithm to be used for all warping processes during calculation
                                        of spatial shifts
71
72
                                        (valid algorithms: nearest, bilinear, cubic, cubic_spline, lanczos, average,
                                                           mode, max, min, med, q1, q3)
73
                                        default: cubic (highly recommended)
74
        :param tieP_filter_level(int):  filter tie points used for shift correction in different levels (default: 3).
75
                                        NOTE: lower levels are also included if a higher level is chosen
76
                                            - Level 0: no tie point filtering
77
78
79
                                            - Level 1: Reliablity filtering - filter all tie points out that have a low
                                                reliability according to internal tests
                                            - Level 2: SSIM filtering - filters all tie points out where shift
80
81
                                                correction does not increase image similarity within matching window
                                                (measured by mean structural similarity index)
82
                                            - Level 3: RANSAC outlier detection
83
84
85
86
        :param outlDetect_settings      a dictionary with the settings to be passed to
                                        arosics.TiePointGrid.Tie_Point_Refiner. Available keys: min_reliability,
                                        rs_max_outlier, rs_tolerance, rs_max_iter, rs_exclude_previous_outliers,
                                        rs_timeout, q. See documentation there.
87
88
        :param dir_out(str):            output directory to be used for all outputs if nothing else is given
                                        to the individual methods
Daniel Scheffler's avatar
Daniel Scheffler committed
89
        :param CPUs(int):               number of CPUs to use during calculation of tie points grid
90
                                        (default: None, which means 'all CPUs available')
91
        :param progress(bool):          show progress bars (default: True)
92
93
        :param v(bool):                 verbose mode (default: False)
        :param q(bool):                 quiet mode (default: False)
94
        """
95

96
97
        if not isinstance(COREG_obj, COREG):
            raise ValueError("'COREG_obj' must be an instance of COREG class.")
98

99
        self.COREG_obj = COREG_obj  # type: COREG
100
101
102
103
        self.grid_res = grid_res
        self.max_points = max_points
        self.outFillVal = outFillVal
        self.rspAlg_calc = resamp_alg_calc
104
        self.tieP_filter_level = tieP_filter_level
105
        self.outlDetect_settings = outlDetect_settings if outlDetect_settings else dict(q=q)
106
107
108
109
110
        self.dir_out = dir_out
        self.CPUs = CPUs
        self.v = v
        self.q = q if not v else False  # overridden by v
        self.progress = progress if not q else False  # overridden by q
111

112
113
        self.ref = self.COREG_obj.ref  # type: GeoArray_CoReg
        self.shift = self.COREG_obj.shift  # type: GeoArray_CoReg
114

115
        self.XY_points, self.XY_mapPoints = self._get_imXY__mapXY_points(self.grid_res)
116
117
118
119
        self._CoRegPoints_table = None  # set by self.CoRegPoints_table
        self._GCPList = None  # set by self.to_GCPList()
        self.kriged = None  # set by Raster_using_Kriging()

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    @property
    def mean_x_shift_px(self):
        return self.CoRegPoints_table['X_SHIFT_PX'][self.CoRegPoints_table['X_SHIFT_PX'] != self.outFillVal].mean()

    @property
    def mean_y_shift_px(self):
        return self.CoRegPoints_table['Y_SHIFT_PX'][self.CoRegPoints_table['Y_SHIFT_PX'] != self.outFillVal].mean()

    @property
    def mean_x_shift_map(self):
        return self.CoRegPoints_table['X_SHIFT_M'][self.CoRegPoints_table['X_SHIFT_M'] != self.outFillVal].mean()

    @property
    def mean_y_shift_map(self):
        return self.CoRegPoints_table['Y_SHIFT_M'][self.CoRegPoints_table['Y_SHIFT_M'] != self.outFillVal].mean()
135

136
137
    @property
    def CoRegPoints_table(self):
138
139
        """Returns a GeoDataFrame with the columns 'geometry','POINT_ID','X_IM','Y_IM','X_UTM','Y_UTM','X_WIN_SIZE',
        'Y_WIN_SIZE','X_SHIFT_PX','Y_SHIFT_PX', 'X_SHIFT_M', 'Y_SHIFT_M', 'ABS_SHIFT' and 'ANGLE' containing all
140
        information containing all the results from coregistration for all points in the tie points grid.
141
        """
142
143
144
145
146
147
148
149
150
151
152
153
        if self._CoRegPoints_table is not None:
            return self._CoRegPoints_table
        else:
            self._CoRegPoints_table = self.get_CoRegPoints_table()
            return self._CoRegPoints_table

    @CoRegPoints_table.setter
    def CoRegPoints_table(self, CoRegPoints_table):
        self._CoRegPoints_table = CoRegPoints_table

    @property
    def GCPList(self):
154
155
        """Returns a list of GDAL compatible GCP objects.
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
156

157
158
159
160
        if self._GCPList:
            return self._GCPList
        else:
            self._GCPList = self.to_GCPList()
161
            return self._GCPList
162
163
164
165
166
167

    @GCPList.setter
    def GCPList(self, GCPList):
        self._GCPList = GCPList

    def _get_imXY__mapXY_points(self, grid_res):
168
169
170
171
172
173
        """Returns a numpy array containing possible positions for coregistration tie points according to the given
        grid resolution.

        :param grid_res:
        :return:
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
174

175
        if not self.q:
Daniel Scheffler's avatar
Daniel Scheffler committed
176
            print('Initializing tie points grid...')
177

178
179
        Xarr, Yarr = np.meshgrid(np.arange(0, self.shift.shape[1], grid_res),
                                 np.arange(0, self.shift.shape[0], grid_res))
180

181
182
        mapXarr = np.full_like(Xarr, self.shift.gt[0], dtype=np.float64) + Xarr * self.shift.gt[1]
        mapYarr = np.full_like(Yarr, self.shift.gt[3], dtype=np.float64) - Yarr * abs(self.shift.gt[5])
183

184
185
186
        XY_points = np.empty((Xarr.size, 2), Xarr.dtype)
        XY_points[:, 0] = Xarr.flat
        XY_points[:, 1] = Yarr.flat
187

188
189
190
        XY_mapPoints = np.empty((mapXarr.size, 2), mapXarr.dtype)
        XY_mapPoints[:, 0] = mapXarr.flat
        XY_mapPoints[:, 1] = mapYarr.flat
191

Daniel Scheffler's avatar
Daniel Scheffler committed
192
193
        assert XY_points.shape == XY_mapPoints.shape

194
        return XY_points, XY_mapPoints
195

196
197
198
199
200
201
202
203
204
205
206
    def _exclude_bad_XYpos(self, GDF):
        """Excludes all points outside of the image overlap area and all points where the bad data mask is True (if given).

        :param GDF:     <geopandas.GeoDataFrame> must include the columns 'X_UTM' and 'Y_UTM'
        :return:
        """

        # exclude all points outside of overlap area
        inliers = points_in_poly(self.XY_mapPoints,
                                 np.swapaxes(np.array(self.COREG_obj.overlap_poly.exterior.coords.xy), 0, 1))
        GDF = GDF[inliers].copy()
207
        # GDF = GDF[GDF['geometry'].within(self.COREG_obj.overlap_poly.simplify(tolerance=15))] # works but much slower
208

209
210
        # FIXME track that
        assert not GDF.empty, 'No coregistration point could be placed within the overlap area. Check your input data!'
211
212

        # exclude all point where bad data mask is True (e.g. points on clouds etc.)
213
214
215
216
217
218
        orig_len_GDF = len(GDF)  # length of GDF after dropping all points outside the overlap polygon
        mapXY = np.array(GDF.loc[:, ['X_UTM', 'Y_UTM']])
        GDF['REF_BADDATA'] = self.COREG_obj.ref.mask_baddata.read_pointData(mapXY) \
            if self.COREG_obj.ref.mask_baddata is not None else False
        GDF['TGT_BADDATA'] = self.COREG_obj.shift.mask_baddata.read_pointData(mapXY) \
            if self.COREG_obj.shift.mask_baddata is not None else False
Daniel Scheffler's avatar
Daniel Scheffler committed
219
        GDF = GDF[(~GDF['REF_BADDATA']) & (~GDF['TGT_BADDATA'])]
220
        if self.COREG_obj.ref.mask_baddata is not None or self.COREG_obj.shift.mask_baddata is not None:
Daniel Scheffler's avatar
Daniel Scheffler committed
221
222
            if not self.q:
                print('According to the provided bad data mask(s) %s points of initially %s have been excluded.'
223
                      % (orig_len_GDF - len(GDF), orig_len_GDF))
224
225
226

        return GDF

227
228
    @staticmethod
    def _get_spatial_shifts(coreg_kwargs):
Daniel Scheffler's avatar
Daniel Scheffler committed
229
        # unpack
230
        pointID = coreg_kwargs['pointID']
231
232
        fftw_works = coreg_kwargs['fftw_works']
        del coreg_kwargs['pointID'], coreg_kwargs['fftw_works']
233

Daniel Scheffler's avatar
Daniel Scheffler committed
234
        # assertions
235
        assert global_shared_imref is not None
236
        assert global_shared_im2shift is not None
Daniel Scheffler's avatar
Daniel Scheffler committed
237
238

        # run CoReg
239
        CR = COREG(global_shared_imref, global_shared_im2shift, CPUs=1, **coreg_kwargs)
240
        CR.fftw_works = fftw_works
241
        CR.calculate_spatial_shifts()
Daniel Scheffler's avatar
Daniel Scheffler committed
242
243

        # fetch results
244
        last_err = CR.tracked_errors[-1] if CR.tracked_errors else None
245
        win_sz_y, win_sz_x = CR.matchBox.imDimsYX if CR.matchBox else (None, None)
246
247
248
        CR_res = [win_sz_x, win_sz_y, CR.x_shift_px, CR.y_shift_px, CR.x_shift_map, CR.y_shift_map,
                  CR.vec_length_map, CR.vec_angle_deg, CR.ssim_orig, CR.ssim_deshifted, CR.ssim_improved,
                  CR.shift_reliability, last_err]
249

250
        return [pointID] + CR_res
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    def _get_coreg_kwargs(self, pID, wp):
        return dict(
            pointID=pID,
            fftw_works=self.COREG_obj.fftw_works,
            wp=wp,
            ws=self.COREG_obj.win_size_XY,
            resamp_alg_calc=self.rspAlg_calc,
            footprint_poly_ref=self.COREG_obj.ref.poly,
            footprint_poly_tgt=self.COREG_obj.shift.poly,
            r_b4match=self.ref.band4match + 1,  # band4match is internally saved as index, starting from 0
            s_b4match=self.shift.band4match + 1,  # band4match is internally saved as index, starting from 0
            max_iter=self.COREG_obj.max_iter,
            max_shift=self.COREG_obj.max_shift,
            nodata=(self.COREG_obj.ref.nodata, self.COREG_obj.shift.nodata),
            force_quadratic_win=self.COREG_obj.force_quadratic_win,
            binary_ws=self.COREG_obj.bin_ws,
            v=False,  # otherwise this would lead to massive console output
            q=True,  # otherwise this would lead to massive console output
            ignore_errors=True
        )

273
    def get_CoRegPoints_table(self):
274
275
        assert self.XY_points is not None and self.XY_mapPoints is not None

276
277
278
279
        # create a dataframe containing 'geometry','POINT_ID','X_IM','Y_IM','X_UTM','Y_UTM'
        # (convert imCoords to mapCoords
        XYarr2PointGeom = np.vectorize(lambda X, Y: Point(X, Y), otypes=[Point])
        geomPoints = np.array(XYarr2PointGeom(self.XY_mapPoints[:, 0], self.XY_mapPoints[:, 1]))
280

281
282
283
        if isLocal(self.COREG_obj.shift.prj):
            crs = None
        elif isProjectedOrGeographic(self.COREG_obj.shift.prj) == 'geographic':
284
            crs = dict(ellps='WGS84', datum='WGS84', proj='longlat')
285
        elif isProjectedOrGeographic(self.COREG_obj.shift.prj) == 'projected':
286
            UTMzone = abs(get_UTMzone(prj=self.COREG_obj.shift.prj))
287
288
289
290
            south = get_UTMzone(prj=self.COREG_obj.shift.prj) < 0
            crs = dict(ellps='WGS84', datum='WGS84', proj='utm', zone=UTMzone, south=south, units='m', no_defs=True)
            if not south:
                del crs['south']
291
292
293
        else:
            crs = None

294
295
296
297
298
299
        GDF = GeoDataFrame(index=range(len(geomPoints)), crs=crs,
                           columns=['geometry', 'POINT_ID', 'X_IM', 'Y_IM', 'X_UTM', 'Y_UTM'])
        GDF['geometry'] = geomPoints
        GDF['POINT_ID'] = range(len(geomPoints))
        GDF.loc[:, ['X_IM', 'Y_IM']] = self.XY_points
        GDF.loc[:, ['X_UTM', 'Y_UTM']] = self.XY_mapPoints
300

301
302
        # exclude offsite points and points on bad data mask
        GDF = self._exclude_bad_XYpos(GDF)
303
304
305
        if GDF.empty:
            self.CoRegPoints_table = GDF
            return self.CoRegPoints_table
306

307
        # choose a random subset of points if a maximum number has been given
308
        if self.max_points and len(GDF) > self.max_points:
309
            GDF = GDF.sample(self.max_points).copy()
310

311
        # equalize pixel grids in order to save warping time
312
313
314
315
        if len(GDF) > 100:
            # NOTE: actually grid res should be also changed here because self.shift.xgsd changes and grid res is
            # connected to that
            self.COREG_obj.equalize_pixGrids()
316

317
        # validate reference and target image inputs
318
        assert self.ref.footprint_poly  # this also checks for mask_nodata and nodata value
319
        assert self.shift.footprint_poly
320
321
322

        # ensure the input arrays for CoReg are in memory -> otherwise the code will get stuck in multiprocessing if
        # neighboured matching windows overlap during reading from disk!!
323
324
        self.ref.cache_array_subset(
            [self.COREG_obj.ref.band4match])  # only sets geoArr._arr_cache; does not change number of bands
Daniel Scheffler's avatar
Daniel Scheffler committed
325
326
        self.shift.cache_array_subset([self.COREG_obj.shift.band4match])

327
        # get all variations of kwargs for coregistration
328
        list_coreg_kwargs = (self._get_coreg_kwargs(i, self.XY_mapPoints[i]) for i in GDF.index)  # generator
329
330

        # run co-registration for whole grid
331
        if self.CPUs is None or self.CPUs > 1:
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
332
            if not self.q:
333
                cpus = self.CPUs if self.CPUs is not None else multiprocessing.cpu_count()
334
                print("Calculating tie point grid (%s points) using %s CPU cores..." % (len(GDF), cpus))
335

336
            with multiprocessing.Pool(self.CPUs, initializer=mp_initializer, initargs=(self.ref, self.shift)) as pool:
337
338
339
340
                if self.q or not self.progress:
                    results = pool.map(self._get_spatial_shifts, list_coreg_kwargs)
                else:
                    results = pool.map_async(self._get_spatial_shifts, list_coreg_kwargs, chunksize=1)
341
                    bar = ProgressBar(prefix='\tprogress:')
342
343
                    while True:
                        time.sleep(.1)
344
345
346
                        # this does not really represent the remaining tasks but the remaining chunks
                        # -> thus chunksize=1
                        numberDone = len(GDF) - results._number_left
347
                        if self.progress:
348
                            bar.print_progress(percent=numberDone / len(GDF) * 100)
349
                        if results.ready():
350
351
352
                            # <= this is the line where multiprocessing can freeze if an exception appears within
                            # COREG ans is not raised
                            results = results.get()
353
                            break
Daniel Scheffler's avatar
Daniel Scheffler committed
354

355
        else:
356
357
358
359
360
            # declare global variables needed for self._get_spatial_shifts()
            global global_shared_imref, global_shared_im2shift
            global_shared_imref = self.ref
            global_shared_im2shift = self.shift

Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
361
            if not self.q:
362
                print("Calculating tie point grid (%s points) 1 CPU core..." % len(GDF))
363
364
365
            results = np.empty((len(geomPoints), 14), np.object)
            bar = ProgressBar(prefix='\tprogress:')
            for i, coreg_kwargs in enumerate(list_coreg_kwargs):
366
                if self.progress:
367
368
                    bar.print_progress((i + 1) / len(GDF) * 100)
                results[i, :] = self._get_spatial_shifts(coreg_kwargs)
369

370
                # merge results with GDF
371
        records = GeoDataFrame(np.array(results, np.object),
372
                               columns=['POINT_ID', 'X_WIN_SIZE', 'Y_WIN_SIZE', 'X_SHIFT_PX', 'Y_SHIFT_PX', 'X_SHIFT_M',
373
                                        'Y_SHIFT_M', 'ABS_SHIFT', 'ANGLE', 'SSIM_BEFORE', 'SSIM_AFTER',
374
375
                                        'SSIM_IMPROVED', 'RELIABILITY', 'LAST_ERR'])

376
377
378
        GDF = GDF.merge(records, on='POINT_ID', how="inner")
        GDF = GDF.fillna(int(self.outFillVal))

379
380
381
        if not self.q:
            print("Found %s matches." % len(GDF[GDF.LAST_ERR == int(self.outFillVal)]))

382
        # filter tie points according to given filter level
383
        if self.tieP_filter_level > 0:
384
385
            if not self.q:
                print('Performing validity checks...')
386
            TPR = Tie_Point_Refiner(GDF[GDF.ABS_SHIFT != self.outFillVal], **self.outlDetect_settings)
387
            GDF_filt, new_columns = TPR.run_filtering(level=self.tieP_filter_level)
388
            GDF = GDF.merge(GDF_filt[['POINT_ID'] + new_columns], on='POINT_ID', how="outer")
389
        GDF = GDF.fillna(int(self.outFillVal))
390

391
        self.CoRegPoints_table = GDF
392
393
394

        return self.CoRegPoints_table

395
396
397
398
    def calc_rmse(self, include_outliers=False):
        # type: (bool) -> float
        """Calculates root mean square error of absolute shifts from the tie point grid.

Daniel Scheffler's avatar
Daniel Scheffler committed
399
        :param include_outliers:    whether to include tie points that have been marked as false-positives (if present)
400
401
402
        """

        tbl = self.CoRegPoints_table
Daniel Scheffler's avatar
Daniel Scheffler committed
403
        tbl = tbl if include_outliers else tbl[~tbl['OUTLIER']].copy() if 'OUTLIER' in tbl.columns else tbl
404
405
406
407
408
409
410
411
412
413
414
415
416
417

        shifts = np.array(tbl['ABS_SHIFT'])
        shifts_sq = [i * i for i in shifts if i != self.outFillVal]

        return np.sqrt(sum(shifts_sq) / len(shifts_sq))

    def calc_overall_mssim(self, include_outliers=False):
        # type: (bool) -> float
        """Calculates the median value of all MSSIM values contained in tie point grid.

        :param include_outliers:    whether to include tie points that have been marked as false-positives
        """

        tbl = self.CoRegPoints_table
Daniel Scheffler's avatar
Daniel Scheffler committed
418
        tbl = tbl if include_outliers else tbl[~tbl['OUTLIER']].copy()
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

        mssim_col = np.array(tbl['MSSIM'])
        mssim_col = [i * i for i in mssim_col if i != self.outFillVal]

        return float(np.median(mssim_col))

    def plot_shift_distribution(self, include_outliers=True, unit='m', interactive=False, figsize=None, xlim=None,
                                ylim=None, fontsize=12, title='shift distribution'):
        # type: (bool, str, bool, tuple, list, list, int) -> tuple
        """Creates a 2D scatterplot containing the distribution of calculated X/Y-shifts.

        :param include_outliers:    whether to include tie points that have been marked as false-positives
        :param unit:                'm' for meters or 'px' for pixels (default: 'm')
        :param interactive:         interactive mode uses plotly for visualization
        :param figsize:             (xdim, ydim)
        :param xlim:                [xmin, xmax]
        :param ylim:                [ymin, ymax]
        :param fontsize:            size of all used fonts
        :param title:               the title to be plotted above the figure
        """

440
441
        if unit not in ['m', 'px']:
            raise ValueError("Parameter 'unit' must have the value 'm' (meters) or 'px' (pixels)! Got %s." % unit)
442
443

        tbl = self.CoRegPoints_table
Daniel Scheffler's avatar
Daniel Scheffler committed
444
        tbl = tbl[tbl['ABS_SHIFT'] != self.outFillVal]
Daniel Scheffler's avatar
Daniel Scheffler committed
445
446
        tbl_il = tbl[~tbl['OUTLIER']].copy() if 'OUTLIER' in tbl.columns else tbl
        tbl_ol = tbl[tbl['OUTLIER']].copy() if 'OUTLIER' in tbl.columns else None
447
448
        x_attr = 'X_SHIFT_M' if unit == 'm' else 'X_SHIFT_PX'
        y_attr = 'Y_SHIFT_M' if unit == 'm' else 'Y_SHIFT_PX'
449
450
        rmse = self.calc_rmse(include_outliers=False)  # always exclude outliers when calculating RMSE
        figsize = figsize if figsize else (10, 10)
451
452
453
454

        if interactive:
            from plotly.offline import iplot, init_notebook_mode
            import plotly.graph_objs as go
Daniel Scheffler's avatar
Daniel Scheffler committed
455
            # FIXME outliers are not plotted
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

            init_notebook_mode(connected=True)

            # Create a trace
            trace = go.Scatter(
                x=tbl_il[x_attr],
                y=tbl_il[y_attr],
                mode='markers'
            )

            data = [trace]

            # Plot and embed in ipython notebook!
            iplot(data, filename='basic-scatter')

            return None, None

        else:
            fig = plt.figure(figsize=figsize)
            ax = fig.add_subplot(111)

Daniel Scheffler's avatar
Daniel Scheffler committed
477
            if include_outliers and 'OUTLIER' in tbl.columns:
Daniel Scheffler's avatar
Daniel Scheffler committed
478
                ax.scatter(tbl_ol[x_attr], tbl_ol[y_attr], marker='+', c='r', label='false-positives')
479
480
481
482
483
484
485
486
487
488
489
490
            ax.scatter(tbl_il[x_attr], tbl_il[y_attr], marker='+', c='g', label='valid tie points')

            # set axis limits
            if not xlim:
                xmax = np.abs(tbl_il[x_attr]).max()
                xlim = [-xmax, xmax]
            if not ylim:
                ymax = np.abs(tbl_il[y_attr]).max()
                ylim = [-ymax, ymax]
            ax.set_xlim(xlim)
            ax.set_ylim(ylim)

Daniel Scheffler's avatar
Daniel Scheffler committed
491
            # add text box containing RMSE of plotted shifts
492
            xlim, ylim = ax.get_xlim(), ax.get_ylim()
493
494
            plt.text(xlim[1] - (xlim[1] / 20), -ylim[1] + (ylim[1] / 20),
                     'RMSE:  %s m / %s px' % (np.round(rmse, 2), np.round(rmse / self.shift.xgsd, 2)),
495
                     ha='right', va='bottom', fontsize=fontsize, bbox=dict(facecolor='w', pad=None, alpha=0.8))
496

Daniel Scheffler's avatar
Daniel Scheffler committed
497
            # add grid and increase linewidth of middle line
498
499
500
            plt.grid()
            xgl = ax.get_xgridlines()
            middle_xgl = xgl[int(np.median(np.array(range(len(xgl)))))]
Daniel Scheffler's avatar
Daniel Scheffler committed
501
            middle_xgl.set_linewidth(2)
502
503
504
            middle_xgl.set_linestyle('-')
            ygl = ax.get_ygridlines()
            middle_ygl = ygl[int(np.median(np.array(range(len(ygl)))))]
Daniel Scheffler's avatar
Daniel Scheffler committed
505
            middle_ygl.set_linewidth(2)
506
507
            middle_ygl.set_linestyle('-')

Daniel Scheffler's avatar
Daniel Scheffler committed
508
509
            # set title and adjust tick labels
            ax.set_title(title, fontsize=fontsize)
510
511
            [tick.label.set_fontsize(fontsize) for tick in ax.xaxis.get_major_ticks()]
            [tick.label.set_fontsize(fontsize) for tick in ax.yaxis.get_major_ticks()]
Daniel Scheffler's avatar
Daniel Scheffler committed
512
513
            plt.xlabel('x-shift [%s]' % 'meters' if unit == 'm' else 'pixels', fontsize=fontsize)
            plt.ylabel('y-shift [%s]' % 'meters' if unit == 'm' else 'pixels', fontsize=fontsize)
514

515
516
            # add legend with labels in the right order
            handles, labels = ax.get_legend_handles_labels()
Daniel Scheffler's avatar
Daniel Scheffler committed
517
518
            leg = plt.legend(reversed(handles), reversed(labels), fontsize=fontsize, loc='upper right', scatterpoints=3)
            leg.get_frame().set_edgecolor('black')
519

520
521
522
523
            plt.show()

            return fig, ax

524
    def dump_CoRegPoints_table(self, path_out=None):
525
526
527
528
529
        path_out = path_out if path_out else \
            get_generic_outpath(dir_out=self.dir_out, fName_out="CoRegPoints_table_grid%s_ws(%s_%s)__T_%s__R_%s.pkl"
                                                                % (self.grid_res, self.COREG_obj.win_size_XY[0],
                                                                   self.COREG_obj.win_size_XY[1], self.shift.basename,
                                                                   self.ref.basename))
530
531
532
        if not self.q:
            print('Writing %s ...' % path_out)
        self.CoRegPoints_table.to_pickle(path_out)
533

534
    def to_GCPList(self):
Daniel Scheffler's avatar
Daniel Scheffler committed
535
        # get copy of tie points grid without no data
Daniel Scheffler's avatar
Daniel Scheffler committed
536
537
538
539
540
        try:
            GDF = self.CoRegPoints_table.loc[self.CoRegPoints_table.ABS_SHIFT != self.outFillVal, :].copy()
        except AttributeError:
            # self.CoRegPoints_table has no attribute 'ABS_SHIFT' because all points have been excluded
            return []
541

542
        if getattr(GDF, 'empty'):  # GDF.empty returns AttributeError
543
544
            return []
        else:
545
            # exclude all points flagged as outliers
546
            if 'OUTLIER' in GDF.columns:
547
                GDF = GDF[GDF.OUTLIER.__eq__(False)].copy()
548
549
            avail_TP = len(GDF)

550
551
552
553
            if not avail_TP:
                # no point passed all validity checks
                return []

554
            if avail_TP > 7000:
555
556
557
                GDF = GDF.sample(7000)
                warnings.warn('By far not more than 7000 tie points can be used for warping within a limited '
                              'computation time (due to a GDAL bottleneck). Thus these 7000 points are randomly chosen '
558
                              'out of the %s available tie points.' % avail_TP)
559

560
561
562
            # calculate GCPs
            GDF['X_UTM_new'] = GDF.X_UTM + GDF.X_SHIFT_M
            GDF['Y_UTM_new'] = GDF.Y_UTM + GDF.Y_SHIFT_M
563
564
            GDF['GCP'] = GDF.apply(lambda GDF_row: gdal.GCP(GDF_row.X_UTM_new, GDF_row.Y_UTM_new, 0,
                                                            GDF_row.X_IM, GDF_row.Y_IM), axis=1)
565
566
567
            self.GCPList = GDF.GCP.tolist()

            if not self.q:
568
                print('Found %s valid tie points.' % len(self.GCPList))
569
570

            return self.GCPList
571

572
    def test_if_singleprocessing_equals_multiprocessing_result(self):
573
574
        # RANSAC filtering always produces different results because it includes random sampling
        self.tieP_filter_level = 1
575

Daniel Scheffler's avatar
Daniel Scheffler committed
576
        self.CPUs = None
577
        dataframe = self.get_CoRegPoints_table()
578
        mp_out = np.empty_like(dataframe.values)
579
        mp_out[:] = dataframe.values
Daniel Scheffler's avatar
Daniel Scheffler committed
580
        self.CPUs = 1
581
        dataframe = self.get_CoRegPoints_table()
582
        sp_out = np.empty_like(dataframe.values)
583
584
        sp_out[:] = dataframe.values

585
        return np.array_equal(sp_out, mp_out)
586

587
588
    def _get_line_by_PID(self, PID):
        return self.CoRegPoints_table.loc[PID, :]
589

590
    def _get_lines_by_PIDs(self, PIDs):
591
592
593
594
        assert isinstance(PIDs, list)
        lines = np.zeros((len(PIDs), self.CoRegPoints_table.shape[1]))
        for i, PID in enumerate(PIDs):
            lines[i, :] = self.CoRegPoints_table[self.CoRegPoints_table['POINT_ID'] == PID]
595
596
        return lines

597
    def to_PointShapefile(self, path_out=None, skip_nodata=True, skip_nodata_col='ABS_SHIFT'):
598
        # type: (str, bool, str) -> None
Daniel Scheffler's avatar
Daniel Scheffler committed
599
        """Writes the calculated tie points grid to a point shapefile containing
600
        Tie_Point_Grid.CoRegPoints_table as attribute table. This shapefile can easily be displayed using GIS software.
601
602
603

        :param path_out:        <str> the output path. If not given, it is automatically defined.
        :param skip_nodata:     <bool> whether to skip all points where no valid match could be found
604
        :param skip_nodata_col: <str> determines which column of Tie_Point_Grid.CoRegPoints_table is used to
605
606
                                identify points where no valid match could be found
        """
Daniel Scheffler's avatar
Daniel Scheffler committed
607

608
609
        GDF = self.CoRegPoints_table
        GDF2pass = GDF if not skip_nodata else GDF[GDF[skip_nodata_col] != self.outFillVal]
Daniel Scheffler's avatar
Daniel Scheffler committed
610
611
612
613
614

        # replace boolean values (cannot be written)
        for col in GDF2pass.columns:
            if GDF2pass[col].dtype == np.bool:
                GDF2pass[col] = GDF2pass[col].astype(int)
615
616
617
618
619
620
621
622
        GDF2pass = GDF2pass.replace(False, 0)  # replace all remaining booleans where dtype is not np.bool but np.object
        GDF2pass = GDF2pass.replace(True, 1)

        path_out = path_out if path_out else \
            get_generic_outpath(dir_out=os.path.join(self.dir_out, 'CoRegPoints'),
                                fName_out="CoRegPoints_grid%s_ws(%s_%s)__T_%s__R_%s.shp"
                                          % (self.grid_res, self.COREG_obj.win_size_XY[0],
                                             self.COREG_obj.win_size_XY[1], self.shift.basename, self.ref.basename))
Daniel Scheffler's avatar
CoReg:    
Daniel Scheffler committed
623
        if not self.q:
624
            print('Writing %s ...' % path_out)
625
626
        GDF2pass.to_file(path_out)

627
    def _to_PointShapefile(self, skip_nodata=True, skip_nodata_col='ABS_SHIFT'):  # pragma: no cover
628
629
630
631
632
        warnings.warn(DeprecationWarning(
            "'_tiepoints_grid_to_PointShapefile' is deprecated."  # TODO delete if other method validated
            " 'tiepoints_grid_to_PointShapefile' is much faster."))
        GDF = self.CoRegPoints_table
        GDF2pass = GDF if not skip_nodata else GDF[GDF[skip_nodata_col] != self.outFillVal]
633
        shapely_points = GDF2pass['geometry'].values.tolist()
634
        attr_dicts = [collections.OrderedDict(zip(GDF2pass.columns, GDF2pass.loc[i].values)) for i in GDF2pass.index]
635

636
        fName_out = "CoRegPoints_grid%s_ws%s.shp" % (self.grid_res, self.COREG_obj.win_size_XY)
637
638
639
        path_out = os.path.join(self.dir_out, fName_out)
        IO.write_shp(path_out, shapely_points, prj=self.COREG_obj.shift.prj, attrDict=attr_dicts)

640
    def to_vectorfield(self, path_out=None, fmt=None, mode='md'):
641
        # type: (str) -> GeoArray
642
643
644
645
646
        """Saves the calculated X-/Y-shifts to a 2-band raster file that can be used to visualize a vectorfield
        (e.g. using ArcGIS)

        :param path_out:    <str> the output path. If not given, it is automatically defined.
        :param fmt:         <str> output raster format string
647
648
        :param mode:        <str> The mode how the output is written ('uv' or 'md'; default: 'md')
                                    'uv': outputs X-/Y shifts
649
650
651
                                    'md': outputs magnitude and direction
        """

652
653
        assert mode in ['uv', 'md'], "'mode' must be either 'uv' (outputs X-/Y shifts) or 'md' " \
                                     "(outputs magnitude and direction)'. Got %s." % mode
654
655
        attr_b1 = 'X_SHIFT_M' if mode == 'uv' else 'ABS_SHIFT'
        attr_b2 = 'Y_SHIFT_M' if mode == 'uv' else 'ANGLE'
656

657
658
659
660
661
        xshift_arr, gt, prj = points_to_raster(points=self.CoRegPoints_table['geometry'],
                                               values=self.CoRegPoints_table[attr_b1],
                                               tgt_res=self.shift.xgsd * self.grid_res,
                                               prj=proj4_to_WKT(dict_to_proj4(self.CoRegPoints_table.crs)),
                                               fillVal=self.outFillVal)
662

663
664
665
666
667
        yshift_arr, gt, prj = points_to_raster(points=self.CoRegPoints_table['geometry'],
                                               values=self.CoRegPoints_table[attr_b2],
                                               tgt_res=self.shift.xgsd * self.grid_res,
                                               prj=proj4_to_WKT(dict_to_proj4(self.CoRegPoints_table.crs)),
                                               fillVal=self.outFillVal)
668
669
670

        out_GA = GeoArray(np.dstack([xshift_arr, yshift_arr]), gt, prj, nodata=self.outFillVal)

671
672
673
674
675
        path_out = path_out if path_out else \
            get_generic_outpath(dir_out=os.path.join(self.dir_out, 'CoRegPoints'),
                                fName_out="CoRegVectorfield%s_ws(%s_%s)__T_%s__R_%s.tif"
                                          % (self.grid_res, self.COREG_obj.win_size_XY[0],
                                             self.COREG_obj.win_size_XY[1], self.shift.basename, self.ref.basename))
676
677
678
679
680

        out_GA.save(path_out, fmt=fmt if fmt else 'Gtiff')

        return out_GA

681
    def _to_Raster_using_KrigingOLD(self, attrName, skip_nodata=1, skip_nodata_col='ABS_SHIFT', outGridRes=None,
682
                                    path_out=None, tilepos=None):  # pragma: no cover
683
        warnings.warn(DeprecationWarning("'to_Raster_using_KrigingOLD' is deprecated. Use to_Raster_using_Kriging "
684
                                         "instead."))  # TODO delete
685

686
687
        GDF = self.CoRegPoints_table
        GDF2pass = GDF if not skip_nodata else GDF[GDF[skip_nodata_col] != self.outFillVal]
688
689

        # subset if tilepos is given
690
691
692
        rows, cols = tilepos if tilepos else self.shift.shape
        GDF2pass = GDF2pass.loc[(GDF2pass['X_IM'] >= cols[0]) & (GDF2pass['X_IM'] <= cols[1]) &
                                (GDF2pass['Y_IM'] >= rows[0]) & (GDF2pass['Y_IM'] <= rows[1])]
693

694
        X_coords, Y_coords, ABS_SHIFT = GDF2pass['X_UTM'], GDF2pass['Y_UTM'], GDF2pass[attrName]
695

696
        xmin, ymin, xmax, ymax = GDF2pass.total_bounds
697

698
699
        grid_res = outGridRes if outGridRes else int(min(xmax - xmin, ymax - ymin) / 250)
        grid_x, grid_y = np.arange(xmin, xmax + grid_res, grid_res), np.arange(ymax, ymin - grid_res, -grid_res)
700
701
702

        # Reference: P.K. Kitanidis, Introduction to Geostatistcs: Applications in Hydrogeology,
        #            (Cambridge University Press, 1997) 272 p.
703
        from pykrige.ok import OrdinaryKriging
704
705
706
707
708
709
710
711
712
        OK = OrdinaryKriging(X_coords, Y_coords, ABS_SHIFT, variogram_model='spherical', verbose=False)
        zvalues, sigmasq = OK.execute('grid', grid_x, grid_y)  # ,backend='C',)

        path_out = path_out if path_out else \
            get_generic_outpath(dir_out=os.path.join(self.dir_out, 'CoRegPoints'),
                                fName_out="Kriging__%s__grid%s_ws(%s_%s).tif"
                                          % (attrName, self.grid_res, self.COREG_obj.win_size_XY[0],
                                             self.COREG_obj.win_size_XY[1]))
        print('Writing %s ...' % path_out)
713
        # add a half pixel grid points are centered on the output pixels
714
715
716
        xmin, ymin, xmax, ymax = xmin - grid_res / 2, ymin - grid_res / 2, xmax + grid_res / 2, ymax + grid_res / 2
        IO.write_numpy_to_image(zvalues, path_out, gt=(xmin, grid_res, 0, ymax, 0, -grid_res),
                                prj=self.COREG_obj.shift.prj)
717
718
719

        return zvalues

720
    def to_Raster_using_Kriging(self, attrName, skip_nodata=1, skip_nodata_col='ABS_SHIFT', outGridRes=None,
721
                                fName_out=None, tilepos=None, tilesize=500, mp=None):
722

723
        mp = False if self.CPUs == 1 else True
724
725
        self._Kriging_sp(attrName, skip_nodata=skip_nodata, skip_nodata_col=skip_nodata_col,
                         outGridRes=outGridRes, fName_out=fName_out, tilepos=tilepos)
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

        # if mp:
        #     tilepositions = UTL.get_image_tileborders([tilesize,tilesize],self.tgt_shape)
        #     args_kwargs_dicts=[]
        #     for tp in tilepositions:
        #         kwargs_dict = {'skip_nodata':skip_nodata,'skip_nodata_col':skip_nodata_col,'outGridRes':outGridRes,
        #                        'fName_out':fName_out,'tilepos':tp}
        #         args_kwargs_dicts.append({'args':[attrName],'kwargs':kwargs_dict})
        #     # self.kriged=[]
        #     # for i in args_kwargs_dicts:
        #     #     res = self.Kriging_mp(i)
        #     #     self.kriged.append(res)
        #     #     print(res)
        #
        #     with multiprocessing.Pool() as pool:
        #        self.kriged = pool.map(self.Kriging_mp,args_kwargs_dicts)
        # else:
        #     self.Kriging_sp(attrName,skip_nodata=skip_nodata,skip_nodata_col=skip_nodata_col,
        #                     outGridRes=outGridRes,fName_out=fName_out,tilepos=tilepos)
        res = self.kriged if mp else None
        return res

748
749
    def _Kriging_sp(self, attrName, skip_nodata=1, skip_nodata_col='ABS_SHIFT', outGridRes=None,
                    fName_out=None, tilepos=None):
750
751
        GDF = self.CoRegPoints_table
        GDF2pass = GDF if not skip_nodata else GDF[GDF[skip_nodata_col] != self.outFillVal]
752

753
754
755
756
757
758
759
760
761
762
        #         # subset if tilepos is given
        # #        overlap_factor =
        #         rows,cols = tilepos if tilepos else self.tgt_shape
        #         xvals, yvals = np.sort(GDF2pass['X_IM'].values.flat),np.sort(GDF2pass['Y_IM'].values.flat)
        #         cS,cE = UTL.find_nearest(xvals,cols[0],'off',1), UTL.find_nearest(xvals,cols[1],'on',1)
        #         rS,rE = UTL.find_nearest(yvals,rows[0],'off',1), UTL.find_nearest(yvals,rows[1],'on',1)
        #         # GDF2pass        = GDF2pass.loc[(GDF2pass['X_IM']>=cols[0])&(GDF2pass['X_IM']<=cols[1])&
        #         #                                (GDF2pass['Y_IM']>=rows[0])&(GDF2pass['Y_IM']<=rows[1])]
        #         GDF2pass        = GDF2pass.loc[(GDF2pass['X_IM']>=cS)&(GDF2pass['X_IM']<=cE)&
        #                                        (GDF2pass['Y_IM']>=rS)&(GDF2pass['Y_IM']<=rE)]
763

764
        X_coords, Y_coords, ABS_SHIFT = GDF2pass['X_UTM'], GDF2pass['Y_UTM'], GDF2pass[attrName]
765

766
        xmin, ymin, xmax, ymax = GDF2pass.total_bounds
767

768
769
        grid_res = outGridRes if outGridRes else int(min(xmax - xmin, ymax - ymin) / 250)
        grid_x, grid_y = np.arange(xmin, xmax + grid_res, grid_res), np.arange(ymax, ymin - grid_res, -grid_res)
770
771
772

        # Reference: P.K. Kitanidis, Introduction to Geostatistcs: Applications in Hydrogeology,
        #            (Cambridge University Press, 1997) 272 p.
773
        from pykrige.ok import OrdinaryKriging
774
775
        OK = OrdinaryKriging(X_coords, Y_coords, ABS_SHIFT, variogram_model='spherical', verbose=False)
        zvalues, sigmasq = OK.execute('grid', grid_x, grid_y, backend='C', n_closest_points=12)
776

777
        if self.CPUs is None or self.CPUs > 1:
778
            fName_out = fName_out if fName_out else \
779
                "Kriging__%s__grid%s_ws%s_%s.tif" % (attrName, self.grid_res, self.COREG_obj.win_size_XY, tilepos)
780
781
        else:
            fName_out = fName_out if fName_out else \
782
783
784
                "Kriging__%s__grid%s_ws%s.tif" % (attrName, self.grid_res, self.COREG_obj.win_size_XY)
        path_out = get_generic_outpath(dir_out=self.dir_out, fName_out=fName_out)
        print('Writing %s ...' % path_out)
785
        # add a half pixel grid points are centered on the output pixels
786
787
788
        xmin, ymin, xmax, ymax = xmin - grid_res / 2, ymin - grid_res / 2, xmax + grid_res / 2, ymax + grid_res / 2
        IO.write_numpy_to_image(zvalues, path_out, gt=(xmin, grid_res, 0, ymax, 0, -grid_res),
                                prj=self.COREG_obj.shift.prj)
789
790
791

        return zvalues

792
    def _Kriging_mp(self, args_kwargs_dict):
793
794
        args = args_kwargs_dict.get('args', [])
        kwargs = args_kwargs_dict.get('kwargs', [])
795

796
        return self._Kriging_sp(*args, **kwargs)
797
798


799
class Tie_Point_Refiner(object):
Daniel Scheffler's avatar
Daniel Scheffler committed
800
    def __init__(self, GDF, min_reliability=60, rs_max_outlier=10, rs_tolerance=2.5, rs_max_iter=15,
801
                 rs_exclude_previous_outliers=True, rs_timeout=20, q=False):
802
        """A class for performing outlier detection.
Daniel Scheffler's avatar
Daniel Scheffler committed
803

804
805
        :param GDF:                             GeoDataFrame like TiePointGrid.CoRegPoints_table containing all tie
                                                points to be filtered and the corresponding metadata
Daniel Scheffler's avatar
Daniel Scheffler committed
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
        :param min_reliability:                 <float, int> minimum threshold for previously computed tie X/Y shift
                                                reliability (default: 60%)
        :param rs_max_outlier:                  <float, int> RANSAC: maximum percentage of outliers to be detected
                                                (default: 10%)
        :param rs_tolerance:                    <float, int> RANSAC: percentage tolerance for max_outlier_percentage
                                                (default: 2.5%)
        :param rs_max_iter:                     <int> RANSAC: maximum iterations for finding the best RANSAC threshold
                                                (default: 15)
        :param rs_exclude_previous_outliers:    <bool> RANSAC: whether to exclude points that have been flagged as
                                                outlier by earlier filtering (default:True)
        :param rs_timeout:                      <float, int> RANSAC: timeout for iteration loop in seconds (default: 20)

        :param q:
        """

        self.GDF = GDF.copy()
        self.min_reliability = min_reliability
        self.rs_max_outlier_percentage = rs_max_outlier
        self.rs_tolerance = rs_tolerance
        self.rs_max_iter = rs_max_iter
        self.rs_exclude_previous_outliers = rs_exclude_previous_outliers
        self.rs_timeout = rs_timeout
        self.q = q
        self.new_cols = []
830
831
        self.ransac_model_robust = None

832
    def run_filtering(self, level=3):
833
834
        """Filter tie points used for shift correction.

835
        :param level:   tie point filter level (default: 3).
836
837
838
839
840
841
842
843
                        NOTE: lower levels are also included if a higher level is chosen
                            - Level 0: no tie point filtering
                            - Level 1: Reliablity filtering - filter all tie points out that have a low
                                reliability according to internal tests
                            - Level 2: SSIM filtering - filters all tie points out where shift
                                correction does not increase image similarity within matching window
                                (measured by mean structural similarity index)
                            - Level 3: RANSAC outlier detection
Daniel Scheffler's avatar
Daniel Scheffler committed
844
845
846
847

        :return:
        """

848
849
        # TODO catch empty GDF

850
        # RELIABILITY filtering
851
        if level > 0:
852
            marked_recs = GeoSeries(self._reliability_thresholding())
853
854
            self.GDF['L1_OUTLIER'] = marked_recs
            self.new_cols.append('L1_OUTLIER')
Daniel Scheffler's avatar
Daniel Scheffler committed
855

856
            if not self.q:
857
                print('%s tie points flagged by level 1 filtering (reliability).'
Daniel Scheffler's avatar
Daniel Scheffler committed
858
                      % (len(marked_recs[marked_recs])))
Daniel Scheffler's avatar
Daniel Scheffler committed
859

860
        # SSIM filtering
861
        if level > 1:
862
            marked_recs = GeoSeries(self._SSIM_filtering())
863
864
            self.GDF['L2_OUTLIER'] = marked_recs
            self.new_cols.append('L2_OUTLIER')
Daniel Scheffler's avatar
Daniel Scheffler committed
865

866
            if not self.q:
Daniel Scheffler's avatar
Daniel Scheffler committed
867
                print('%s tie points flagged by level 2 filtering (SSIM).' % (len(marked_recs[marked_recs])))
Daniel Scheffler's avatar
Daniel Scheffler committed
868

869
        # RANSAC filtering
870
        if level > 2:
Daniel Scheffler's avatar
Daniel Scheffler committed
871
            # exclude previous outliers
Daniel Scheffler's avatar
Daniel Scheffler committed
872
            ransacInGDF = self.GDF[~self.GDF[self.new_cols].any(axis=1)].copy() \
873
                    if self.rs_exclude_previous_outliers else self.GDF
Daniel Scheffler's avatar
Daniel Scheffler committed
874

875
            if len(ransacInGDF) > 4:
876
                # running RANSAC with less than four tie points makes no sense
Daniel Scheffler's avatar
Daniel Scheffler committed
877
878

                marked_recs = GeoSeries(self._RANSAC_outlier_detection(ransacInGDF))
879
880
                # we need to join a list here because otherwise it's merged by the 'index' column
                self.GDF['L3_OUTLIER'] = marked_recs.tolist()
Daniel Scheffler's avatar
Daniel Scheffler committed
881

882
                if not self.q:
Daniel Scheffler's avatar
Daniel Scheffler committed
883
884
                    print('%s tie points flagged by level 3 filtering (RANSAC)'
                          % (len(marked_recs[marked_recs])))
885
886
887
888
            else:
                print('RANSAC skipped because too less valid tie points have been found.')
                self.GDF['L3_OUTLIER'] = False

889
            self.new_cols.append('L3_OUTLIER')
Daniel Scheffler's avatar
Daniel Scheffler committed
890

891
892
893
894
895
        self.GDF['OUTLIER'] = self.GDF[self.new_cols].any(axis=1)
        self.new_cols.append('OUTLIER')

        return self.GDF, self.new_cols

Daniel Scheffler's avatar
Daniel Scheffler committed
896
    def _reliability_thresholding(self):
897
        """Exclude all records where estimated reliability of the calculated shifts is below the given threshold."""
898

Daniel Scheffler's avatar
Daniel Scheffler committed
899
        return self.GDF.RELIABILITY < self.min_reliability
900
901

    def _SSIM_filtering(self):
Daniel Scheffler's avatar
Daniel Scheffler committed
902
        """Exclude all records where SSIM decreased."""
903

904
        # ssim_diff  = np.median(self.GDF['SSIM_AFTER']) - np.median(self.GDF['SSIM_BEFORE'])
905

906
907
        # self.GDF.SSIM_IMPROVED = \
        #     self.GDF.apply(lambda GDF_row: GDF_row['SSIM_AFTER']>GDF_row['SSIM_BEFORE'] + ssim_diff, axis=1)
908

909
        return ~self.GDF.SSIM_IMPROVED
910

Daniel Scheffler's avatar
Daniel Scheffler committed
911
912
    def _RANSAC_outlier_detection(self, inGDF):
        """Detect geometric outliers between point cloud of source and estimated coordinates using RANSAC algorithm."""
913

Daniel Scheffler's avatar
Daniel Scheffler committed
914
        src_coords = np.array(inGDF[['X_UTM', 'Y_UTM']])
915
        xyShift = np